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Abstract. We discuss the eigenvalue problem in the max-plus algebra. For a max-plus
square matrix, the roots of its characteristic polynomial are not its eigenvalues. In this
paper, we give the notion of algebraic eigenvectors associated with the roots of characteristic
polynomials. Algebraic eigenvectors are the analogues of the usual eigenvectors in the
following three senses: (1) An algebraic eigenvector satisfies an equation similar to the
equation A⊗ x = λ⊗ x for usual eigenvectors. Under a suitable assumption, the equation
has a nontrivial solution if and only if λ is a root of the characteristic polynomial. (2) The
set of algebraic eigenvectors forms a max-plus subspace called algebraic eigenspace. (3) The
dimension of each algebraic eigenspace is at most the multiplicity of the corresponding root
of the characteristic polynomial.
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1. Introduction

The max-plus algebra R ∪ {−∞} is a semiring with the following two operations:

the conventional max operation ⊕ with the identity element ε := −∞, and the

conventional + operation ⊗ with the identity element 0. The max-plus algebra,

together with the analogous semiring the min-plus algebra R ∪ {∞}, has its origin

in the shortest path problem or the scheduling problem. It has a wide range of

applications in various fields of science and engineering, such as control theory and

scheduling of railway systems [3], [8].
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Eigenvalues and eigenvectors of max-plus square matrices are defined as in the

conventional linear algebra. For a matrix A ∈ R
n×n
max , a scalar λ is called an eigen-

value of A if there exists a vector x 6= (ε, ε, . . . , ε)⊤, called an eigenvector, satisfying

A⊗ x = λ ⊗ x. In general, max-plus matrices have a few eigenvalues. The number

of the eigenvalues of a matrix cannot exceed the number of strongly connected com-

ponents of the associated digraph. In particular, an irreducible matrix has exactly

one eigenvalue. By contrast, as in the conventional linear algebra, the characteristic

polynomial of an n-by-nmax-plus matrix admits exactly n roots (counting multiplic-

ities). Cuninghame-Green [6] showed that the maximum root of the characteristic

polynomial is always an eigenvalue of the matrix, but other roots are not generally

eigenvalues.

The contribution of the present paper is to clarify the role of the roots of the char-

acteristic polynomial of a max-plus matrix in the eigenvalue problem in the max-plus

linear algebra. We first note that coefficients of the characteristic polynomial come

from the weights of multi-circuits in the associated graph, where a multi-circuit is the

union of disjoint elementary circuits in the graph. We call a multi-circuit λ-maximal

if the corresponding term attains the maximum of the characteristic polynomial when

the variable of the polynomial takes the value λ. For a scalar λ and a λ-maximal

multi-circuit C, we consider the equation

(1.1) (A\C ⊕ λ⊗ EC)⊗ x = (AC ⊕ λ⊗ E\C)⊗ x,

where matrices AC , A\C , EC , and E\C are determined by C and defined in Section 3.2.

This equation is in a sense a generalization of the equation A ⊗ x = λ ⊗ x, so we

call a vector x satisfying (1.1) an algebraic eigenvector of A with respect to λ. The

adjective “algebraic” is taken from Akian et al. [1], in which the roots of characteristic

polynomials are called algebraic eigenvalues. To confirm the validity of our definition

of algebraic eigenvectors, we first prove that there exists an algebraic eigenvector with

respect to λ if and only if λ is a root of the characteristic polynomial. This holds

under the assumption that every essential term of the characteristic polynomial is

attained with exactly one permutation. This assumption is not so strong that it is

satisfied by generic matrices and is also considered in the settings of the supertropical

algebra [10]. We further prove that the definition of algebraic eigenvectors does not

depend on the choice of λ-maximal multi-circuits C. This leads to the fact that

the set of all algebraic eigenvectors with respect to λ becomes a max-plus subspace,

which we call the algebraic eigenspace.

In tropical geometry [12], the roots of a polynomial are defined as the values

satisfying that the maximum of a polynomial is attained with at least two terms.

Thus, the algebraic eigenvalues are defined as the roots of characteristic polynomials
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in the tropical sense. Hence, it seems natural to define the analogues of eigenvectors

by using tropical geometry. In fact, there is an approach from the perspective of

supertropical algebra [9], [10], [11], [14] in line with this idea, but it would produce

more “eigenvectors” than expected, that is, the number of independent eigenvectors

could exceed the multiplicity of the root. The computation of one eigenvector is

described in [10], but finding all eigenvectors is difficult. Our definition of algebraic

eigenvectors using equality (1.1) is more restrictive and can solve these problems.

We show that the computation of all algebraic eigenvectors can be reduced to the

usual eigenvalue problem. Further, we prove that the dimension of the algebraic

eigenspace is at most the multiplicity of the root of the characteristic polynomial,

which is the analogous result to the conventional linear algebra.

2. Preliminaries for the max-plus eigenvalue problem

2.1. Max-plus algebra. Let Rmax = R∪{−∞} be the set of real numbers R with

an extra element −∞. We define two operations, addition ⊕ and multiplication ⊗,

on Rmax in terms of conventional operations by

a⊕ b = max{a, b}, a⊗ b = a+ b, a, b ∈ Rmax.

Then, (Rmax,⊕,⊗) is a commutative semiring called the max-plus algebra or the

tropical semiring. Here, ε := −∞ is the identity element for addition and e := 0 is

the identity element for multiplication. For details about the max-plus algebra, we

refer to [3], [4], [8], [12].

Let Rm×n
max be the set of m × n matrices whose entries are in Rmax. We denote

by R
n
max the set of n-dimensional max-plus column vectors. The arithmetic oper-

ations on vectors and matrices are defined as in the conventional linear algebra.

For max-plus matrices A = (aij), B = (bij) ∈ R
m×n
max , we define the matrix sum

A⊕B = ([A⊕B]ij) ∈ R
m×n
max by

[A⊕B]ij = aij ⊕ bij .

For max-plus matrices A = (aij) ∈ R
l×m
max and B = (bij) ∈ R

m×n
max , we define the

matrix product A⊗B = ([A⊗B]ij) ∈ R
l×n
max by

[A⊗B]ij =

m⊕

k=1

aik ⊗ bkj .

For a max-plus matrix A = (aij) ∈ R
m×n
max and a scalar α ∈ Rmax, we define the

scalar multiplication α⊗A = ([α ⊗A]ij) ∈ R
m×n
max by

[α⊗A]ij = α⊗ aij .
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The matrix E ∈ R
n×n
max whose diagonal entries are e and other entries are ε is the

identity matrix for matrix multiplication.

A subset U ⊂ R
n
max is called a subspace if it is closed with respect to addition ⊕

and scalar multiplication ⊗. A minimal generating set of a subspace U is called

a basis of U . In the max-plus algebra, a basis of a subspace is uniquely determined

up to scalar multiplication [5], Theorem 18. The number of vectors in a basis is

called the dimension of the subspace.

For a matrix A ∈ R
n×n
max , we define the determinant of A by

detA =
⊕

π∈Sn

n⊗

i=1

aiπ(i),

where Sn denotes the symmetric group of order n. A matrix A ∈ R
n×n
max is called

nonsingular if the maximum in detA is attained at precisely one permutation; oth-

erwise, it is called singular. The singularity of max-plus matrices is equivalent to the

existence of nontrivial kernels in the sense of tropical geometry.

Theorem 2.1 ([2], Theorem 1.4). A matrix A = (aij) ∈ R
n×n
max is singular if and

only if there exists a vector (x1, x2, . . . , xn)
⊤ 6= (ε, ε, . . . , ε)⊤ such that the maximum

ai1 ⊗ x1 ⊕ ai2 ⊗ x2 ⊕ . . .⊕ ain ⊗ xn

is attained with at least two terms for each i = 1, 2, . . . , n.

2.2. Max-plus matrices and graphs. For a matrix A = (aij) ∈ R
n×n
max , we define

a weighted digraph G(A) = (V,E,w) as follows. The vertex set and the edge set are

V = {1, 2, . . . , n} and E = {(i, j) | aij 6= ε}, respectively, and the weight function

w : E → R is defined by w((i, j)) = aij for (i, j) ∈ E. A sequence P = (i1, i2, . . . , is)

of vertices is called a path if (ip, ip+1) ∈ E for all p = 1, 2, . . . , s − 1. The number

l(P ) := s − 1 is called the length of P and w(P ) := w((i1, i2)) + w((i2, i3)) + . . . +

w((is−1, is)) is called the weight of P . A path is called a circuit if its initial and

terminal vertices are identical. A circuit (i1, i2, . . . , is−1, i1) is called elementary if

ip 6= iq for 1 6 p < q 6 s − 1. For an elementary circuit C, we define the average

weight of C by ave(C) := w(C)/l(C).

For A = (aij) ∈ R
n×n
max , we consider the matrix formal power series of the form

A∗ := E ⊕A⊕A⊗2 ⊕ . . .

If there is no circuit with positive weight in G(A), this infinite sum terminates as

A∗ = E ⊕A⊕A⊗2 ⊕ . . .⊕A⊗n−1,
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since the (i, j) entry of A⊗k is identical to the maximum weight of all paths from

vertex i to vertex j with length k. In that case, the (i, j) entry of A∗ is the maximum

weight of all paths from vertex i to vertex j with arbitrary length.

2.3. Eigenvalue problem on the max-plus algebra. For a matrix A ∈ R
n×n
max ,

a scalar λ is called an eigenvalue of A if there exists a vector x 6= (ε, ε, . . . , ε)⊤

satisfying

A⊗ x = λ⊗ x.

Such nontrivial vector x is called an eigenvector of A with respect to λ. In the case

where we need to distinguish eigenvalues (eigenvectors) from algebraic eigenvalues

(eigenvectors) defined later, we call them geometric eigenvalue (eigenvector). For

any eigenvalue λ of A, the set of eigenvectors

U(λ) = {x ∈ R
n
max | A⊗ x = λ⊗ x}

forms a max-plus subspace, called the eigenspace of A with respect to λ. Here, we

summarize the results in the literature on the max-plus eigenvalue problem, e.g. [3],

[4], [8].

Theorem 2.2. For a matrix A ∈ R
n×n
max , the maximum value of the average weights

of all elementary circuits in G(A) is the maximum eigenvalue of A.

Theorem 2.3. For any eigenvalue λ of A ∈ R
n×n
max , there exists a circuit in G(A)

whose average weight is λ.

Let λ be the maximum value of the average weights of all elementary circuits

in G(A). We define the critical graph Gc(A) by the subgraph of G(A) induced by

all circuits with average weights λ. We denote by gk the kth column of ((−λ)⊗A)∗.

Then we have the following theorem.

Theorem 2.4. A vector gk is an eigenvector of A with respect to λ if and only

if k is a vertex in Gc(A).

Further, let K be a set of vertices with exactly one vertex from each connected

component of Gc(A). Then we have the following theorem.

Theorem 2.5. The set {gk | k ∈ K} is a basis of the eigenspace U(λ).
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2.4. Max-plus characteristic polynomials. A (univariate) polynomial in the

max-plus algebra has the form

f(t) = c0 ⊕ c1 ⊗ t⊕ c2 ⊗ t⊗2 ⊕ . . .⊕ cn ⊗ t⊗n, c0, c1, c2, . . . , cn ∈ Rmax.

Max-plus univariate polynomials are piecewise linear functions on Rmax. A term

ck ⊗ t⊗k is called essential if it contributes to f(t) as a function, that is,

ck ⊗ t⊗k >
⊕

j 6=k

cj ⊗ t⊗j

for some t ∈ Rmax; otherwise, it is called inessential. As with standard polynomials

over C, each polynomial can be factorized into the product of linear factors:

f(t) = (t⊕ r1)
⊗p1 ⊗ (t⊕ r2)

⊗p2 ⊗ . . .⊗ (t⊕ rm)⊗pm .

Then ri and pi are called a root of f(t) and its multiplicity, respectively. In the

graph of the piecewise linear function f(t), the roots are the bending points of f(t)

and the multiplicities are the differences in the slopes of the lines around the roots.

In this paper, we focus on the characteristic polynomial of a matrix A = (aij) ∈

R
n×n
max . As in the conventional algebra, the characteristic polynomial ofA is defined by

ϕA(t) := det(A⊕ t⊗ E).

If we expand the right-hand side, the coefficient of t⊗k is the maximum weight of

the multi-circuits in G(A) with length n− k. Here, a multi-circuit means the set of

disjoint elementary circuits in G(A) and its length (weight) is the sum of the lengths

(weights) of these circuits. The following factorization algorithm is essentially the

same as the operations RESOLUTION and RECTIFY in [7], Section IX, but it is

reformulated in terms of graph theory.

Algorithm 2.6

Input: A matrix A ∈ R
n×n
max

Output: The factorization of the characteristic polynomial of A

(1) Set i := 0 and C0 = ∅.

(2) Set i := i+ 1.

(a) If there is no multi-circuit in G(A) whose length is larger than l(Ci−1), then

set m := i, λm := ε and pm := n− (p1+p2+ . . .+pi−1) and proceed to (3).

(b) If there exist multi-circuits in G(A) whose lengths are larger than l(Ci−1),

let Ci be the multi-circuit C attaining the maximum value of

w(C)− w(Ci−1)

l(C)− l(Ci−1)
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among them. If there is more than one such multi-circuit, we choose the

longest one. We set

λi :=
w(Ci)− w(Ci−1)

l(Ci)− l(Ci−1)

and pi := l(Ci)− l(Ci−1), and we repeat (2).

(3) We have the characteristic polynomial

ϕA(t) = (t⊕ λ1)
⊗p1 ⊗ (t⊕ λ2)

⊗p2 ⊗ . . .⊗ (t⊕ λm)⊗pm .

We define the relative average of multi-circuits C′ with respect to C by

r.ave(C, C′) =





w(C′)− w(C)

l(C′)− l(C)
if l(C′) > l(C),

ε otherwise.

Using this notion, λi in Algorithm 2.6 is the maximum value of the relative averages

of all multi-circuits with respect to Ci−1 in G(A).

As in the conventional algebra, the characteristic polynomial of a matrix is related

to the eigenvalue problem.

Theorem 2.7 ([6], Theorem 3). For a matrix A ∈ R
n×n
max , the maximum root of

its characteristic polynomial is the maximum eigenvalue of A.

Theorem 2.8 ([1], Fact 3 of Section 5). All eigenvalues of a matrix A ∈ R
n×n
max

are roots of its characteristic polynomial.

3. Algebraic eigenvectors

As we saw in the end of Section 2, the maximum root of the characteristic polyno-

mial is an eigenvalue of A. The other roots, however, may not be eigenvalues. Thus,

our concern is to clarify the roles of the roots of the characteristic polynomial that

are not maximums. To investigate this problem, we introduce the notion of algebraic

eigenvectors associated with the roots of the characteristic polynomial. The adjective

“algebraic” is taken from [1], in which the roots of the characteristic polynomial are

called algebraic eigenvalues.
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3.1. One assumption for generic matrices. For A ∈ R
n×n
max and variable t, we

define the 2n× 2n matrix

Ã(t) =

(
A t⊗ E

E E

)
.

We note that ϕA(t) = det Ã(t) as functions of t. The matrix Ã(t) also admits a graph

theoretical characterization. We say that a permutation π ∈ S2n is finite with respect

to Ã(t) = (ãij) if ãiπ(i) 6= ε for i = 1, 2, . . . , 2n. For a multi-circuit C in G(A), we

define a finite permutation πC ∈ S2n as follows:

πC(i) =





(the next vertex of i in C) i ∈ V (C), 1 6 i 6 n,

i+ n i 6∈ V (C), 1 6 i 6 n,

i i− n ∈ V (C), n+ 1 6 i 6 2n,

i− n i− n 6∈ V (C), n+ 1 6 i 6 2n.

The map C 7→ πC gives a one to one correspondence between multi-circuits in G(A)

and finite permutations with respect to Ã(t). For λ 6= ε, we say that a multi-circuit C

is λ-maximal if πC attains the maximum of det Ã(λ). A multi-circuit C is ε-maximal

if πC attains the maximum of det Ã(λ̄) for a sufficiently small finite value λ̄. Note

that the ε-maximal multi-circuit has the maximum length among all multi-circuits

in G(A). In Algorithm 2.6, both Ci−1 and Ci are λi-maximal multi-circuits.

Lemma 3.1. If λ is a root of the characteristic polynomial ϕA(t), then the matrix

Ã(λ) is singular.

P r o o f. If λ = ε is a root of ϕA(t), the graph G(A) has no multi-circuit with

length n. Then detA and det Ã(ε) are both ε, which means Ã(ε) is singular.

If λ 6= ε is a root of ϕA(t), there exist at least two terms, say ck1
⊗ t⊗k1 and

ck2
⊗ t⊗k2 , k1 6= k2, such that

ck1
⊗ λ⊗k1 = ck2

⊗ λ⊗k2 = ϕA(λ) = det Ã(λ).

Both ck1
⊗ λ⊗k1 and ck2

⊗ λ⊗k2 appear in the summand of det Ã(λ), and Ã(λ) is

singular. �

Generally, the converse of the above lemma is not true. However, it holds under

the following assumption, which is so weak that it is satisfied by generic matrices.

Assumption 3.2. For a matrix A ∈ R
n×n
max , we assume that all essential terms

of its characteristic polynomial are attained with exactly one permutation. Equiva-

lently, if ck⊗t⊗k is an essential term of ϕA(t), there exists exactly one multi-circuit C

with l(C) = n− k and w(C) = ck in G(A).
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Proposition 3.3. Under Assumption 3.2 for a matrix A ∈ R
n×n
max , λ is a root of

the characteristic polynomial ϕA(t) if and only if the matrix Ã(λ) is singular.

P r o o f. The “only if” part has been proved in Lemma 3.1. For the “if” part,

suppose that Ã(λ) is singular. If the maximum of ϕA(λ) is attained with exactly one

term, say ck ⊗ λ⊗k, then this must be an essential term. From Assumption 3.2, the

maximum of det Ã(λ) is also attained exactly once, which leads to a contradiction.

Thus, the maximum of ϕA(λ) is attained at least twice. Hence, λ is a root of ϕA(t).

�

In terms of graph theory, λ is a finite root of ϕA(t) if and only if there exist at

least two λ-maximal multi-circuits of the associated graph. Hereinafter, we proceed

with our argument under Assumption 3.2. We note that this kind of assumption also

appears in the literature on supertropical algebra [10].

3.2. Definition of algebraic eigenvectors. For a matrix A = (aij) ∈ R
n×n
max and

a multi-circuit C in G(A), we define four types of matrices, AC , A\C , EC and E\C , as

follows:

[AC ]ij =

{
aij if (i, j) ∈ E(C),

ε otherwise,
[A\C ]ij =

{
ε if (i, j) ∈ E(C),

aij otherwise,

[EC ]ij =

{
e if i = j, i ∈ V (C),

ε otherwise,
[E\C ]ij =

{
e if i = j, i 6∈ V (C),

ε otherwise.

Here V (C) and E(C) denote the vertex set and the edge set of C, respectively. Now

we present the main result of this paper together with the definition of algebraic

eigenvectors.

Theorem 3.4. Let A ∈ R
n×n
max . Then λ ∈ Rmax is an algebraic eigenvalue (i.e.,

a root of ϕA(t)) if and only if there exists a λ-maximal multi-circuit C and a vector

x 6= (ε, ε, . . . , ε)⊤ such that

(A\C ⊕ λ⊗ EC)⊗ x = (AC ⊕ λ⊗ E\C)⊗ x.

We call such a nontrivial vector x an algebraic eigenvector of A with respect to λ.

R em a r k 3.5. If λ is the maximum (geometric) eigenvalue of A, then it coincides

with the maximum algebraic eigenvalue and hence C = ∅ is λ-maximal. Thus, the

equation above will be A⊗x = λ⊗x, which is the same as in the definition of usual

(geometric) eigenvalues and eigenvectors. In fact, we will prove later that the other

(geometric) eigenvectors of A are also algebraic eigenvectors.
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P r o o f. “If part”: Suppose there exists a λ-maximal multi-circuit C and a vector

x 6= (ε, ε, . . . , ε)⊤ such that

(A\C ⊕ λ⊗ EC)⊗ x = (AC ⊕ λ⊗ E\C)⊗ x.

For i = 1, 2, . . . , 2n, if we evaluate the ith row of

(
A λ⊗ E

E E

)
⊗

(
x

x

)
,

the maximum is attained at least twice. This means, by Theorem 2.1, Ã(λ) is

singular. Hence, λ is an algebraic eigenvalue of A by Proposition 3.3.

“Only if” part: Suppose λ is an algebraic eigenvalue of A. First, we consider the

case λ 6= ε. From Proposition 3.3 and Theorem 2.1 there exists a nontrivial vector

ũ =
(
u

u

)
∈ R

2n
max such that the maximum of each row of

(
A λ⊗ E

E E

)
⊗

(
u

u

)

is attained at least twice. Let C be a λ-maximal multi-circuit in G(A). We define

matrices P and Q and a vector b by

P =

(
AC λ⊗ E\C

E\C EC

)
, Q =

(
A\C λ⊗ EC

EC E\C

)
, b =

(
(A⊕ λ⊗ E)⊗ u

u

)
.

Since the (i, j) entry of P is finite if and only if j = πC(i), P has its inverse P−1.

We consider the equation P ⊗ x̃ = Q⊗ x̃⊕ b and its solution of the form

x̃ = (P−1 ⊗Q)∗ ⊗ (P−1 ⊗ b).

Then, the vector consisting of the first n entries of x̃ is the desired algebraic eigen-

vector. Indeed, since we compute

x̃ = (P−1 ⊗Q)∗ ⊗ P−1 ⊗ (P ⊕Q)⊗ ũ = (P−1 ⊗Q)∗ ⊗ ũ,

we have x̃ > ũ. From our choice of ũ we have

Q⊗ x̃ > Q⊗ ũ = (P ⊕Q)⊗ ũ = b.

Thus, we obtain P ⊗ x̃ = Q ⊗ x̃. By the last n rows of this equation, x̃ is of the

form
(
x

x

)
. Checking the first n rows, we have

(A\C ⊕ λ⊗ EC)⊗ x = (AC ⊕ λ⊗ E\C)⊗ x.
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Next, we consider the case λ = ε. For sufficiently small number t we define

Pt =

(
AC t⊗ E\C

E\C EC

)
, Qt =

(
A\C t⊗ EC

EC E\C

)
, bt = (t, t, . . . , t)⊤.

The vector x̃t = (P−1
t ⊗Qt)

∗ ⊗ (P−1
t ⊗ bt) satisfies Pt ⊗ x̃t = Qt ⊗ x̃t ⊕ bt. Taking

the limit t→ −∞, we obtain the desired vector as the first n entries of x̃ = lim
t→−∞

x̃t.

The fact that x̃ ∈ R
2n
max\{(ε, ε, . . . , ε)

⊤} can be proved as follows. We first verify that

all entries of x̃t are of the form c + dt, d > 0, by easy computations, which implies

x̃ ∈ R
2n
max. We next see that x̃ is nontrivial. Since λ = ε is an algebraic eigenvalue,

V (C) must not be {1, 2, . . . , n}. Take k 6∈ V (C). From the kth and (k+ n)th rows of

Pt ⊗ x̃t = Qt ⊗ x̃t ⊕ bt we have

[Pt]k,k+n ⊗ [x̃t]k+n > [bt]k,

[Pt]k+n,k ⊗ [x̃t]k > [Qt]k+n,k+n ⊗ [x̃t]k+n.

Since [Pt]k,k+n = [bt]k = t and [Pt]k+n,k = [Qt]k+n,k+n = 0, we have

[x̃t]k > [x̃t]k+n > 0.

As this holds for arbitrarily small value t, [x̃t]k is a finite constant independent of t.

Thus, [x̃]k 6= ε. �

E x am p l e 3.6. Let us consider the max-plus matrix

A =




ε 9 8 ε 0 ε

7 2 ε ε ε ε

ε ε ε 4 ε ε

6 0 ε ε ε ε

ε ε ε ε ε 1

ε 2 ε ε ε ε




.

The characteristic polynomial of A is

ϕA(t) = (t⊕ 8)⊗2 ⊗ (t⊕ 2)⊗2 ⊗ t⊗2.

Take an algebraic eigenvalue 2 of A and a 2-maximal multi-circuit C = {(1, 2, 1)}.

Then, the defining equation of the algebraic eigenvectors in Theorem 3.4 becomes
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ε ε 8 ε 0 ε

ε 2 ε ε ε ε

ε ε ε 4 ε ε

6 0 ε ε ε ε

ε ε ε ε ε 1

ε 2 ε ε ε ε




⊕ 2⊗




0 ε ε ε ε ε

ε 0 ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε







⊗ x

=







ε 9 ε ε ε ε

7 ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε




⊕ 2⊗




ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε 0 ε ε ε

ε ε ε 0 ε ε

ε ε ε ε 0 ε

ε ε ε ε ε 0







⊗ x.

It can be easily verified that x = (0, 5, 6, 4, 4, 5)⊤ is an algebraic eigenvector of A

with respect to the algebraic eigenvalue 2. We will show later in Example 3.11 how

to compute this algebraic eigenvector.

3.3. Algebraic eigenspaces. Next we describe the set of all algebraic eigenvec-

tors. Let A ∈ R
n×n
max . For an algebraic eigenvalue λ of A and a multi-circuit C in

G(A), we define

W (λ, C) = {x ∈ R
n
max | (A\C ⊕ λ⊗ EC)⊗ x = (AC ⊕ λ⊗ E\C)⊗ x}.

Lemma 3.7. Let λ 6= ε be an algebraic eigenvalue of A ∈ R
n×n
max and C be

a λ-maximal multi-circuit in G(A). Then for all multi-circuits C′ in G(A) we have

W (λ, C′) ⊂W (λ, C).

P r o o f. Let x = (x1, x2, . . . , xn)
⊤ ∈ W (λ, C′). We set xj+n = xj for j =

1, 2, . . . , n. Then we have

ãiπC(i) ⊗ xπC(i) 6

2n⊕

j=1

ãij ⊗ xj = ãiπC′(i) ⊗ xπC′(i)

for i = 1, 2, . . . , 2n, where Ã(λ) = (ãij). We first assume that all entries of x are

finite. Since we have

2n⊗

i=1

ãiπC(i) ⊗ xπC(i) 6

2n⊗

i=1

2n⊕

j=1

ãij ⊗ xj =

2n⊗

i=1

ãiπC′(i) ⊗ xπC′(i) =

2n⊗

i=1

ãiπC′(i) ⊗
2n⊗

i=1

xπC′(i)

6

2n⊗

i=1

ãiπC(i) ⊗
2n⊗

i=1

xπC(i) =

2n⊗

i=1

ãiπC(i) ⊗ xπC(i),
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we see that
2n⊗

i=1

ãiπC(i) ⊗ xπC(i) =

2n⊗

i=1

2n⊕

j=1

ãij ⊗ xj .

As this value is finite, we have

ãiπC(i) ⊗ xπC(i) =

2n⊕

j=1

ãij ⊗ xj , i = 1, 2, . . . , 2n.

In particular, we get that x ∈ W (λ, C) from the equalities for i = 1, 2, . . . , n.

Next, we assume that some but not all entries of x ∈W (λ, C′) are ε. Let K = {j |

xj 6= ε} and L = {j | xj = ε}. For i ∈ K, since we have

ãiπC′(i) ⊗ xπC′(i) =

2n⊕

j=1

ãij ⊗ xj > λ⊗ xi+n = λ⊗ xi 6= ε,

we obtain xπC′(i) 6= ε. This implies πC′

(K) = K and hence πC′

(L) = L. For i ∈ L

and k ∈ K we have

ãik ⊗ xk 6

2n⊗

j=1

ãij ⊗ vj = ãiπC′(i) ⊗ xπC′(i) = ε.

Thus ãik must be ε. Since det Ã(λ) 6= ε for any finite value λ, πC satisfies πC(K) = K

and πC(L) = L. Restricting calculations to only the rows and columns indexed by K

and making the same argument as above, we obtain x ∈ W (λ, C). �

Let λ be a finite algebraic eigenvalue of A. For λ-maximal multi-circuits C1 and C2
in G(A), we have bothW (λ, C1) ⊂W (λ, C2) andW (λ, C2) ⊂W (λ, C1), which implies

that the setW (λ, C) does not depend on the choice of λ-maximal multi-circuit C. On

the other hand, if λ = ε, the λ-maximal multi-circuit is unique under Assumption 3.2.

Thus, we write W (λ) := W (λ, C), where W (λ) is the set of all algebraic eigenvectors

of A with respect to λ. Since W (λ) is the set of solutions of a homogeneous linear

system, W (λ) is a max-plus subspace of Rn
max. Hence, it is called the algebraic

eigenspace of A with respect to λ. We also see that the (geometric) eigenspace U(λ)

is contained in the algebraic eigenspace W (λ) by setting C′ = ∅ in Lemma 3.7.

3.4. Dimensions and multiplicities. In this subsection, we give an upper

bound for the dimension of the algebraic eigenspace by the multiplicity of the al-

gebraic eigenvalues.

Theorem 3.8. Let λ be an algebraic eigenvalue of A ∈ R
n×n
max . Then, the dimen-

sion of the algebraic eigenspace W (λ) does not exceed the multiplicity of the root λ

in the characteristic polynomial ϕA(t).
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To prove this theorem, we distinguish the case where λ is finite from the case where

λ = ε. We first consider the case, where λ 6= ε. Let C be a λ-maximal multi-circuit

in G(A). Then an algebraic eigenvector x ∈W (λ) satisfies

(A\C ⊕ λ⊗ EC)⊗ x = (AC ⊕ λ⊗ E\C)⊗ x.

Since AC ⊕ λ⊗ E\C is invertible, we have

((AC ⊕ λ⊗ E\C)
−1 ⊗ (A\C ⊕ λ⊗ EC))⊗ x = x.

This means that x is an eigenvector of BC := (AC ⊕ λ ⊗ E\C)
−1 ⊗ (A\C ⊕ λ ⊗ EC)

with respect to the eigenvalue 0 of BC in the usual sense. Thus, from Theorem 2.5,

we see that the dimension of the algebraic eigenspace W (λ) is the number of the

connected components of Gc(BC).

Lemma 3.9. Let λ 6= ε be an algebraic eigenvalue of A ∈ R
n×n
max and C be a λ-

maximal multi-circuit in G(A). Then, from any multi-circuit D with weight 0 in

G(BC), we can find a multi-circuit C
′ satisfying

(l(C′)− l(C))λ = w(C′)− w(C)

and

(V (C′) \ V (C)) ∪ (V (C) \ V (C′)) ⊂ V (D).

It follows from the first equality that C′ is also a λ-maximal multi-circuit in G(A).

Since the proof of this lemma is quite complicated and rather technical, we detail

it in the Appendix.

P r o o f of Theorem 3.8 for the case λ 6= ε. Let C be a λ-maximal multi-circuit

with the minimum length in G(A) and m be the dimension of W (λ). Then there

are m disjoint circuits D1, D2, . . . , Dm with (average) weights 0 in G(BC). Then, it

follows from Lemma 3.9 that we find λ-maximal circuits Ci, i = 1, 2, . . . ,m, corre-

sponding to Di, i = 1, 2, . . . ,m. Let C′ be the λ-maximal multi-circuit obtained from

D := {D1, D2, . . . , Dm}. Since we have

((V (Ci) \ V (C)) ∪ (V (C) \ V (Ci))) ∩ ((V (Cj) \ V (C)) ∪ (V (C) \ V (Cj)))

⊂ V (Di) ∩ V (Dj) = ∅

for i 6= j, we see that the construction of the λ-maximal multi-circuit Ci from circuits

Di in BC does not interfere with each other. Hence, we have

V (C′) \ V (C) =
m⋃

i=1

(V (Ci) \ V (C)), V (C) \ V (C′) =
m⋃

i=1

(V (C) \ V (Ci)).
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From Assumption 3.2 and the minimality of the length of C, we see l(Ci)− l(C) > 1.

Further, we note

l(Ci)− l(C) = |V (Ci)| − |V (C)| = |V (Ci) \ V (C)| − |V (C) \ V (Ci)|

for i = 1, 2, . . . ,m. Thus, we have

l(C′)− l(C) = |V (C′) \ V (C)| − |V (C) \ V (C′)|

=

m∑

i=1

(|V (Ci) \ V (C)| − |V (C) \ V (Ci)|) > m.

This means there exists a multi-circuit C′ in G(A) satisfying l(C′) > l(C) + m and

r.ave(C, C′) = λ. Algorithm 2.6 implies that m cannot exceed the multiplicity of λ.

�

To prove the case λ = ε, we use the following result.

Lemma 3.10 (see, e.g. [8], Theorem 2.10). The equation x = A⊗ x⊕ b has the

unique solution x = A∗ ⊗ b if every circuit in G(A) has negative weight.

P r o o f of Theorem 3.8 for the case λ = ε. Let C be the ε-maximal multi-circuit

of length l in G(A). We assume without loss of generality that V (C) = {1, 2, . . . , l}.

Let x ∈ W (ε) and x1 and x2 be the first l rows and the last (n− l) rows of x. Then

we have (
A1

\C A2

A3 A4

)
⊗

(
x
1

x
2

)
=

(
A1

C E

E E

)
⊗

(
x
1

x
2

)

with A =

(
A1 A2

A3 A4

)
, A1 ∈ R

l×l
max, A

2 ∈ R
l×(n−l)
max , A3 ∈ R

(n−l)×l
max , A4 ∈ R

(n−l)×(n−l)
max ,

yielding two equations:

A1
\C ⊗ x

1 ⊕A2 ⊗ x
2 = A1

C ⊗ x
1, A3 ⊗ x

1 ⊕A4 ⊗ x
2 = (ε, ε, . . . , ε)⊤.

When we fix a vector x2 ∈ R
n−l
max, the first equation has the unique solution

x
1 = ξ(x2) := ((A1

C)
−1 ⊗A1

\C)
∗ ⊗ ((A1

C)
−1 ⊗A2 ⊗ x

2),

because every circuit in G((A1
C)

−1 ⊗ A1
\C) has negative weight by Assumption 3.2.

Combining this solution with the second equation, we have

W (ε) =

{
x =

(
ξ(x2)

x
2

) ∣∣∣ [x]j = ε if aij 6= ε for some i = l + 1, . . . , n

}
.
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In particular, the basis of W (ε) is the set

{(
ξ(ẽk)

ẽk

) ∣∣∣∣
the kth column of A4 is (ε, ε, . . . , ε)⊤,

[ξ(ẽk)]j = ε if aij 6= ε for some i = l + 1, . . . , n

}
,

where ẽk, 1 6 k 6 n−l, are the standard basis vectors of Rn−l
min . Hence, the dimension

of W (ε) does not exceed n− l, which is the multiplicity of the root ε in ϕA(t). �

E x am p l e 3.11. We again consider

A =




ε 9 8 ε 0 ε

7 2 ε ε ε ε

ε ε ε 4 ε ε

6 0 ε ε ε ε

ε ε ε ε ε 1

ε 2 ε ε ε ε




.

The algebraic eigenspaceW (8) is the same as the (geometric) eigenspace of A. Hence,

computing

((−8)⊗A)∗ =




0 1 0 −4 −8 −15

−1 0 −1 −5 −9 −16

−6 −5 0 −4 −8 −15

−2 −1 −2 0 −10 −17

−14 −13 −14 −18 0 −7

−7 −6 −7 −11 −15 0




,

we identify the basis (0,−1,−6,−2,−14,−7)⊤ of W (8).

From the discussion after the statement of Theorem 3.8, the algebraic eigenspace

W (2) is the same as the eigenspace of

B{(1,2,1)} = (A{(1,2,1)} ⊕ 2⊗ E\{(1,2,1)})
−1 ⊗ (A\{(1,2,1)} ⊕ 2⊗ E{(1,2,1)})

=




ε −5 ε ε ε ε

−7 ε −1 ε −9 ε

ε ε ε 2 ε ε

4 −2 ε ε ε ε

ε ε ε ε ε −1

ε 0 ε ε ε ε




.

We see that G(B{(1,2,1)}) has exactly one circuit (1, 2, 3, 4, 1) with average weight 0.

Computing (B{(1,2,1)})
∗, we have the basis (0, 5, 6, 4, 4, 5)⊤ of W (2).
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For the algebraic eigenvalue ε, the ε-maximal multi-circuit in G(A) is C =

{(1, 3, 4, 1), (2, 2)}. The map ξ : R
2
max → R

4
max in the above proof is given by

ξ(x2) =







ε ε 8 ε

ε 2 ε ε

ε ε ε 4

6 ε ε ε




−1

⊗




ε 9 ε ε

7 ε ε ε

ε ε ε ε

ε 0 ε ε







∗

⊗







ε ε 8 ε

ε 2 ε ε

ε ε ε 4

6 ε ε ε




−1

⊗




0 ε

ε ε

ε ε

ε ε





⊗ x

2.

Since the first column of the right bottom 2 × 2 block of A is (ε, ε)⊤, the vector

((ξ(ẽ1))
⊤, ẽ⊤1 ) = (ε, ε,−8, ε, 0, ε)⊤ is the basis of W (ε).

Thus, we have computed the basis of all algebraic eigenspaces of A and have

found that the dimensions of all algebraic eigenspaces are 1, which is less than their

multiplicities in ϕA(t) = (t⊕ 8)⊗2 ⊗ (t⊕ 2)⊗2 ⊗ t⊗2.

4. Concluding remarks

In this paper, we introduced algebraic eigenvectors with respect to the roots of

max-plus characteristic polynomials. We restricted our argument to a matrix such

that every essential term of the characteristic polynomial is attained with a single

permutation. Without the assumption, the “if part” of Theorem 3.4 does not hold.

Hence, it may happen that there is a vector satisfying equation (1.1) for λ that is

not a root of the characteristic polynomial. Moreover, the dimension of the algebraic

eigenspace cannot be evaluated for the case where our assumption is not satisfied.

Thus, some additional conditions will be needed if we make the definition of algebraic

eigenvectors in the general case.

Comparison of the dimension of algebraic eigenspaces and the multiplicities of

the roots of characteristic polynomials reminds us the diagonalization of matrices.

In the max-plus algebra, we conjectured that algebraic eigenvectors with respect

to different roots are independent; we have no proof. Hence, we have not derived

conditions under which the given matrix can be diagonalized by the transformation

matrix consisting of the algebraic eigenvectors. Some of the authors have also tried

to define Jordan canonical forms [13], but it succeeded for a very restricted class of

matrices. It is a future work to establish a max-plus analogue of the conventional

diagonalization theory.
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5. Appendix A. Proof of Lemma 3.9

Let λ 6= ε be an algebraic eigenvalue of A ∈ R
n×n
min and C be a λ-maximal multi-

circuit in G(A). For any vertex i ∈ V (C) we denote by σ(i) the succeeding vertex

of i in the circuit in C; σ−1(i) is the preceding vertex of i in C. Recalling that

BC := (AC ⊕ λ ⊗ E\C)
−1 ⊗ (A\C ⊕ λ ⊗ EC) and computing the entires of BC , we

obtain the correspondence in edges between G(A) and G(BC) shown in Table 1. We

see that G(BC) has a multi-circuit
←−
C consisting of the edges (σ(i), i), i ∈ V (C).

G(A) G(Bc)

edge weight edge weight

(i, i′), i 6∈ V (C) aii′ (i, i′) −λ+ aii′

(i, σ(i)), i ∈ V (C) aiσ(i) (σ(i), i) max{λ, aii} − aiσ(i)

(i, i′), i ∈ V (C), i′ 6= σ(i) aii′ (σ(i), i′) aii′ − aiσ(i)

Table 1. Correspondence between G(A) and G(BC).

Let D be a multi-circuit in G(BC) with (average) weight 0. We construct a multi-

circuit C′ in G(A) by the following steps:

(1) Set C′ := ∅.

(2) Choose any edge of D that is not in E(
←−
C ) and denote the terminal vertex of

that edge by i. We define the initial sequence of vertices by Ĉ := (i).

(3) The succeeding vertex of i in Ĉ is determined by the following rules.

(a) If i 6∈ V (C), let i′ be the succeeding vertex of i in D. Append i′ to Ĉ and

set i := i′.

(b) If i ∈ V (C) and σ(i) 6∈ V (D), append σ(i) to Ĉ and set i := σ(i).

(c) If i ∈ V (C) and σ(i) ∈ V (D), let i′ be the succeeding vertex of σ(i) in D.

Append i′ to Ĉ and set i := i′.

(4) Repeat (3) until the original vertex i selected in (2) appears again. If we return

to i, append the circuit Ĉ to C′.

(5) Repeat (2)–(4) while there exist edges (or corresponding terminal vertices) sat-

isfying (2).

(6) Append all circuits in C that have no common vertices with D to C′.

(7) Find all loops on V (D)\V (C′) whose weights are greater than λ. Append them

to C′.

An example of these steps is illustrated in Figure 1. The steps (2)–(5) give a union

of disjoint circuits because this vertex search is uniquely traced back as follows:
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⊲ If j ∈ V (D), let j′ be the preceding vertex of j in D. The preceding vertex of j in

Ĉ is σ−1(j′) if j′ ∈ C; otherwise it is j′.

⊲ If j 6∈ V (D), the preceding vertex of j in Ĉ is σ−1(j).

G(A) G(Bc)

(7)

(6)

(3)–(a)

(3)–(b)

(3)–(c)
C

Figure 1. Graph G(A) and circuit C (left) and graph G(BC) (right). Bold arrows represent
the multi-circuit D (right) and the corresponding multi-circuit C′ (left). Examples
of five types of edges are also illustrated.

Lemma A.1. Let C′ be the multi-circuit in G(A) constructed as above. We have

V (C) \ V (C′) ⊂ V (D) and (σ(i), i) ∈ E(D) for any i ∈ V (C) \ V (C′).

P r o o f. We assume the contrary. Suppose there is a vertex j ∈ (V (C) \ V (C′)) \

V (D). In that case, we show that, without loss of generality, we may assume

σ−1(j) ∈ V (D). In order to show the assumption is proper, first we prove σ−1(j) 6∈

V (C′) if we have σ−1(j) 6∈ V (D): If we have σ−1(j) ∈ V (C′) \ V (D), it occurs after

step (3) was executed for i := σ−1(j). Since σ−1(j) ∈ V (C) and j = σ(σ−1(j)) 6∈

V (D), case (b) occurs and we have j ∈ V (C′), leading to a contradiction. Thus, we

can continue replacing j with σ−1(j) until σ−1(j) is contained in V (D). The edge

in D whose terminal vertex is σ−1(j) exists but it is not (j, σ−1(j)) since j 6∈ V (D).

Thus, σ−1(j) must be in V (C′) and case (3)(b) occurs for i := σ−1(j), which implies

j ∈ V (C′), leading to a contradiction. Hence, we conclude V (C) \ V (C′) ⊂ V (D),

which is the first assertion of the lemma. In particular, if (σ(i), i) were not an edge

of D for some i ∈ V (C) \ V (C′), there would be another edge in D whose terminal

vertex is i. By step (2), this means i ∈ V (C′), leading to a contradiction. �

P r o o f of Lemma 3.9. The inclusion V (C) \ V (C′) ⊂ V (D) is proved in

Lemma A.1. On the other hand, from the above procedure, each vertex in V (C′) is

contained in V (C) or V (D), which shows V (C′) \ V (C) ⊂ V (D).
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We next prove the equality for weights. Let {(αk, α
′
k)} be the set of the edges

in C′ constructed by (3)(a), {(βk, σ(βk))} by (3)(b), {(γk, γ
′
k)} by (3)(c), {(δk, σ(δk))}

by (6), {(εk, εk)} by (7). We denote by lα, lβ, lγ , lδ and lε the numbers of those edges,

respectively. Then we have

w(C′)− w(C)

=

lα∑

k=1

aαkα
′

k
+

lβ∑

k=1

aβkσ(βk) +

lγ∑

k=1

aγkγ
′

k
+

lδ∑

k=1

aδkσ(δk) +

lε∑

k=1

aεkεk −
∑

i∈V (C)

aiσ(i)

=

lα∑

k=1

aαkα
′

k
+

lγ∑

k=1

aγkγ
′

k
+

lε∑

k=1

aεkεk −
∑

i∈V (C)\{βk,δk}

aiσ(i).

Let bij be the weight of the edge (i, j) in G(BC). From Table 1 we have

lα∑

k=1

aαkα
′

k
= lαλ+

lα∑

k=1

bαkα
′

k
,

lγ∑

k=1

aγkγ
′

k
=

lγ∑

k=1

aγkσ(γk) +

lγ∑

k=1

bσ(γk)γ′

k
,

lε∑

k=1

aεkεk =

lε∑

k=1

(aεkσ(εk) + bσ(εk)εk).

Therefore,

w(C′)− w(C)

= lαλ+

lα∑

k=1

bαkα
′

k
+

lγ∑

k=1

bσ(γk)γ′k +

lε∑

k=1

bσ(εk)εk −
∑

i∈V (C)\{βk,γk,δk,εk}

aiσ(i)

= lαλ+

lα∑

k=1

bαkα
′

k
+

lγ∑

k=1

bσ(γk)γ′k +

lε∑

k=1

bσ(εk)εk

−

(
(l(C)− lβ − lγ − lδ − lε)λ −

∑

i∈V (C)\{βk,γk,δk,εk}

bσ(i)i

)

= (l(C′)− l(C))λ+

lα∑

k=1

bαkα
′

k
+

lγ∑

k=1

bσ(γk)γ′k

+

lε∑

k=1

bσ(εk)εk +
∑

i∈V (C)\{βk,γk,δk,εk}

bσ(i)i.
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From our procedure and Lemma A.1 we have

E(D) = {(αk, α
′
k) | k = 1, 2, . . . , lα} ∪ {(σ(γk), γ

′
k) | k = 1, 2, . . . , lγ}

∪ {(σ(εk), εk) | k = 1, 2, . . . , lε} ∪ {(σ(i), i) | i ∈ V (C) \ {βk, γk, δk, εk}}.

Thus, we obtain

w(C′)− w(C) = (l(C′)− l(C))λ+ w(D).

Since w(D) = 0, we have the desired equality. �
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