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Abstract. Let G be a graph on n vertices and let λ1 > λ2 > . . . > λn be the eigenvalues of

its adjacency matrix. For random graphs we investigate the sum of eigenvalues sk =
k∑

i=1
λi,

for 1 6 k 6 n, and show that a typical graph has sk 6 (e(G) + k2)/(0.99n)1/2, where e(G)
is the number of edges of G. We also show bounds for the sum of eigenvalues within a
given range in terms of the number of edges. The approach for the proofs was first used in
Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.
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1. Introduction

Consider a graph G = (E, V ) on n vertices and let A be its adjacency matrix with

eigenvalues λ1 > λ2 > . . . > λn. For an undirected graph the adjacency matrix is

symmetric and therefore all its eigenvalues are real. Here the partial sum sk(G) =
k
∑

i=1

λi, for 1 6 k 6 n is investigated. The most notorious application of spectral

graph theory in chemistry makes a correspondence between graph eigenvalues and

the molecular orbital energy levels of π-electrons in conjugate hydrocarbons, which

gives rise to the concept of graph energy. From that, understanding the behavior

of sk is of interest in theoretical chemistry in the Hückel molecular orbital (HMO)

theory. Here we show upper bounds on sk for random graphs in terms of the number

of edges.

The author was supported by the Czech Science Foundation, grant no. GA19-08740S,
and also by the institutional support RVO: 67985807 of the Czech Republic.

DOI: 10.21136/AM.2020.0352-19 609

http://dx.doi.org/10.21136/AM.2020.0352-19


In book [5] the main results on graph energy are surveyed. The references pre-

sented there demonstrate the long-lasting effort to understand these parameters,

which as a consequence has created a great number of papers in the literature.

The method we use relies on the rich theory of random matrices. Random matrices

were introduced by Eugene Wigner in [11] to model the nuclei of heavy atoms. He

suggested that the gap between the lines in the spectrum of a heavy atom nucleus

looks like the gap between the eigenvalues of a random matrix.

Next, we briefly describe the connection between the parameter sk and chemistry.

1.1. Origins and applications. In HMO the behavior of the so-called π-

electrons in an unsaturated conjugated molecule is described. Generally speaking,

if the carbon-atom skeleton of the underlying conjugated molecule is represented

as a graph, then each eigenvalue of the adjacency matrix determines the energy

level of a π-electron, and the sum sk determines the energy of electrons with the

highest level of energy. Additionally, the corresponding eigenvector describes how

the π-electron moves within the molecule, i.e. the molecular orbital.

Furthermore, in theoretical chemistry the sum sk(G) is of interest for certain large

values of k, one in particular is k = ⌊n
2 ⌋. However, there are some difficulties in

working with s⌊n

2
⌋(G) analytically. In order to approximate the quantity s⌊n

2
⌋(G),

in 1978 Ivan Gutman introduced the concept of energy of a graph

E(G) =

n
∑

i=1

|λi|.

The energy relates to sk by E(G) = 2 max
16k6n

sk(G). Furthermore, for a bipartite

graph we have E(G) = 2s⌊n

2
⌋(G). Since its introduction, the energy of a graph has

been intensively investigated. For a survey and bounds on the energy see [5], [9] and

[1], [6] for further bounds on sk.

Definitely not all graphs represent molecules, but when they do, the notion of graph

energy E(G) is closely related to the total π-electron energy, denoted by Eπ . To be

more precise, if the graph in question represents a molecule, we have Eπ = 2
n/2
∑

i=1

λi

whenever n is even, and Eπ = 2
(n−1)/2
∑

i=1

λi + λ(n+1)/2 otherwise. On a first thought,

graph energy is more appealing, since mathematically it is easier to work with E(G)

instead of Eπ, as evidenced by the number of mathematical results obtained for graph

energy in contrast to total π-electron energy. However, a better reason to work with

graph energy instead is the fact that Eπ = E(G), except for certain non-bipartite

graphs which are irrelevant for chemical applications. (See [3] for more details.)
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Before we present new bounds for sk of random graphs, let us first mention some

relevant work.

1.2. Related results. In [6] the first relevant result for our investigation is given.

In that paper, Mohar showed the upper bound

(1.1) sk(G) 6
1

2
(1 +

√
k)n

for all 1 6 k 6 n. He also showed that for every k there exist graphs whose sum

sk(G) is 1
2 (1 +

√
k)n− o(k−2/5)n.

Later, in an elucidating series of papers, Nikiforov expanded the study of graph

energy by looking to Ky Fan, Schatten, and trace norms of matrices. In [7], where this

was first observed, the energy of matrices is introduced and the Wigner’s semicircle

law was applied to find hyperenergetic graphs. To that end, it was shown that for

almost all graphs

(1.2) E(G) =
( 4

3π
+ o(1)

)

n3/2.

The claim that a property holds for almost all graphs is made precise in Section 2.

Further, in [8] Nikiforov showed that several bounds such as (1.1), which were proved

for graphs, can be proven in a more general setting of matrices. For a matrix A of or-

derm×n the k-Ky Fan norm is defined by ‖A‖Fk
=

k
∑

i=1

σi, where σ1 > σ2 > . . . > σn

are the singular values of A. Nikiforov proved that for a matrix with entries in [0, 1]

we have

(1.3) ‖A‖Fk
6

1

2
(1 +

√
k)
√
mn

for all 1 6 k 6 n. Notice that sk(G) 6 ‖AG‖Fk
, where AG is the adjacency matrix of

a graph G, thus (1.1) follows from (1.3). We notice that if we denote by t the number

of positive eigenvalues, then as a function of k, the sum sk is increasing until t and

after that it is nonincreasing, in particular sn = 0, since the trace of A is zero. We

recall that a regular graph is a graph where each vertex has the same degree, and

therefore its adjacency matrix has the same number of ones in each row and column.

In [9], Nikiforov characterizes the cases of equality when A is the adjacency matrix

of a graph, which is given by certain regular graphs (see Theorem 3.6 from [9] for

details). Let us say that we want to know for a fixed k = k0 among all graphs with n

vertices, what the extremal graphs giving equality in (1.3) look like. According to

that result, for a fixed k = k0 the extremal graphs that give equality in (1.3) are

regular graphs where each of them has the same number of edges, say E0. That is,
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as the starting point of our investigation, instead of asking for the extreme bound

for a fixed k, we want to improve the bound for a fixed number of edges.

That is a natural question. We ask for a bound on sk among graphs with E0

edges. By Nikiforov’s characterization, the upper bound (1.3) is not tight among the

graphs with E0 edges, unless k = k0. Alternatively, we can choose k 6= k0 and ask

for a bound on sk among all graphs with E0 egdes. Certainly (1.3) is not the best

possible. Therefore, we have space for improvement, which is exactly the subject of

our investigation. Our results reveal the order of this bound in terms of the number

of edges for a typical graph.

2. New bounds

We consider the Erdős-Rényi random graph with probability p and distribution

G(n, p), i.e., a graph drawn from this distribution has n vertices, where each pair

of vertices has an edge with probability p and no edge with probability 1 − p. It

is a basic fact that any graph with n vertices is equally likely in the distribution

G(n, 1
2 ). Thus, we say that a property holds for almost all graphs if the probability,

that a graph drawn from G(n, 1
2 ) has this property, tends to 1 as n grows. Here

we will run our proofs for G(n, p), where p ∈ (0, 1) is a constant. However, a more

careful and detailed investigation can be performed to show that the same bound

holds, for example, for graphs sampled from G(n, 1/n1−o(n)). From that it follows

that the result holds for typical graphs where the number of edges is not necessarily

around n2.

Before we provide an explicit upper bound on sk we would like to briefly mention

how we can find such bounds and how to prove it. The approach we use here was first

used by the author in [10] to bound the partial sum of eigenvalues of the Laplacian

matrix. In that case, an expression for this upper bound was known in the form of

a conjecture. For the adjacency matrix, we do not have such expressions a priori.

However, our approach forces a bound to appear and we roughly describe this idea.

Such expression arises if we can find functions f , g, and h depending on n satisfying:

(1) P[g 6 h(e(Gn))] → 1 as n → ∞, where h depends on the number of edges;
(2) P[sk(G) 6 f ] → 1 as n → ∞;
(3) there exists n0 such that f(n) 6 g(n) for n > n0.

Once we find these functions, by Bonferroni’s inequality we clearly have

P[sk(G) 6 h(e(Gn))] > P[sk(G) 6 f ] + P[g 6 h(e(Gn))]− 1 → 1.

Therefore, the function h in (1) is the desired upper bound for sk.
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In the next result we explicitly describe such function. The hard part, which is

to find the functions with the above properties, is described in the next proof and

it relies on the limiting behavior of the eigenvalues of random graphs together with

a simple concentration of the number of edges around its expectation.

Theorem 2.1. For almost all graphs we have sk(G) 6 (e(G) + k2)/(0.99n)1/2.

P r o o f. To make the calculations more transparent we fix p = 1
2 and notice

that our proof still holds by a simple change in the constants. It was proved in [2]

that the largest eigenvalue of G(n, 1
2 ) is almost surely close to

1
2n and that the other

eigenvalues almost surely have absolute values at most
√
n + O(n1/3 logn). For

G ∼ G(n, 1
2 ) that implies

(2.1) P

[

sk(G) 6 (
√
n+O(n1/3 logn))(k − 1) +

n

2

]

→ 1.

Also, for any δ > 0, by the Hoeffding inequality [4], we have

(2.2) P

(1− δ

2

(

n

2

)

6 e(G)
)

→ 1

as n tends to infinity.

Claim 1. There exists δ > 0 such that for n large enough we have

(2.3) (0.99n)1/2
(

(
√
n+O(n1/3 logn))(k − 1) +

n

2

)

<
1− δ

2

(

n

2

)

+ k2.

P r o o f. We define a polynomial in the variable k as

f(k) :=
1− δ

2

(

n

2

)

+ k2 − (0.99n)1/2
(

(
√
n+O(n1/3 logn))(k − 1) +

n

2

)

= k2 − k(0.991/2n+O(n5/6 logn)) +
1− δ

2

(

n

2

)

+ o(n2).

The discriminant of f can be written as

∆ =
1

2
(0.99n2 − (1− δ)(n− 1)n+ o(n2)).

Notice that we can find N > 1 such that for n > N we have 0.991n2 6 (n − 1)n.

That implies

2∆ 6 (−0.001 + 0.991δ)n2 + o(n2).

Now, by fixing δ < 0.001
0.991 we obtain ∆ < 0 for n large enough, which implies f(k) > 0

and (2.3) for n large enough. �
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Putting together (2.3), (2.1), and (2.2), we obtain

P[(0.99n)1/2sk(G) 6 e(G) + k2]

> P

[

(0.99n)1/2sk(G) 6 (0.99n)1/2
(√

n(k − 1) +
n

2

)

and
1− δ

2

(

n

2

)

+ k2 6e(G) + k2
]

> P

[

(0.99n)1/2sk(G) 6 (0.99n)1/2
(√

n(k − 1) +
n

2

)]

+ P

[

1− δ

2

(

n

2

)

+ k2 6 e(G) + k2
]

− 1 → 1.

That concludes the proof. �

In what follows we say that a sequence of random variables Xn converges almost

surely (a.s.) towards X if P[ lim
n→∞

Xn = X ] = 1. Let An be the adjacency matrix of

an Erdős-Rényi random graph Gn ∼ G(n, 1
2 ). We denote by

µn(x) :=
|{λi(An) : λi(An) 6 x}|

n

the empirical spectral distribution (ESD) of the eigenvalues of An. The fundamental

Wigner semicircle law was first observed in 1955 by Wigner in [11] for certain special

classes of random matrices arising in quantum mechanics. It states that µn(
√
nx)

converges to µ(x) almost surely, where

µ(x) =







2

π
(1− x2)1/2 if |x| 6 1,

0 otherwise.

That is, the semicircle law ensures weak convergence of the ESD to µ. From this fact

it is possible to provide convergence for the sum of eigenvalues within a given range

as we show next. To this end, let s(t, G) be the sum of the adjacency eigenvalues

of G larger than or equal to t
√
n, i.e.

s(t, G) =
∑

λi>t
√
n

λi(AG) =
∑

λi>t

λi

( 1√
n
AG

)

.

Proposition 2.1. If Gn ∼ G(n, 1
2 ), then (s(t, Gn))/n

3/2 converges almost surely

to 2(1− t2)3/2/(3π).
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P r o o f. If An is the adjacency matrix of Gn, denote by µn the ESD of An/
√
n.

Claim 2. For any bounded measurable function f and any a, b ∈ [−1, 1] we have

that
∫ b

a
fµn

a.s.→
∫ b

a
fµ almost surely.

P r o o f. By the semicircle law, we have pointwise convergence in [a, b] almost

surely. Let M be a bound such that max{|fµn|, |fµ|} 6 M . By Egorov’s Theorem,

for any ε > 0 we can find a closed set F ⊂ [a, b] such that the Lebesgue measure

ν(F ) < ε/4M and fµn converges uniformly to fµ in F almost surely, i.e., for every

ε > 0 there is N such that if n > N , then |f(x)µn(x)−f(x)µ(x)| < ε/4 for all x ∈ F

almost surely. We can write for n > N

∣

∣

∣

∣

∫ b

a

fµn −
∫ b

a

fµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

F

fµn −
∫ b

a

fµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

F

fµn

∣

∣

∣

∣

<

∣

∣

∣

∣

∫

F

fµn −
∫ b

a

fµ

∣

∣

∣

∣

+
ε

4

<

∣

∣

∣

∣

∫

F

fµn −
∫

F

fµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

F

fµ−
∫ b

a

fµ

∣

∣

∣

∣

+
ε

4

< ν(F )
ε

4
+

∣

∣

∣

∣

∫

F

fµ−
∫ b

a

fµ

∣

∣

∣

∣

+
ε

4

= ν(F )
ε

4
+

∣

∣

∣

∣

∫

F

fµ

∣

∣

∣

∣

+
ε

4

< ν(F )
ε

4
+

ε

2
< ε, almost surely.

That finishes the proof of the claim. �

Notice that the semicircle law gives only a limit distribution and does not de-

scribe the behavior of the largest eigenvalues. However, the results in [2] imply that

λ1(Gn) = O(n) and |λi| <
√
n+O(n1/3 logn) for i > 2 almost surely. Thus, we can

write

s(t, Gn) =
√
n+O(n1/3 logn) +

∑

λi>t
i6=1

λi(An)

almost surely. Together with Claim 2, that gives us

1

n

∑

λi>t

λi

( 1√
n
An

)

a.s.
=

∫ 1

t

xµn
a.s.→

∫ 1

t

xµ =

∫ 1

t

x
2

π
(1− x2)1/2 dx =

2

3π
(1− t2)3/2.

That means we have

s(t, Gn)

n3/2
=

1

n3/2

∑

λi>t

λi(An)
a.s.
=

1

n

∑

λi>t

λi

( 1√
n
An

)

a.s.→ 2

3π
(1− t2)3/2,

as required. �
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The previous result allows us to upper bound the partial sum of eigenvalues in

a given range, as stated below.

Theorem 2.2. For a random graph Gn ∼ G(n, 1
2 ) we have

s(t, Gn) 6
2

3π
n3/2

(

e(G)
(

n
2

) +

(

1− t2
)3

2
+ o(1)

)

asymptotically almost surely.

P r o o f. It is enough to show that for any constant D > 0 we have

lim
n→∞

P

[

s(t, Gn) 6
2

3π
n3/2

(

e(G)
(

n
2

) +
(1− t2)3

2
+D

)]

= 1.

To this end, we define x = (1 − t2)3/2 and c = 2/(3π). Let Gn ∼ G(n, 1
2 ). By

Proposition 2.1 for every ε > 0 we have

P

[
∣

∣

∣

s(t, Gn)

cn3/2
− x

∣

∣

∣
< ε

]

→ 1

as n → ∞. This implies that for every ε > 0 we have

(2.4) P

[s(t, Gn)

cn3/2
6 x+ ε

]

→ 1

as n → ∞. We will use the fact that the expected number of edges in Gn is
1
2 (1− δ)

(

n
2

)

, and that by the Hoeffding inequality [4], for any given δ > 0 we have

(2.5) P

(

1− δ

2

(

n

2

)

6 e(Gn)

)

→ 1

as n → ∞. We need the following.
Claim 3. For any D > 0 there exist ε > 0 and δ > 0 such that x + ε 6

1
2 (1− δ + x2) +D.

P r o o f. As a polynomial in x, consider f(x) := x2/2 − x − ε + 1
2 (1 − δ) +D.

This polynomial has discriminant ∆ = 2ε+ δ− 2D, which can be made negative for

suitable choices of ε and δ. Thus f(x) > 0 for all x and the claim follows. �
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Finally, we can fix ε and δ given by the claim and apply equations (2.5), (2.4),

and Bonferroni’s inequality to obtain

P

[

s(t, Gn)

cn3/2
6

e(G)
(

n
2

) +
(1− t2)3

2
+D

]

> P

[

s(t, Gn)

cn3/2
6 x+ ε and

1− δ + x2

2
+D 6

e(G)
(

n
2

) +
x2

2
+D

]

> P

[s(t, Gn)

cn3/2
6 x+ ε

]

+P

[

1− δ + x2

2
+D 6

e(G)
(

n
2

) +
x2

2
+D

]

− 1

→ P

[

1− δ

2
6

e(G)
(

n
2

)

]

→ 1

as n → ∞. That finishes the proof. �

3. Final remarks

We can find graphs where the bound from Theorem 2.1 is tighter than bound (1.1).

This is possible because Theorem 2.1 accounts the number of edges, whereas

bound (1.1) deals with general graphs. For example, the star S has spectrum

{
√
n− 1, 0, . . . , 0,−

√
n− 1}, and thus s1(S) <

√
n for all k. Notice that Theo-

rem 2.1 implies sk(S) .
√
n+ (k2 − 1)/

√
n for all k, whereas (1.1) is bigger than n.

Furthermore, if we fix k = cn for a natural number c, Theorem 2.1 ensures that

sk 6 (e(G) + (cn)2)/(0.99n)1/2 ∼ n3/2. On the other hand, inequality (1.1) gives

sk 6
cn

2
(1 +

√
n) ∼ n3/2.

That implies that the bound from our result that holds for almost all graphs matches

the deterministic bound asymptotically.

We can use Theorem 2.2 to get an estimation for a bound on energy graphs. We

use that the expected number of edges in G(n, 1
2 ) is

1
2

(

n
2

)

. Also using the notation

of Theorem 2.2, we note that the energy of a graph can be written as

E(G) = 2s(0, G) < 2

[

2

3π
n3/2

(

e(G)
(

n
2

) +
1

2
+ o(1)

)]

=
( 4

3π
+ o(1)

)

n3/2

for almost all graphs, which agrees with (1.2).

We would like to mention that the bound from Theorem 2.1 can be stated in

more general setting for G(n, p), where p is not a constant. Notice that we run

our proof for graphs sampled from G(n, p) when p is a constant and in this case
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the number of edges is typically of order n2. In this regime the upper bound from

Theorem 2.1 is of order n3/2 which is the same order as of Nikiforov’s bound (1.3).

However, a more careful calculation using a suitable probability function p = p(n)

leads to a distribution where a typical graph has subquadratic number of edges which

together with recent results on the eigenvalues of such graphs yields a similar bound

in terms of the number of edges. After some routine calculations we can verify that

the bound has order much smaller than n3/2, which improves bound (1.3). Intuitively,

that means that for a typical graph with subquadratic number of edges we have sk

much smaller than n3/2.
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