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Abstract. The purpose of this paper is to study the Sarason’s problem on Fock spaces
of polyanalytic functions. Namely, given two polyanalytic symbols f and g, we establish
a necessary and sufficient condition for the boundedness of some Toeplitz products TfTg
subjected to certain restriction on f and g. We also characterize this property in terms of
the Berezin transform.
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1. Statement of the result

Let us begin with some historical background on the so-called Sarason’s prob-

lem in the context of H2 and A2, the classical Hardy and Bergman spaces of the

unit disk D. Recall that for ϕ ∈ L2(∂D), the Hardy space Toeplitz operator with

symbol ϕ is densely defined on H2 by Tϕ(h) = P (ϕh), where P denotes the Riesz-

Szegő projection. In the same way, using again P to denote the Bergman projection,

the Bergman space Toeplitz operator with symbol ϕ ∈ L2(D) on A2 is given by

Tϕ(h) = P (ϕh) for a suitable h in A2.

For both H2 and A2, it is a well known fact that a Toeplitz operator with analytic

symbol f is bounded if and only if the symbol is bounded. Moreover, in [9], Sarason

exhibited functions f and g in H2 such that TfTg is bounded on H2, whereas at

least one of these factors is unbounded; this motivates the study of boundedness of

Toeplitz products involving the symbols structure. In [10], Sarason conjectured that

a necessary and sufficient condition for the product of Toeplitz TfTg to be bounded
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would be

sup
z∈D

|̃f |2(z)|̃g|2(z) < ∞,

where ũ is the Berezin transform of the function u.

Actually, the previous condition is only necessary and the conjecture fails for

both the Hardy space and Bergman space of the unit disk. Counter-examples were

given in [2] and [8]. However, in the context of classical Fock spaces, Cho, Park

and Zhu in [6] show that the Sarason’s conjecture is true. More recently, Bommier-

Hato, Youssfi and Zhu generalized the results obtained in [6]. In [5], they state two

necessary and sufficient conditions for boundedness of the Toeplitz product TfTg in

the weighted Fock space F2
m of entire square-integrable functions with respect to the

Gaussian measure

dλm(z) = e−|z|2m , m > 1.

Namely, if f and g are nonidentically zero functions in F2
m, they show that TfTg is

bounded if and only if f = eq and g = ce−q with c a nonzero complex constant and q

a polynomial of degree at most m, if and only if the product of Berezin transforms

|̃f |2 |̃g|2 is bounded on C.

This work studies the above results in the context of Fock spaces of polyanalytic

functions. We follow the approach of [5].

Given α > 0, we consider the Gaussian probability measure

dµα(z) =
α

π

e−α|z|2 dλ(z),

where λ is the Lebesgue area measure on the complex plane. Endowed with the

usual scalar product

〈f, g〉α =

∫

C

fg dµα,

the space L2(µα) = L2(C, dµα) is a Hilbert space. For n ∈ N
∗, the Fock space of

n-analytic functions F 2
α,n is the closed subspace in L2(µα), endowed with the norm

‖f‖2,α =

(∫

C

|f(z)|2 dµα(z)

)1/2

,

consisting of all functions f satisfying ∂
n
f = 0. Basic information about polyanalytic

functions can be found in the book, see [4].

The reproducing kernel of the Hilbert space F 2
α,n has been computed using various

methods (see for instance [1], [3] or [7]). It can be written as

Kα,n(z, w) = L1
n−1(α|z − w|2)eαzw,
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where Lβ
k is the generalized Laguerre polynomial

Lβ
k(x) =

k∑

j=0

(−1)j
(
k + β

k − j

)
xj

j!
.

We also introduce the normalized kernel function

kα,nz = Kα,n(·, z)/
√
Kα,n(z, z).

Moreover, the orthogonal projection Pα,n : L2(C, dµα) → F 2
α,n is given by

Pα,nf(z) =

∫

C

Kα,n(z, w)f(w) dµα(w)

for f ∈ L2(C, dµα) and z ∈ C.

For a linear operator T on F 2
α,n define its Berezin transform (in F

2
α,n) Bα,nT on C

as

Bα,nT (z) = 〈Tkα,nz , kα,nz 〉, z ∈ C.

We also define the Berezin transform (in F 2
α,n) Bα,nϕ of a function ϕ, which is

positive and measurable on C or in L2(µα), by

Bα,nϕ(z) = 〈ϕkα,nz , kα,nz 〉 =
∫

C

ϕ(w)|kα,nz (w)|2 dµα(w), z ∈ C.

Moreover, given ϕ ∈ L2(µα), the Toeplitz operator with symbol ϕ is defined on

a dense subset of F 2
α,n by T

n
ϕ (h) = Pα,n(ϕh).

The aim of this paper is to prove the following result.

Theorem 1.1. Let n,m, p ∈ N
∗, M,N ∈ N

∗ such that p 6 min(m,n), M 6

min(m − p + 1, n− p + 1) and N 6 n − p + 1. Given two functions f ∈ F 2
α,M and

g ∈ F 2
α,N , both nonidentically zero, then the following conditions are equivalent:

(i) Tm
f T p

g : F 2
α,n → F 2

α,n is bounded;

(ii) there exist a polynomial q of degree at most 1 and a nonzero complex constant c

such that f = eq and g = ce−q;

(iii) the product Bα,p(|f |2)Bα,p(|g|2) is bounded on C.

Note that the choice m = n = p answers the question of boundedness on F 2
α,n of

a Toeplitz product T n
f T

n
g with analytic symbols.

Henceforth, for technical convenience and without loss of generality, we deal only

with the case α = 1. We also denote by F 2 the classical analytic Fock space F 2
1 .
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2. Preparatory results

Here, we establish preliminaries needed in the sequel. First, obviously for each

f ∈ F 2
α,n, Pα,nf = f ; we make use of this identity that played a key role in the proof

of our main theorem and we call it reproduction formula. This formula, combined

with Cauchy-Schwarz inequality, shows that the maximum order for functions in F 2
α,n

is 2. More precisely, it can be shown that

|f(z)| 6
√
n‖f‖2,αeα/2|z|

2

for f ∈ F 2
α,n and z ∈ C.

Now, the following integral estimate is stated in [5]: When m > 0, 0 6 d 6 m,

N > −1, and a > 0, there is a positive constant C, independent of a, such that

∫ ∞

0

e−r2m/2+ardrN dr 6 C(1 + a)(N+1)/m−1ea
2/2.

Here we need a special case of the latter result (m = d = 1) in order to estimate the

norm of the product operator.

Lemma 2.1. Given a > 0 and N ∈ N, define IN (a) as

IN (a) =

∫ ∞

0

rN e−r2/2+ra dr.

Then there exist a real constant A = A(N) such that IN (a) 6 A(1 + a)Nea
2/2.

3. The Toeplitz product

In this section, we first study a very special case of Toeplitz operators whose

symbols take the form eq, where q is a complex linear polynomial. This gives a suf-

ficient condition for boundedness of the Toeplitz product. Subsequently, we will

actually show that the condition is also necessary, by following very closely the same

arguments outlined in [5]. As a result, the symbols should be an exponential of

a polynomial whose degree is less than or equal to 2.

Lemma 3.1. Let f(z) = eaz and g(z) = e−az with a ∈ C
∗. Then for any n ∈ N

∗

and p 6 m, the product T = Tm
f T p

g is bounded on F 2
n .
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P r o o f. If h is a polynomial in z and z, from Fubini’s theorem and the reproduc-

tion formula, we obtain

Th(z) =

∫

C

Km(z, v)

∫

C

Kp(v, w)h(w)g(w) dµ(w)f(v) dµ(v)

=

∫

C

∫

C

Km(z, v)f(v)Kp(v, w) dµ(v)h(w)g(w) dµ(w)

=

∫

C

f(z)Kp(z, w)h(w)g(w) dµ(w).

Consequently, we have

|Th(z)|2 e
−|z|2

π

6
1

π

(∫

C

|Kp(z, w)|eRe(az−aw)|h(w)|e−|w|2−|z|2/2 dλ(w)

π

)2

=

(∫

C

Ha(z, w)|h(w)|e−|w|2/2 dλ(w)√
π

)2

,

where

Hc(z, w) = π
−1|Kp(z, w)|eRe c(z−w)e−(|z|2+|w|2)/2

for c ∈ C.

Now, we consider the operator S, formally defined on L2(dλ) by

Sh(z) =

∫

C

Ha(z, w)h(w) dλ(w).

We have

|Th(z)|2 e
−|z|2

π

6 S(π−1/2|h|e−|·|2/2)(z)2.

Using the identity ‖h‖2 = ‖π
−1/2he−|·|2/2‖L2(dλ) for all h ∈ L2(µ), the problem of

determining when T would be bounded on F 2
n reduces to the problem of determining

when the operator S is bounded on L2(dλ).

For each c ∈ C we set

Hc(z) =

∫

C

Hc(z, w) dλ(w).

In view of Schur’s test and the identity

∫

C

Hc(w, z) dλ(w) = H−c(z),

we conclude that the operator S would be bounded on L2(dλ) provided that there

exist a constant C = C(c) such that Hc 6 C on C. Moreover, the norm of T will

not exceed C.
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Let z ∈ C and c ∈ C. By the triangle inequality and the translation invariance of

the Lebesgue measure, the following are valid:

Hc(z) =
1

π

∫

C

|L1
p−1(|z − w|2)|eRe zweRe c(z−w)−(|z|2+|w|2)/2λ(w)

6
1

π

∫

C

|L1
p−1(|z − w|2)|e|c||z−w|−|z−w|2/2λ(w)

= 2

∫ ∞

0

|L1
p−1(r

2)|e|c|r−r2/2r dr 6

p−1∑

j=0

2

j!

(
p

p− 1− j

)
I2j+1(|c|).

The above inequalities, together with Lemma 2.1, imply that we can find positive

real constants M1, M2 such that for all c ∈ C,

sup
z∈C

Hc(z) 6 M1e
M2|c|2

with M2 > 1/2. This gives the desired inequality, which completes the proof. �

We shall be interested here in the converse direction in the previous lemma. We

will show that the necessary condition on the polyanalytic symbols f and g is also

a necessary condition for boundedness of the Toeplitz product if we impose some

restrictions on the order of polyanalyticity of f and g.

Lemma 3.2. Assume that p 6 min(m,n), M 6 min(m − p + 1, n − p + 1) and

N 6 n − p+ 1. Given f ∈ F 2
α,M and g ∈ F 2

α,N , each not identically zero, such that

T = Tm
f T p

g is bounded on F
2
n , then there are a polynomial q of degree at most 1 and

a nonzero complex constant c such that f = eq and g = ce−q.

P r o o f. From the Cauchy-Schwarz inequality, when T is bounded, its Berezin

transform BnT is bounded on the complex plane.

Now, fix z, a ∈ C; when g is an N -analytic polynomial,

T p
g k

n
z (a) =

1√
Kn(z, z)

∫

C

Kn(z, w)g(w)Kp(w, a) dµ(w)

=
1√

Kn(z, z)
g(z)Kp(z, a) =

√
p

n
g(z)kpz(a),

where the last equality follows from the reproduction formula of F 2
n applied to the

function gKp(·, a) ∈ F 2
N+p−1 ⊂ F 2

n (since N + p − 1 6 n). Then the density of

polyanalytic polynomials in F 2
N ensures that the above relation is valid also for

every g in F 2
N .
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Consequently, when f is an M -analytic polynomial, again applying the reproduc-

tion formula (in F 2
n here, since M + p− 1 6 m), we get

Tknz (a) =

√
p

n
g(z)

∫

C

Km(a, w)f(w)
Kp(w, z)√
Kp(z, z)

dµ(w) =

√
p

n
f(a)g(z)kpz(a).

An approximation argument then shows that the same is true given an arbitrary f

in F 2
M .

Approximating the function f by polynomials and using again the reproducing

formula in F 2
n , knowing that M + p− 1 6 n and by density, we find that

(3.1) BnT (z) =
p

n
f(z)g(z).

As a consequence of Liouville’s theorem (see [4], Theorem 2.5, page 211), fg must

be constant as a bounded polyanalytic function. We claim that f and g are analytic.

To see this, since neither f and g vanishes, set fg = c with c ∈ C
∗. Then f and g

are nonvanishing polyanalytic functions; thus, we can write f(z) = P (z, z)ef1(z)

and g(z) = Q(z, z)eg1(z), where P and Q are polynomials, and f1 and g1 are entire

functions. Identifying C[z, z] with C[z][z], we deduce from the identity fg = c

that PQ must be a constant in C[z].

Next, the Weierstrass factorization theorem provides that there are a complex

quadratic polynomial q(z) = a0 + a1z+ a2z
2 and a nonzero complex constant c such

that f = eq.

We now turn to show by contradiction that q is actually linear. For this purpose,

assume that a2 6= 0. Consider the map S, defined on C× C by

S(z, w) = 〈Tknz , knw〉,

which is bounded in view of the Cauchy-Schwarz inequality since T is bounded.

Again, the reproducing formula and the approximation arguments used previously

yield

S(z, w) =

√
p

n

f(w)g(z)Kp(w, z)√
Kp(z, z)Kn(w,w)

= n−1f(w)g(z)L1
p−1(|z − w|2)e−|z−w|2/2,

so

|S(z, w)| = |c|
n
|L1

p−1(|z − w|2)|e−|z−w|2/2eRe(q(w)−q(z)).

For sufficiently large t > 0 we have L1
p−1(t

2|a2|2) 6= 0. Taking z = r ∈ R+ and
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w = r + ta2, it follows that there exists a real constant A = A(n, c, a1, a2) such that

|S(r, r + ta2)| = Ae2t|a2|2r.

We reach a contradiction with the boundedness of S when a2 6= 0. �

To sum up, we have proved the following statement which corresponds to the

equivalence between (i) and (ii) of our main theorem.

Theorem 3.1. Let n,m, p ∈ N
∗, M,N ∈ N

∗ such that p 6 min(m,n), M 6

min(m − p + 1, n − p + 1) and N 6 n − p + 1. If f ∈ F 2
α,M and g ∈ F 2

α,N , each

nonidentically zero, then the Toeplitz product Tm
f T p

g is bounded on F 2
n if and only

if f = eq and g = ce−q, where q is a complex linear polynomial and c is a nonzero

complex constant.

Remark 3.1. It is easy to see that kα,nz weakly converges to zero as |z| → ∞.
So if T = Tm

f T p
g is continuous with the same hypothesis as in Theorem 1.1, then Bn

converges to zero. However, according to the proof of Lemma 3.2, BnT is a nonzero

constant. It follows that Tm
f T p

g is never compact except when the symbols are

zero.

4. Sarason’s conjecture

In what follows, we provide a solution to Sarason’s problem for some Toeplitz

products with polyanalytic symbols in the Fock space of polyanalytic functions.

Namely, thanks to Theorem 3.1 of the above section, it becomes clear that Sara-

son’s conjecture turns out to be true for polyanalytic Fock spaces setting. We will

show that condition (iii) of Theorem 1.1 stated in the introduction is equivalent to

conditions (i) and (ii) by separating it into two lemmas. Again, our proof follows the

same arguments stated in [5].

We first show that Berezin transforms of the square of the modulus of any poly-

analytic function h pointwise controls |h|2.

Lemma 4.1. Suppose that m,n ∈ N
∗ and h ∈ F 2

n . Then

|h|2 6
m+ n− 1

m
Bm(|h|2) on C.
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P r o o f. If h is a polyanalytic polynomial in F 2
n , then by virtue of the reproduction

formula at the point z ∈ C, it follows that

h(z)Km(z, z) =

∫

C

Km+n−1(z, w)h(w)Km(w, z) dµ(w).

This equality, combined with an approximation argument and the Cauchy-Schwarz

inequality, implies that

|h(z)|2 6

(∫

C

∣∣∣Km+n−1(z, w)h(w)
Km(w, z)

Km(z, z)

∣∣∣dµ(w)
)2

6

∫

C

∣∣∣Km+n−1(z, w)√
Km(z, z)

∣∣∣
2

dµ(w)

∫

C

|h(w)|2|kmz (w)|2 dµ(w)

=
m+ n− 1

m
Bm(|h|2).

�

We keep throughout the rest of the paper the hypotheses of our main theorem,

that is, f ∈ F 2
α,M and g ∈ F 2

α,N are nonidentically zero, where n,m, p,M,N ∈ N
∗

such that p 6 min(m,n), M 6 min(m − p + 1, n − p + 1) and N 6 n − p + 1. As

a consequence of the previous lemma, the following result can be established.

Lemma 4.2. If Bα,p(|f |2)Bα,p(|g|2) is bounded on C, then the Toeplitz product

T = Tm
f T p

g is bounded on F 2
n .

P r o o f. Applying Lemma 4.1 shows that when Bα,p(|f |2)Bα,p(|g|2) is bounded
on C, the same is true for fg; the arguments given in the proof of Lemma 3.2 ensure

that there exists a nonzero complex constant c and a complex quadratic polynomial

q(z) = a0 + a1z + a2z
2 and a nonzero complex constant c such that f = eq and

g = ce−q.

As in the previous proof, let us assume that a2 6= 0 and show that this leads to

a contradiction. Define a map B on C by setting

B = |f |2Bp(|g|2).

This map is bounded in view of Lemma 4.1. Now, for every x ∈ R+,

|B(x)|2 = e2Re q(x)

∫

C

|c|2e−2Re q(w)
|L1

p−1(|x− w|2)|2
p

e2Re xw−|x|2 e
−|w|2

π

dλ(w)

=
|c|2
pπ

∫

C

e2Re(q(x)−q(w))|L1
p−1(|x − w|2)|2e−|x−w|2 dλ(w)

>
|c|2
pπ

∫

C

e2Re(a2(x
2−w2))|L1

p−1(|x− w|2)|2e−|x−w|2−2|a1(x−w)| dλ(w).
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Since L1
p−1 is a polynomial, one can find strictly positive real constants R and M

such that

|L1
p−1(|ζ|2)|2 > M

for all ζ ∈ C with |ζ| > R.

Set a2 = |a2|eiβ . Inserting the previous estimate for the integrand into the last
displayed inequalities and using a suitable change of variables, we obtain

|B(x)|2 >
|c|2
pπ

∫

C

e2Re(a2(ζ
2+2ζx))|L1

p−1(|ζ|2)|2e−|ζ|2−2|a1ζ| dλ(ζ)

>
M |c|2
pπ

e2
√
2R|a2|x

∫ ∞

R

∫

|θ+β|<π/4

e−(1+2|a2|)r2−2|a1|rr dθ dr.

Consequently, there exist real constants A1 = A1(n, c, a1, a2) and A2 = A2(n, a2)

with A2 > 0 such that for all x > 0 we have

|B(x)|2 > A1e
A2x.

This yields a contradiction since B should be bounded. �

Finally, we turn to the converse of the latter lemma:

Lemma 4.3. Let T = Tm
f T p

g be bounded on F 2
n ; then Bα,p(|f |2)Bα,p(|g|2) is

a bounded map on C.

P r o o f. If T is bounded, given the equalities already proven in the proof of

Lemma 3.2, we claim that for each z ∈ C,

〈Tknz , T knz 〉 =
p

n
|g(z)|2〈fkpz , fkpz〉 =

p

n
|g(z)|2

∫

C

|f(w)|2|kpz(w)|2 dµ(w)

=
p

n
|g(z)|2Bp(|f(z)|2).

By the Cauchy-Schwarz, |g|2Bp(|f |2) must be bounded.
Moreover, we have (Tm

f T p
g )

∗ = Tm
g T p

f
. It is a consequence of Fubini’s theorem

together with an approximation argument. By symmetry, since T ∗ is bounded, we

get also that |f |2 |̃g|2 is a bounded map.
But again using the proof of Lemma 3.2, once T is continuous, the product fg

is constant and the desired result follows namely from Bα,p(|f |2)Bα,p(|g|2) being
bounded. �
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5. Proof of the main result

Finally, we prove Theorem 1.1. The fact that (i) and (ii) are equivalent follows

from Theorem 3.1. To prove that (i) implies (iii) we use Lemma 4.3. To show

that (iii) implies (i) we apply Lemma 4.2, and hence the proof is complete. �

Concluding remarks

(1) It would be of interest to prove Theorem 1.1 without restriction on the degree

of polyanalyticity of f and g.

(2) It would be also interesting to carry out this study for generalized Fock spaces

of polyanalytics.
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