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K Y B E R N E T I K A — V O L U M E 5 5 ( 2 0 1 9 ) , N U M B E R 6 , P A G E S 1 0 5 0 – 1 0 6 9

FINITE ELEMENT-BASED OBSERVER DESIGN
FOR NONLINEAR SYSTEMS WITH DELAYED
MEASUREMENTS

Branislav Rehák

This paper presents a computational procedure for the design of an observer of a nonlinear
system. Outputs can be delayed, however, this delay must be known and constant. The
characteristic feature of the design procedure is computation of a solution of a partial differential
equation. This equation is solved using the finite element method. Conditions under which
existence of a solution is guaranteed are derived. These are formulated by means of theory
of partial differential equations in L2-space. Three examples demonstrate viability of this
approach and provide a comparison with the solution method based on expansions into Taylor
polynomials.
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1. INTRODUCTION

State feedback is a widely accepted approach to control problems in the recent control
theory as well as its applications. However, in many practical cases, some states are
not available to measurement; values of these states have to be reconstructed using
an observer. For linear systems, one can use the Luenberger observer. Situation in
nonlinear systems is more complicated, several different approaches were elaborated.
First, a linear robust observer can be used, as in [24]. In this case, the nonlinearity is
treated as an uncertainty. Further, let us mention the high gain observer, see e. g. [11].
It finds practical applications, see e. g. in [6] where it is used to estimate the state of
a biological system. Unfortunately, this method exhibits a rather strong sensitivity to
measurement noise which is a serious drawback.

Kazantsis and Kravaris in [9] developed a different approach to the observer problem
for nonlinear systems. They derive an equation which can be regarded as a counterpart
of the Sylvester equation proposed by Luenberger for linear systems. This equation is
a linear partial differential equation (PDE) of first order with non-constant coefficients.
[9] suggests to solve this equation by Taylor polynomials: right-hand side as well as
coefficients are expanded into Taylor polynomials of a sufficiently high order, the solution
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is also sought in form of a Taylor polynomial. To prove existence of the approximation
of the solution, the Lyapunov auxiliary theorem is used. This theorem has, however,
rather restrictive assumptions: all eigenvalues of the linearization of the original system
around the origin must have the same sign of the real parts while purely imaginary
eigenvalues are not allowed. [22] removes this restriction by introducing an iterative
scheme for solution of this equation based on the iterative method originally developed
for computation of stable, center-stable etc. manifolds described in [21] and successfully
applied to control of practical systems in [23].

The aforementioned equation derived by [9] is closely related to the regulator equa-
tion known from the nonlinear output regulation problem. The regulator equation was
numerically solved using the finite-element method (FEM) in [5, 17, 18, 19], a proof of
existence of an L2 solution of this PDE on a pre-defined domain was presented in [13].

Many applications of control do not allow to obtain results of measurements immedi-
ately. Instead, the measurement process requires some time causing a time delay. This
is a very common feature for instance in chemical or biological systems. Hence the need
for an observer design capable of dealing with delayed measurements. There exists a
large number of results, only a few of them are mentioned here.

State reconstruction if measurements are quantized is investigated in [15] together
with analysis of the impact of imprecisely known value of the delay. An observer for
a special case of nonlinear time delay systems – namely for polynomial systems time-
delay systems - is proposed in [14]. An observer for a system with a delayed output
was derived in [3] using the exact feedback linearization. This method is capable of
dealing with time-varying delays in the output. The so-called cascade observer allowing
to handle large time delays is proposed in [8]. A similar type of observers was also
used in [10]; this paper adopts the approach of [9] to the case of systems with delayed
output measurements. [4] presents a further generalization: to systems with multiple
delays. A cascade observer for systems with uncertainties was proposed in the recent
paper [7]. Observer design for a biological system (without delay) designed using the
method analogous to the one described in this paper is presented in [12]. Let us also
mention an application of nonlinear observers in biology (to the model of an artificial
pancreas) shown in [2].

Application of FEM to the nonlinear observer design problem was studied in the
conference paper [16]; the presented article can be considered as an expanded version.
The contribution can be summarized as follows:

• An easy-to-implement method for the observer design for nonlinear systems is
proposed. Both cases of delayed measurements as well as delay-free are covered.

• Existence of the nonlinear observer under less restrictive conditions than in the
original papers [9, 10] is proved: the origin can be contained in the convex hull of
the set of eigenvalues of the linearization of the observed system.

• A self-contained tutorial for implementation of the presented method is given to
the reader.

The paper is organized as follows: the problem is defined and some results obtained
in [9, 10] are repeated in the second section. Third section is devoted to the solution
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in the linear case and comparison of linear and nonlinear cases. Solvability of the PDE
obtained in the second section is thoroughly discussed in the fourth section, the most
important result is derived here. Fifth section contains three examples, one is focused
on a comparison of the proposed method with the computation procedure proposed by
[9], the second one demonstrates ability of the method to deliver results under milder
assumptions than those posed in [9] and, finally, the third example shows an application
of the proposed approach to a practical system, moreover, sensitivity of the estimator
to the mesh quality is discussed here. Numerical aspects are discussed in the sixth
section. A thorough comparison with the method based on Taylor polynomials and the
conclusions follow.

Notation.

1. The symbol ‖.‖ denotes the vector quadratic norm.

2. If f : [−τ,∞)→ R is a continuous function then ‖f‖∞ = sup{|f(t)|, t ∈ [−τ,∞]}.

3. The time argument is sometimes omitted: f = f(t); the time delay can also be
written in the subscript: fτ = fτ (t) = f(t− τ).

4. The symbol x may represent either a function x : R → Rn - a solution of (1) - or
a vector from Rn. The meaning is clear from the context.

5. For a differentiable function f : RN → R, the symbol ∇f is defined as ∇f =
( ∂f∂x1

, . . . , ∂f
∂xN

)T .

6. If X is a square matrix, then σ(X) is the set of all eigenvalues of X.

7. Let v1, v2 ∈ Rn, vi = (vi,1, . . . , vi,n)T , i = 1, 2. Then v1.v2 =
∑n
j=1 v1,jv2,j is the

inner product of vectors v1 and v2.

2. PROBLEM SETTING

This section is based on the results of [9, 10]; these are repeated here for the sake of
completeness. The plant to be observed is described by the equation (see also [4])

ẋ = F (x) for t ≥ −τ, y = h(xτ ) for t ≥ 0 (1)

with initial conditions
x(−τ) = x0 ∈ Rn. (2)

Here, F : Rn → Rn, h : Rn → R are smooth functions such that F (0) = 0, h(0) = 0.
For a future purpose, it will be useful to introduce the decomposition of functions F and
h as follows: let there exist matrices A ∈ Rn×n, C ∈ R1×n and functions f : Rn → Rn
ĥ : Rn → R vanishing at the origin together with their first derivatives so that for all
x ∈ Rn holds F (x) = Ax + f(x) and h(x) = Cx + ĥ(x). Then (1) can be reformulated
as

ẋ = Ax+ f(x), yτ = Cxτ + ĥ(xτ ) (3)

where x(t) ∈ Rn, A ∈ Rn×n. Initial conditions are (2) again.
The following assumptions will be necessary in the subsequent text:
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Assumptions A1.

1. The pair (C,A) is observable.

2. For any initial condition x0 ∈ Rn, x(−τ) = x0, a unique solution x : R → Rn
exists.

3. The time delay τ ≥ 0 is assumed to be constant and known.

Definition (see Kazantzis and Kravaris [9]). The observer of the system (3) is the
dynamic system ż = ϕ(z, h(xτ ), where z ∈ Rn, ϕ : Rn×R→ Rn is a smooth function, if
there exists a smooth mapping Φ : Rn → Rn such that Φ(0) = 0, the Jacobi matrix of the
function Φ is invertible around the origin and z(−τ) = Φ(x(−τ)) implies z(t) = Φ(x(t))
for all t ≥ 0.

In particular, we aim to find an observer defined as

˙̂x = Ax̂+ f(x̂) + L(x̂)(yτ − ŷτ ), ŷ = h(x̂). (4)

To be specific, the goal is to find the continuous function L : Rn → Rn so that the
observation error e(t) = x(t)− x̂(t) converges to zero for t→∞.

Assumption A2. Matrix Ã ∈ Rn×n is chosen so that all its eigenvalues are real and
the following inequality holds

max{α|α ∈ σ(Ã)} < min
(
{0} ∪ {Re α|α ∈ σ(A)}

)
. (5)

Using this matrix, define the following auxiliary n-dimensional system:

ż = Ãz + bh(xτ ). (6)

Proposition 2.1. Assume a smooth function Φ : Rn → Rn satisfies

∂Φ

∂x
(Ax+ f(x)) = ÃΦ(x) + bh(xτ ). (7)

Let x be defined by (3) and z be given by (6) with initial condition z(0) = Φ(x(0)).
Then

z = Φ(x) (8)

is valid for all t ≥ 0.

P r o o f . Taking the time derivative of both sides of (8) gives

ż =
∂Φ

∂x
(Ax+ f(x))

which together with Eqs. (6) and (7) yields the result. �
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Assumption A3. The pair (Ã, b) is controllable.

The following result, obtained in [9] for delay-free systems, modified in [10] for systems
with delayed outputs, is repeated here for the sake of completeness.

Proposition 2.2. Assume that Assumptions (A1,A3) and (5) hold. Moreover, let ma-
trix ∂Φ

∂x be invertible for all x ∈ Rn. Then observer (4) with gain L defined by

L =
(∂Φ

∂x
(x̂)
)−1

b (9)

guarantees limt→∞ ‖e(t)‖ = 0.

P r o o f . Define z as in (8) and also ẑ = Φ(x̂). Then one has

d

dt
(z − ẑ)

=
d

dt
(Φ(x)− Φ(x̂))

= (
∂

∂x
Φ(x))ẋ− (

∂

∂x
Φ(x̂)) ˙̂x

=
∂

∂x
Φ(x)(AΦ(x) + f(x))− ∂

∂x
Φ(x̂)

(
AΦ(x̂) + f(x̂)− (

∂Φ

∂x
(x̂))−1b(h(xτ )− h(x̂τ ))

)
=
∂Φ

∂x
(x)(AΦ(x) + f(x))− ∂Φ

∂x
(x̂)(AΦ(x̂) + f(x̂))− bh(xτ ) + bh(x̂τ )

= ÃΦ(x) + bh(xτ )− ÃΦ(x̂) + bh(x̂τ )− bh(xτ ) + bh(x̂τ )

= Ã(z − ẑ). (10)

As Ã has all eigenvalues with negative real parts, one has limt→0 ‖z−ẑ‖=0. This relation
together with invertibility of Jacobi matrix of function Φ guarantee convergence of e to
zero for t→∞. �

Remark 2.3. Invertibility of the Jacobi matrix of the function Φ on the whole space Rn
is a rather strong requirement. In the following text, existence of a neighborhood of the
origin where this matrix is invertible will be shown. If such an observer is implemented, it
is sufficient to guarantee that the trajectory of the observer remains in this neighborhood.

3. PROPERTIES OF EQUATION (7) IN LINEAR AND NONLINEAR CASES

Definition: Let x0 ∈ Rn. Let x be the solution of (3) backwards in time with terminal
condition x(0) = x0. Then, define mapping T : Rn → Rn as T (x0) = x(−τ).

Remark 3.1. Thanks to uniqueness of the solution of (3), this map is well defined for
any x0 ∈ Rn. Moreover, for delay-free systems, T equals to identity.
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If the function F is linear, the mapping Φ can be found analytically. As this case is
important for the nonlinear observer design as well, it is handled here separately. First,
observe that if the plant (1) is given by

ẋ = Ax (11)

then T (x) = e−Aτx for every x.
Then, (7) attains the form

Φ̄A = ÃΦ̄ + bCe−Aτ (12)

and the observer can be written as

˙̂x = Ax̂+ Φ̄−1b(yτ − ŷτ ). (13)

Note that (12) is a Sylvester equation. As shown in [1], its solution exists if and only
if the matrices A and Ã have no common eigenvalues. Matrix Ã is a design parameter,
hence this condition is not restrictive. Moreover, matrix Φ̄ is nonsingular, see [1] again.
Observe that in the linear case, the eigenvalues of matrix A are allowed to have zero real
part.

In the nonlinear case, (7) must be solved numerically. However, knowledge of the
matrix Φ̄ can be used to facilitate the numerical computation: assume (12) is satisfied
with matrix Φ̄. Then, decompose the mapping Φ into the linear part Φ̄x and the
remaining higher-order term:

Φ(x) = Φ̄x+ φ(x). (14)

Using (14), (7) can be rewritten as

(Φ̄ +
∂φ

∂x
)(Ax+ f(x)) = Ã(Φ̄x+ φ(x)) + bh(T (x)). (15)

With help of (12), (15) yields

∂φ

∂x
(Ax+ f(x)) =Ãφ(x)− Φ̄f(x) + bh(T (x))− bCe−Aτx. (16)

The following proposition is a consequence of the decomposition (15).

Proposition 3.2. There exists a neighborhood of the origin where the Jacobi matrix
∂Φ
∂x (0) is nonsingular.

P r o o f . Eq. (14) implies
∂Φ

∂x
(0) = Φ̄.

The function Φ is smooth, hence the result. �

To find a solution of (16), two important issues must be solved: first, mapping T must
be found. Next task is finding a solution of (16) based on the computed approximation
of mapping T .
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To find an approximation of T , one has to choose a sufficiently large bounded domain
(open connected set) Ω ⊂ Rn such that 0 ∈ Ω. Then, a finite set Ωf ⊂ Ω is defined
so that points of Ωf are “well distributed” within Ω. Subsequently, the value of the
function T for all points from the set Ωf is evaluated and, finally, an interpolation of
the set T (Ωf ) is computed. This is used as an approximation of function T .

Remark 3.3. Choice of the domain Ω cannot be described in more detail as it depends
on the specific example. This applies also to the choice of the finite set Ωf , hence no
detailed suggestion can be given. Rather an expertise of the behavior of the algorithm
gained by a couple of trials and errors would potentially lead to a satisfactory result.

4. SOLUTION OF EQUATION (16)

Problem of solvability of (16) on a pre-defined domain is the problem studied of this
section. Eq. (16) is linear, nonetheless, it attains a rather non-standard form: while
it is a first-order equation, it differs from first-order PDEs usually met in physics, such
as conservation laws. See also [22]; an equation with similar properties was solved in
[13]. Prior to deriving results concerning existence of solution of (16), let us make the
following assumption.

Define function β : Rn → Rn by

β(x) = xTAT + fT (x). (17)

Let φ = (φ1, . . . , φn)T . Let also symbol Φ̄i denote the ith row of matrix Φ̄; let also Ti(x)
denote the ith element of the vector bh(T (x)) − bCe−τx. Then every element of (16)
can be rewritten as

β(x).∇φi(x)−
n∑
j=1

Ãijφj(x) = −Φ̄if(x)− Ti(x). (18)

Assume first matrix Ã is diagonal: Ãii = diag(a1, . . . , an). In this case, (18) implies
for every i ∈ {1, . . . , n}:

β(x).∇φi(x)− aiφi(x) = −Φ̄if(x)− Ti(x). (19)

This shows that all elements of the vector function φ can be obtained by independent
computation.

Conditions guaranteeing existence of a solution of (19) on a domain are presented in
Lemma 1.6 in [20]. For the reader’s convenience, this lemma is repeated here as theorems
dealing with existence of a solution of equations similar to (19) are not easy to find in
literature. Alternatively, details can be found in Lemma II.1 in [13].

Lemma 4.1. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary, 0 ∈ Ω, let
n(x) be the outward normal vector at the point x ∈ ∂Ω. Let a > 0, β ∈ (C1(Ω̄))n and
g ∈ L2(Ω).

Let Γ− = {x ∈ ∂Ω|n(x).β(x) < 0}. Further, assume there exists a constant ω > 0
such that

a− 1

2
divβ(x) > ω. (20)
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Then the equation
β(x).∇ϕ(x) + aϕ(x) = g(x)

has a unique solution ϕ ∈ L2(Ω) with boundary conditions ϕ(x) = 0, x ∈ Γ−.

Remark 4.2. We will see that Lemma 4.1 does not cover the case of matrix Ã having
complex eigenvalues as it is applicable to scalar equations with real coefficients only.
However, matrix Ã is a design parameter, therefore it can be chosen so that its eigen-
values are real.

We can now formulate conditions for existence of a solution of (19) in terms of matrices
A, Ã as follows:

Lemma 4.3. Let the following inequality holds for every ã ∈ σ(Ã).

ã− 1

2
TraceA > 0. (21)

Then there exists a neighborhood of the origin U ⊂ Rn so that (20) is satisfied in U .

P r o o f . Note first that divβ(x) = TraceA+ divf(x). Denote ω = ã− 1
2TraceA. Since

all derivatives of the function f are continuous and vanish at the origin, there exists
a neighborhood of the origin U so that ‖f(x)‖ < ω holds for all x ∈ U . This implies
validity of (20) and thus, in turn, existence of a solution of (16) if Ã is diagonal.

Let us focus on the case when matrix Ã is not diagonal. Then, a nonsingular matrix
T satisfying T−1ÃT = J exists where J is the Jordan canonical form of matrix Ã. As
[13] shows, this transformation changes (16) into

β(x̄).∇x̄φi(x̄)− Jφ(x̄) = right hand side. (22)

(The symbol ∇x̄ denotes the ∇-operator with derivatives with respect to the new coordi-
nates x̄.) Assume also the matrix J has M blocks on the diagonal; let their dimensions be
n1, . . . , nM . Note that all equations containing derivatives of the functions φn1 , . . . , φnM

attain the same form as the equations (19). Thus they can be solved using the same pro-
cedure as described in the case of diagonal matrix Ã. Then, functions φn1−1, . . . , φnM−1

are obtained by solving the equations:

β(x).∇φni−1(x)− aiφni−1(x)− φni
= −Φ̄ni−1f(x)− Tni−1(x), i = 1, . . . ,M. (23)

This implies that function φni−1 can be computed with knowledge of function φni .
Repeating this procedure yields all functions φi. �

The main result of this paper is summarized in form of the following theorem:

Theorem 4.4. Let Assumptions (A1,A2,A3) and (5) hold. Assume Ω ⊂ Rn, 0 ∈ Ω, is
a bounded domain such that

ai −
1

2

(
TraceA+ divf(x)

)
> 0 (24)

holds for all x ∈ Ω and all i = 1, . . . , n. Assume also Φ̄ solves (12). Let also Γ−i = {x ∈
∂Ω|n(x).(Ax+ f(x)) < 0}. Then
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• for every i ∈ {1, . . . , N} there exist uniquely determined functions φi ∈ L2(Ω),
φi = 0 on Γ−i , such that φ = (φ1, . . . , φn)T solves (16).

• the observer gain L given by

L(x̂) =
(

Φ̄ +
∂φ

∂x
(x̂)
)−1

b (25)

is such that observer (4) guarantees limt→∞ ‖e(t)‖ = 0.

P r o o f . It is a consequence of Lemma 4.3, Theorem 4.1 and Proposition 2.2. �

Remark 4.5. The proof of existence of a solution of (12) is based on the Lyapunov’s
auxiliary theorem in [9]. Assumptions of this theorem are rather restrictive: matrix A
is required to have all eigenvalues with negative real part or all its eigenvalues must
have positive real part. In contrast, Theorem 4.1 yields existence of a solution of (12)
under the weaker condition (21). This is the main contribution of this paper. More-
over, Theorem 1 of [9] guarantees existence of a smooth solution only locally (i. e. it
implies existence of a neighborhood of the origin where the Taylor series of the solution
converges, however, this neighborhood is not known; it can be too small for practical
applications) while in Theorem 4.4, we have proven existence of the solution on the
predefined domain Ω.

On the other hand there is still a minor issue to be solved in the approach elaborated
in this paper: Theorem 4.4 guarantees existence of a solution Φ, however it does not
imply its differentiability. This problem, called regularity of solutions of (8), is still an
open issue.

Remark 4.6. Presence of the boundary condition on the set Γ− is stipulated by the
need to solve the PDE on a bounded domain, in contrast to the original formulation of
(8) which is defined on the entire space Rn. This boundary condition causes some error:
the solution on the bounded domain Ω with this boundary condition may differ from the
restriction of the solution of (23) on the whole space Rn on the domain Ω. Fortunately,
numerical experiments show that influence of these boundary conditions is significant
only on a narrow region close to the border of Ω.

The procedure can be summarized as follows:

1. Find approximation of the mapping T .

2. Choose matrix Ã so that (5) holds.

3. Find the matrix Φ̄.

4. Solve (15).

5. Construct the observer gain (25).

Remark 4.7. Results analogous to Theorem 4.4 are usually required to prove estimates
of the error caused by replacing the exact solution by an approximation obtained by the
finite-element method. This paper can be regarded as a preliminary result prior to
deriving these error estimates which will be the subject of a future work.
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5. EXAMPLE

5.1. Example 1

The method based on the Taylor expansions, as described in [9], and the method intro-
duced in this paper are compared here. Consider the following delay-free system:

ẋ1 = x2, ẋ2 = (−x1 − x3
1)ex1 − 0.1x2, y = x1.

Both eigenvalues of the observed system have negative real part. Consequently, the
method based on Taylor expansions can be used. We choose b = ( 1

2 ,
1
2 )T and Ã =(−1 0

0 −2

)
. Hence the Sylvester equation Φ̄

(
0 1
−1 −0.1

)
=
(−1 0

0 −2

)
Φ̄ +

(
1
2 0
1
2 0

)
( x1
x2

) whose

solution and, subsequently, the observer gain are

Φ̄ =

(
0.2368 −0.2632
0.1979 −0.1042

)
, L =

(
2.9
0.71

)
.

To obtain the approximation of the function Φ using FEM (we will refer to this

function by Φ̂ in the subsequent text), software Comsol Multiphysics was used. The
finite element approximation was computed on a disc with center at the origin and
radius 5. This domain was divided into 13620 elements, 192 of which were boundary
elements. Quadratic Lagrange elements were used. The solver provides not only values
of the solution but also values of its derivatives – a significant facilitation of the imple-
mentation. These computed values were evaluated on the rectangular grid with nodes
(x′, y′) where x′ ∈ {−1,−0.9, . . . ,−0.1} ∪ {−0.09,−0.08, . . . , 0.09} ∪ {0.1, 0.2, . . . , 1},
y′ ∈ {−1,−0.9, . . . ,−0.1} ∪ {−0.09,−0.08, . . . , 0.09} ∪ {0.1, 0.2, . . . , 1}. Values in other
points were obtained using interpolation (via the Matlab function interp2). The func-
tions Φ1 and Φ2 are depicted in Figs. 1 and 2.

Approximation of function Φ(x1, x2) by Taylor polynomials of third order was chosen.

The linear terms are equal to Φ̄

(
x1

x2

)
. Computation of second and third-order terms

requires to find 10 coefficients. It yields

Φ̃(x1, x2) =


0.2368x1 − 0.2632x2 − 0.1657x2

1 + 0.0975x1x2 − 0.1218x2
2

−0.1590x3
1 + 0.1383x2

1x2 − 0.0544x1x
2
2 + 0.0777x3

2

0.1979x1 − 0.1042x2 − 0.0391x2
1 + 0.0260x1x2 − 0.0144x2

2

−0.0467x3
1 + 0.0368x2

1x2 − 0.0207x1x
2
2 + 0.0122x3

2


and the observer gain is given by the formula (9).

Let us investigate how precisely functions Φ̃ and Φ̂ approximate the function Φ. As
a measure of the precision, we take the so-called residual ρ defined as follows: if Φ′ is
an approximation of the function Φ then define ρ(Φ′) as

ρ(Φ′) =
∂Φ′

∂x

(
x2

(−x1 − x3
1)ex − 0.1x2

)
+

(
1 0
0 2

)
Φ′ −

(
1
2 0
1
2 0

)(
x1

x2

)
. (26)

Clearly, the residual of the precise solution Φ equals identically to zero. The residual
of function Φ̃ on the set {(x1, x2) | |x1| ≤ 1, |x2| ≤ 1} is depicted in Figs. 3 and 4.
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Fig. 6: State x2 and its estimate.

Note the increase of the residual with increasing distance from the origin, especially in
the second quadrant. On the other hand, the residual on this disc of the function Φ̂
satisfies max ‖ρ(Φ̂(x1, x2)‖ ≤ 0.2 and is uniformly distributed over this region. Hence
the approximation by the finite elements is good uniformly in this domain as opposed to
the approximation by the Taylor polynomials where the approximation error increases
with distance from the origin.

In the simulations, initial conditions (x1(0), x2(0)) = (−0.3, 0) of the plant were used
while initial conditions of the observers were set to zero. Figure 5 shows convergence
of the state of the FEM-based observer x̂1 (solid line) to the state x1 of the observed
system (represented by the dashed line). Moreover, the dotted line shows the state x̂1

of the observer constructed using the third-order Taylor polynomial. Figure 6 shows
convergence of non-observable state x̂2 to x2, meaning of the lines remains the same.
One can see faster convergence of the observer constructed using the finite elements.
Figure 7 illustrates the norm of the estimation error. The solid line shows the norm of
the observation error of the FEM-based observer while the dashed line illustrates the
norm of the observer computed using Taylor polynomials. Note increase of the norm
of the estimation error in the time interval (2s, 6s) for the observer computed by the
Taylor expansions. This increase is caused by imprecise approximation of the function
Φ by Taylor polynomials.

5.2. Example 2

The second example demonstrates ability of the presented method to deal with systems
whose linearization exhibits purely imaginary poles. For such systems, the method
proposed by [10] cannot be applied. Consider the nonlinear oscillator:

ẋ1 = x2, ẋ2 = − sinx1, y = x1,τ

with the observation delay given as τ = 0.2s.

We choose the design parameters as Ã =
(−1 0

0 −2

)
, b = ( 1

1 ) . For the solution of (12)
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holds

Φ̄

(
0 1
−1 0

)
=

(
−1 0
0 −2

)
Φ̄ +

(
1 0
1 0

)
exp
(( 0 −0.2

0.2 0

))
, (27)

thus, solvability conditions are satisfied. Moreover, the solution Φ̄ of (27) and the
observer gain for a linear observer are given by

Φ̄ =

(
0.3907 −0.3907
0.4714 −0.2357

)
, L =

(
0.7813972
1.1787359

)
.

Function T (x1, x2) is approximated by third-order polynomials as

T (x1, x2) =


0.9807x1 − 0.1987x2 − 0.005x2

1 − 0.005x1x2

+0.0335x3
1 + 0.0269x2

1x2 + 0.0842x1x
2
2 + 0.0101x3

2

0.19867x1 + 0.9801x2 − 0.0004x2
1 − 0.0002x1x2 + 0.0006x2

2

−0.1118x3
1 + 0.0174x2

1x2 + 0.0310x1x
2
2 − 0.0288x3

2

.

Then, (16) is solved. Its solution on the set Ω = {x ∈ Rn|‖x‖ ≤ 2}.
PDE (16) was numerically solved using FEM as described in the previous sections.Function

φ1 computed by this numerical software is shown in Figure 8.
Results of simulations can be seen in Figs. 9 and 10. Figure 9 shows the state

x2 (dashed line) and its estimate (solid line). The observation error e is depicted in
Figure 10. Finally, the norm of the observation error in the second component (‖e2‖)
is shown in Figure 11 (solid line). The dashed line in this figure represents the norm of
the second component of the observation error if a linear observer (with observer gain
equal to Φ̄−1b). One can see faster convergence of the nonlinear observer.

5.3. Example 3

The plant considered in this example is a magnetic levitation system described in [23].
The system is described by equations

ẋ = v, v̇ = g − C

m

u+ u0

(x+ x0 + d)2
, (28)
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where x is the vertical position of the ball to be levitated, v is its velocity. The meaning
of the parameters is as follows: g = 9.81ms−2 is the gravitational constant, C = 1.2281×
10−4Nm2A−2 is the electromagnetic constant, m = 0.0661kg is the mass of the ball,
d = 0.00571m is the parameter of the actuator. The ball should be stabilized in the
equilibrium position x0 = 0.007m; u0 =

√
mg
C (x0 +d) is the control signal corresponding

to this equilibrium position of the ball.
Using the transformation x1 = x− x0, x2 =, one can rewrite (28) as

ẋ1 = x2, ẋ2 = g(1− (x0 + d)2

(x1 + x0 + d)2
− C

m(x+ x0 + d)2
u. (29)

In accordance with [23], the system is controlled by the control law u = −268.46x1 −
6.8332x2. This is the result of the LQ control design (for the linearization of (29)) with
weighting matrices Q = ( 1 0

0 1 ) , R = 1000.
The observer is designed with C = (1, 0) which corresponds to the practical setting (no

velocity measurement is available). Moreover, we choose b = (1, 1)T and Ã =
(−50 0

0 −51

)
.

Then, the observer is faster than the fastest mode of the plant.
Solution of (12) yields

Φ =

(
0.052276 −0.0010455
0.048229 −0.000945667

)
.

The function φ was computed using FEM on the elliptical domain
Ω = {(x1, x2) | ( x1

0.005 )2 + ( x1

0.02 )2 ≤ 1}. Function Φ(x1, x2) was approximated by a
polynomial of second degree.
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Fig. 12: Estimate of the velocity of the ball.

Figure 12 illustrates the behavior of the controlled system where the controller com-
putes the control action from the values provided by the observer with initial conditions
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Mesh number 1 2 3
Np 172 725 3789
Nel 294 1352 7384
Ndof 1274 5602 29922

Tab. 1: Mesh parameters.

x1(0) = 4 ∗ 10−4m, x2(0) = 0. The dashed line is the velocity of the ball of the observed
plant, the solid line represents its estimate computed by the nonlinear observer. For
comparison, dotted line shows the estimate of the velocity given by the linear observer.

To apply the observer successfully in the control loop, the observation must be faster
than any mode of the observed system. This is why the eigenvalues of matrix Ã have
rather large absolute value. Unfortunately, this fact reflects in a strong sensitivity of
the computed solution on computational errors, including also a strong influence of the
mesh quality on the result. Figs. 13a-13c show three different meshes on the domain Ω
defined above. The mesh parameters are given in Table 1. The meaning of the columns
is as follows: Np: number of nodes, Nel: number of elements, Ndof : the total number
of degrees of freedom of this discretization. The mesh depicted in Figure 13c was used
for computations above. Let us note that the mesh generator contained in Comsol
Multiphysics software with standard settings generated the mesh in Figure 13a. The
following mesh was created by refining this mesh uniformly and manually in an area
around the origin. Finally, further refinement around the origin gives the mesh 13c.

Function φ was evaluated numerically on these meshes. Results of these computations
were used to construct three observers whose behavior is illustrated in Figure 14. The
dotted line stands for the variable x2 of the original system, dashed line represents the
estimate delivered by the first mesh, dash-dot line is used to illustrate the estimate from
the second mesh and finally, the third mesh gives the estimate depicted by the solid line.
One can see the results delivered by the first mesh are grossly inaccurate (significanly
worse than those obtained from a linear observer) but the second mesh yields results
comparable with the third mesh.

6. COMPARISON WITH THE METHOD BASED ON TAYLOR EXPANSIONS

Paper [10] (and, in the delay-free case, [9]) use expansions to Taylor polynomials to find
the solution of (7). The right-hand side as well as the function f are approximated by
their Taylor polynomials, the solution is sought also in form of a Taylor polynomial which
is probably the most widely used method for solution of PDEs of this type. Although
this method is easy to explain and understand, it suffers from some drawbacks. First,
the result is only “local”, convergence is guaranteed in general only in an unknown
neighborhood of the origin. Moreover, precision of the approximation decreases with
distance from the origin. In contrast, the approach presented here gives results whose
precision on an a-priori given set (the set Ω) is guaranteed by the FEM solver. One
can also note that computation of the Taylor polynomials requires lengthy calculations,
even for the third-order polynomials. The results are difficult to obtain without help of
a symbolic software.



1066 B. REHÁK

(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3.

Fig. 13
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Fig. 14: Estimation of the ball velocity using different meshes.

The design method based on finite elements is quite straightforward, however, its
application requires some knowledge of numerical solution of PDEs. The crucial point
seems to be a fine mesh in the region where the PDE (16) is solved. While a coarse
mesh might produce a quite precise approximation the function Φ, its derivatives are
approximated with insufficient precision. The fact that a matrix which is inverted is
built up of these derivatives emphasizes the need for a good approximation of these
derivatives.

7. CONCLUSIONS

A FEM-based numerical design of a nonlinear observer with delayed measurements was
presented. Existence of a solution of the equations involved in the design process were
discussed, conditions of convergence of the method were derived. Viability of the method
was illustrated by an example.

In future, the problem of existence of invertibility of the Jacobi matrix of the function
Φ on a pre-defined domain will be studied. Also, estimates of the error between the
numerical and exact solution of the PDE will be derived.

ACKNOWLEDGEMENTS

This work was supported by the Czech Science Foundation through the Grant No.
GA19-07635S.

(Received November 19, 2018)



1068 B. REHÁK
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[18] B. Rehák and S. Čelikovský: Numerical method for the solution of the regulator
equation with application to nonlinear tracking. Automatica 44 (2008), 5, 1358–1365.
DOI:10.1016/j.automatica.2007.10.015
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