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Abstract. In this note, we study formal deformations of derived representations of the
principal series representations of SL(2,R). In particular, we recover all the representations
of the derived principal series by deforming one of them. Similar results are also obtained
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1. Introduction

Deformations appear in a natural way in physics: for instance, relativistic me-

chanics can be considered as a deformation of Galilean mechanics, the deformation

parameter being 1/c, the inverse of the velocity of light.

In mathematics, deformations of Lie algebra structures have been extensively stud-

ied since the fundamental works of Gerstenhaber, see [13], Nijenhuis and Richardson,

see [24], [26] and are still objects of current research, see, in particular, [9], [10], [11].

In this note, we focus on the problem of deforming Lie algebra representations

which has been investigated by various authors, see [16], [21], [22], [23], [25].

Let g be a (real or complex) Lie algebra and let π be a representation of g on

a vector space V . It is well-known that the existence and classification problems

for the formal deformations of π depend on the Chevalley-Eilenberg cohomology

spaces H1(g,W ) and H2(g,W ), where W is some subalgebra of End(V ), which are

generally difficult to compute, see, for instance, [4] and [23].

As noticed in [7], if we suppose that π has nontrivial formal deformations then,

taking for the deformation parameter a real or complex number, we can expect to
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obtain a one-parameter family of representations of g and, conversely, such a one-

parameter family (πν) (indexed by R or C) being given, we can expect to recover it

by deforming the representation π := π0.

Then we see that deforming representations is a way to produce many represen-

tations of g from a few ones and we can hope for the applications of deformations to

the classification of representations of g and also to the description of unitary duals

of Lie groups.

For instance, in [7], we recovered the discrete series representations of SU(1, n)

starting from a single minimal realization of sl(n + 1,C), see [18]. We also refer

to [4], [23] for other interesting examples of deformations, especially of representa-

tions of the Poincaré group.

Here we continue to study representations of semisimple Lie algebras in the light

of deformation theory and consider the family (̺λ)λ∈R of representations of sl(2,R)

on C∞(R) which is obtained by differentiating the so-called principal series repre-

sentations of SL(2,R), see [20]. Then we show that the deformation process when

applied to ̺0 gives the representations ̺λ and only them. This is done by comput-

ing the cohomology spaces H1(sl(2,R),D(R)) and H2(sl(2,R),D(R)), where D(R)

denotes the algebra of differential operators on R. In fact, the computations are

simplified by the use of the Weyl correspondence and the Moyal associative product

which allow us to replace operators by functions as in [1], [2], [4] and [7]. Similar

results are also obtained for the differentials of the principal series representations

of SL(2,C).

Naturally, we could hope to extend our results to principal series representations

of general semisimple Lie groups but even in the case of SL(n,R) and SL(n,C) (for

arbitrary n) the computations seem to be difficult.

This note is organized as follows. We start with some generalities about formal

deformations of Lie algebra homomorphisms (see Section 2) and about the Weyl cor-

respondence and the Moyal product (see Section 3). Then we introduce the principal

series representations of SL(2,R) and their differentials ̺λ, λ ∈ R (see Section 4).

The problem of deforming ̺0 is considered in Section 5 and, in Sections 6 and 7

we treat similarly the case of the differentials of the principal series representations

of SL(2,C) which is a little more complicated to calculate.

2. Some generalities on deformations

Here we recall some definitions and results of deformation theory. The material of

this section is taken from [14], [16], [23], [25] and the exposition essentially follows [4]

and [7].
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Let g be a Lie algebra overK = R,C and letA be an associative algebra overK with

the unit element 1. Then A is also a Lie algebra for the commutator [a, b] := ab− ba.

Let ϕ : g → A be a Lie algebra homomorphism.

Definition 2.1.

(1) A formal deformation of ϕ is a formal series Φ =
∑
k>0

tkΦk, where Φ0 = ϕ and,

for each k > 1, Φk is a linear map from g to A such that

(2.1) Φ([X,Y ]) = [Φ(X),Φ(Y )]

for any X and Y in g. Here we have extended the bracket of A to the formal

series by bilinearity.

(2) Two formal deformations Φ and Ψ of ϕ are said to be equivalent if there exists

a series a = 1 + ta1 + t2a2 + . . . ∈ A[[t]] such that for any X ∈ g, we have

(2.2) a−1Φ(X)a = Ψ(X).

Now we can introduce the structure of a g-module on A defined byX ·a = [ϕ(X), a]

for X ∈ g and a ∈ A and the Chevalley-Eilenberg cohomology of g with values in A.

Recall that the differential ∂ψ of the p-cochain ψ is the (p+ 1)-cochain given by

∂ψ(X1, X2, . . . , Xp+1) =

n∑

i=1

(−1)i+1Xi · ψ(X1, . . . , X̂i, . . . , Xp+1)

+
∑

16i<j6p+1

(−1)i+jψ([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1)

for X1, X2, . . . , Xp+1 ∈ g.

Then we immediately see that equation (2.1) is equivalent to the fact that for each

n > 0 and any X,Y ∈ g, we have

(∂Φn)[X,Y ] := [ϕ(X),Φn(Y )] + [Φn(X), ϕ(Y )]− Φn([X,Y ])

= −
n−1∑

k=1

[Φk(X),Φn−k(Y )].

In particular, we see that if such a deformation Φ exists then Φ1 is a 1-cocycle.

We have the following result, see, for instance, [16], Section III and [23], Section I.

Proposition 2.1.

(1) If H2(g, A) = (0) then for every 1-cocycle α : g → A, there exists a formal

deformation Φ such that Φ1 = α.

(2) If H1(g, A) = (0) then every formal deformation Φ of ϕ is equivalent to ϕ.
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In [4], we proved the following result.

Proposition 2.2. Assume that H1(g, A) is one-dimensional and that there exists

a formal deformation Φ of ϕ such that the cohomology class of Φ1 generatesH
1(g, A).

For each sequence c = (ck)k>1 of K, consider the formal series Sc(t) :=
∑
k>1

ckt
k and

the formal deformation Φc of ϕ defined by Φc(X) =
∑
r>0

Sc(t)
rΦr(X) for everyX ∈ g.

Then the map c→ Φc is a bijection from the set of all sequences c = (ck)k>1 of K

onto the set of all equivalence classes of formal deformations of ϕ.

We need to adapt Proposition 2.3 to the special cases that will be considered in

this note.

Proposition 2.3.

(1) Assume that there exists a formal deformation Φ of ϕ of the form Φ = ϕ+ tΦ1

such that the cohomology class of Φ1 generates H
1(g, A). Then every formal

deformation of ϕ is equivalent to a deformation of the form ϕ+
(∑
k>1

λkt
k
)
Φ1,

where λk ∈ K for each k > 1.

(2) Assume thatH1(g, A) has dimension 2 and that there exist two 1-cocycles ϕ1, ϕ
′

1

whose cohomology classes generate H1(g, A) and such that for every λ, λ′ ∈ K,

ϕ+ t(λϕ1 +λ′ϕ′

1) is a formal deformation of ϕ. Then every formal deformation

of ϕ is equivalent to a deformation of the form

ϕ+

(∑

k>1

λkt
k

)
ϕ1 +

(∑

k>1

λ′kt
k

)
ϕ′

1,

where λk, λ
′

k ∈ K for each k > 1.

P r o o f. Statement (1) is a particular case of Proposition 2.3. The proof of state-

ment (2) is standard and similar to that of Proposition 2.3, see [4]. Let us sketch

it briefly. Let Ψ be a formal deformation of ϕ. The idea is to show the following

property by induction: for each integer p > 1, there exist a1, a2, . . . , ap ∈ A and

λ1, λ2, . . . , λp, λ
′

1, λ
′

2, . . . , λ
′

p ∈ K such that the formal deformations Ψp and Φp of ϕ

given by

Ψp(X) := exp(tpap) . . . exp(ta1)Ψ(X) exp(−ta1) . . . exp(−t
pap)

and

Φp(X) := ϕ(X) +

( p∑

k=1

λkt
k

)
ϕ1 +

( p∑

k=1

λ′kt
k

)
ϕ′

1

coincide at order p, that is, we have Ψp
k = Φp

k for each k = 1, 2, . . . , p.
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Indeed, for p = 1, since Ψ1 is a 1-cocycle, there exist λ1, λ
′

1 ∈ K and a1 ∈ A such

that Ψ1 = λ1ϕ1 + λ′1ϕ
′

1 + ∂a1, where (∂a1)(X) = [ϕ(X), a1]. Then

Ψ1(X) = exp(ta1)Ψ(X) exp(−ta1)

and

Φ1 = ϕ+ t(λ1ϕ1 + λ′1ϕ
′

1)

are formal deformations of ϕ that coincide at order 1, since we have that Ψ1
1 =

λ1ϕ1 + λ′1ϕ
′

1.

Now, assume that the property is true for p and prove it for p+1. Equation (2.1)

for Ψp gives

(∂Ψp
p+1)(X,Y ) = −

p∑

k=1

[Ψp
k(X),Ψp

p+1−k(Y )] = −

p∑

k=1

[Φp
k(X),Φp

p+1−k(Y )]

= (∂Φp
p+1)(X,Y )

since Ψp and Φp coincide at order p. Then there exist λp+1, λ
′

p+1 ∈ K and ap+1 ∈ A

such that

Ψp
p+1 = Φp

p+1 + λp+1ϕ1 + λ′p+1ϕ
′

1 + ∂ap+1

and we can easily verify that Ψp+1 and Φp+1 coincide at order p+ 1. �

Note that (2) of Proposition 2.4 can be extended to the case, where Dim(H1(g, A))

is arbitrary without notable modification.

Note also that the preceding definitions and results can be applied to the particular

case of a representation ϕ of g in a real or complex vector space V , since ϕ is also

a Lie algebra homomorphism from g to End(V ), or, more generally, to a subalgebra A

of End(V ).

3. Weyl correspondence and Moyal product

Here we first recall the Weyl correspondence on R
2n. In fact, we just need in this

note the cases n = 1 and n = 2.

The Weyl correspondence on R
2n can be defined as follows, see [8], [12], [17]. For

every f in the Schwartz space S(R2n), we define the operator W (f) acting on the

Hilbert space L2(Rn) by

(W (f)ϕ)(y) = (2π)
−n

∫

R2n

eixzf
(
y +

x

2
, z
)
ϕ(y + x) dxdz.
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It is well-known that the Weyl calculus can be extended to much larger classes

of symbols (see, for instance, [17]). In particular, W induces a linear isomorphism

from the space P(R2n) of C∞-functions f(y, z) on R
2n, which are polynomials with

respect to the variables z1, z2, . . . , zn, onto the space D(Rn) of differential operators

on R
n with coefficients in C∞(Rn).

More precisely, if f(y, z) = v(y)zα, where v ∈ C∞(Rn), then we have

(W (f)ϕ)(y) =
(
i
∂

∂x

)α(
v
(
y +

x

2

)
ϕ(y + x)

)∣∣∣
x=0

,

see, for instance, [27]. Here we use the multi-index notation α=(α1, α2, . . . , αn)∈N
n.

In particular, if f(y, z) = v(y) then (W (f)ϕ)(y) = v(y)ϕ(y) and if f(y, z) = v(y)zk

then

(3.1) (W (f)ϕ)(y) = i(12∂kv(y)ϕ(y) + v(y)∂kϕ(y)).

Now, let us introduce the associative product ∗ on P(R2n), called the Moyal

product, which corresponds via W to the composition of differential operators, that

is, for every f1, f2 ∈ P(R2n), we have W (f1 ∗ f2) =W (f1)W (f2).

Then an expansion of ∗ can be obtained as follows, see [12]. Take coordinates

(y, z) on R
2n ∼= R

n × R
n and let x = (y, z). Then one has xi = yi for 1 6 i 6 n and

xi = zi−n for n+ 1 6 i 6 2n.

Let Λ = (Λij) be the (2n× 2n)-matrix whose only nonzero entries are Λii+n = 1

and Λi+ni = −1 for 1 6 i 6 n. For f1, f2 ∈ P(R2n), let P 0(f1, f2) := f1f2,

P 1(f1, f2) :=
∑

16i,j6n

Λij∂xi
f1∂xj

f2 =
n∑

k=1

(∂f1
∂yk

∂f2
∂zk

−
∂f1
∂zk

∂f2
∂yk

)

(the usual Poisson brackets) and, more generally, for l > 2,

P l(f1, f2) :=
∑

16i1,...,il,j1,...,jl6n

Λi1j1Λi2j2 . . .Λiljl∂lxi1
...xil

f1 ∂
l
xj1

...xjl
f2.

Then for every f1, f2 ∈ P(R2n), we have

f1 ∗ f2 =
∑

l>0

(−i)l

2ll!
P l(f1, f2).

We also need the Moyal brackets given by

[f1, f2]∗ := i(f1 ∗ f2 − f2 ∗ f1) =
∑

l>0

(−i)2l

22l(2l + 1)!
P 2l+1(f1, f2).

In Sections 5 and 7, the Moyal product will be used to simplify the computations

of some cohomology spaces.
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4. Principal series representations of SL(2,R)

WhenG is a general connected semisimple Lie group with finite center the principal

series of G can be introduced as follows, see [20], [28]. Let G = KAN be an Iwasawa

decomposition of G (see [15], [28]) and let M be the centralizer of A in K. Then, for

any unitary irreducible representation σ of M and any unitary character χ of A, we

can consider the representation πχ,σ which is obtained by unitary induction to G of

the representation σ ⊗ χ⊗ 1N of MAN . Hence these representations πχ,σ form the

principal series of G.

Here we consider the case G = SL(2,R) and we can take K = SO(2),

A =

{(
a 0

0 1/a

)
: a > 0

}
, N =

{(
1 z

0 1

)
: z ∈ R

}
.

Then M = (±Id) has two characters σε, ε = 0, 1, defined by σε(−Id) = (−1)ε. This

implies that the principal series of SL(2,R) is indexed by pairs (ν, ε), where ε = 0, 1

and ν ∈ R. More precisely, we can easily verify that πν,ε can be realized in the

Hilbert space L2(R) as

(πν,ε(g)u)(y) = sgn(−by + d)ε|−by + d|−1−iνu
( ay − c

−by + d

)
,

where g =
(

a b

c d

)
∈ SL(2,R), u ∈ L2(R) and y ∈ R, see [20].

This is the ‘noncompact’ realization of πν,ε. Note that all these representations

except π0,1 are irreducible and that πν,ε is unitarily equivalent to π−ν,ε, see [20],

Chapter II.

By a simple computation, we can verify that for any X =
(

α β

γ −α

)
∈ sl(2,R),

u ∈ C∞

0 (R) and y ∈ R, we have

(dπν,ε(X)u)(y) = (1 + iν)(βy + α)u(y) + (βy2 + 2αy − γ)u′(y).

For every ν ∈ R, let us denote by ̺ν the representation of sl(2,R) in P(R) defined

by the same formula as dπν,ε:

(̺ν(X)u)(y) = (1 + iν)(βy + α)u(y) + (βy2 + 2αy − γ)u′(y).

Let (e1, e2, e3) be the basis of g given by

e1 =

(
0 1

0 0

)
; e2 =

(
0 0

1 0

)
; e3 =

(
1 0

0 −1

)
.
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Note that we have the following result, as a particular case of [3], Proposition 6.

We define the trace form on sl(2,R) (which is a multiple of the Killing form) by

〈X,Y 〉 = Tr(XY ).

Proposition 4.1.

(1) The map

ψ : (y, z) 7→

( 1
2ν − yz z

νy − y2z yz − 1
2ν

)

is a diffeomorphism from R
2 onto the set of all matrices of the form Ad(g)(12νe3),

where g =
(

a b

c d

)
∈ SL(2,R) with a 6= 0, which is a dense open subset of the

orbit of 1
2νe3 under the adjoint action of SL(2,R).

(2) Let W be the Weyl correspondence on R
2, see Section 3. Then, for any X ∈

sl(2,R) and (y, z) ∈ R
2, we have

W−1(̺ν(X))(y, z) = i〈ψ(y, z) , X〉.

P r o o f. (1) Simple computation.

(2) Write X =
(

α β

γ −α

)
. Then, from equation (3.1), we obtain

(4.1) W−1(̺ν(X))(y, z) = iν(βy + α)− i(βy2 + 2αy − γ)z.

The result follows. �

In other words, the map X → −iW−1(̺ν(X))(y, z) is a parametrization of a dense

open subset of the orbit. In the terminology of [3], we say thatW is an adapted Weyl

correspondence, see also [5] and [6]. Since πν,ε is associated with the adjoint orbit

of 1
2νe3 by the Kostant-Kirillov method of orbits, see [3], [19], we can see that W

provides another way to connect πν,ε to the orbit.

5. Deformations of ̺0

Here we aim to study the formal deformations of ̺0 in D(R). We start with the

following proposition.

Proposition 5.1.

(1) The map Φ0 : X → −iW−1(̺0(X)) is a Lie algebra homomorphism from g =

sl(2,R) to P(R2).

(2) We have that ˜̺ := ̺0+
∑
k>1

tk ˜̺k is a formal deformation of ̺0 in D(R) if and only

if Φ(X) := Φ0(X)− i
∑
k>1

tkW−1(˜̺k(X)) is a formal deformation of Φ0 in P(R2).
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P r o o f. (1) For any X,Y ∈ g, we have

[Φ0(X),Φ0(Y )]∗ = i(Φ0(X) ∗Φ0(Y )− Φ0(Y ) ∗ Φ0(X))

= − i(W−1(̺0(X)) ∗W−1(̺0(Y ))−W−1(̺0(Y )) ∗W−1(̺0(Y )))

= − iW−1(̺0(X)̺0(Y )− ̺0(Y )̺0(X))

= − iW−1(̺0([X,Y ])) = Φ0([X,Y ]).

(2) Easy to verify. �

In other words, the problem of deforming ̺0 is equivalent to that of deforming Φ0

which is more accessible to calculation. The reason is that it is simpler to compute

f ∗g (for f, g ∈ P(R2)) than W (f)W (g) since the terms that cancel in the expansion

of f ∗ g can be easily identified.

Note that by equation (4.1), we have

Φ0(e1)(y, z) = −y2z; Φ0(e2)(y, z) = z; Φ0(e3)(y, z) = −2yz.

As explained in Section 2, we need to compute H1(g,P(R2)).

Proposition 5.2. The space H1(g,P(R2)) is one-dimensional, generated by the

class of the 1-cocycle ϕ0 : g → P(R2) defined by ϕ0(e1)(y, z) = y, ϕ0(e2)(y, z) = 0

and ϕ0(e3)(y, z) = 1.

P r o o f. Let ϕ : g → P(R2) be a 1-cocycle. Then, for any X,Y ∈ g, we have

(5.1) [Φ0(X), ϕ(Y )]∗ + [ϕ(X),Φ0(Y )]∗ − ϕ([X,Y ]) = 0.

The idea of the proof is to transform ϕ gradually to a multiple of ϕ0 by adding

1-coboundaries.

First, let us put

(5.2) f(y, z) =

∫ y

0

ϕ0(e2)(y
′, z) dy′

and consider the 1-cocycle ϕ1 : X → ϕ(X) + [Φ0(X), f ]∗ which is equivalent to ϕ.

Then we have

ϕ1(e2) = ϕ(e2) + [z, f ]∗ = ϕ(e2)− ∂yf = 0.

Now, applying equation (5.1) to ϕ1, X = e2 and Y = e3, we get [z, ϕ1(e3)]∗ = 0.

This implies that ϕ1(e3) is a polynomial p(z). Moreover, writing equation (5.1)

for X = e1 and Y = e2, we find that [z, ϕ1(e1)]∗ − p(z) = 0. Hence there exists

a polynomial q(z) such that ϕ1(e1) = p(z)y + q(z).
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Then we can choose a polynomial r(z) such that p(z) − p(0) − 2z∂zr = 0 and

consider the 1-cocycle ϕ2 : X → ϕ1(X) + [Φ0(X), r(z)]∗ which is equivalent to ϕ1

and hence to ϕ. Thus we have not only ϕ2(e2) = 0 but also

ϕ2(e3) = p(z) + [−2yz, r(z)]∗ = p(z)− 2z∂zr = p(0).

Hence ϕ2(e3) is the constant λ := p(0) and we have

ϕ2(e1) = ϕ1(e1)− [y2z, r(z)]∗ = p(z)y + q(z)− 2yz∂zr = λy + q(z).

Finally, applying equation (5.1) to ϕ2 and X = e1, Y = e2, we get z(∂zq) +

q(z) = 0, hence q(z) = 0 and ϕ(e1) = λy, ϕ(e2) = 0 and ϕ(e3) = λ. Since we can

easily verify that ϕ0 is not a 1-coboundary, this ends the proof. �

Although it is not essential for our purposes, we compute the space H2(g,P(R2)),

too.

Proposition 5.3. We have H2(g,P(R2)) = (0).

P r o o f. Let β : g×g → P(R2) be a 2-cocycle. Then we have (∂β)(e1, e2, e3) = 0,

hence

(5.3) [−y2z, β(e2, e3)]∗ + [−2yz, β(e1, e2)]∗ + [z, β(e3, e1)]∗ = 0.

We can choose a linear map ϕ1 : g → P(R2) such that ϕ1(e2) = 0 and ∂yϕ1(e3) =

β(e2, e3). Then the 2-cocycle β1 := β + ∂ϕ1 is equivalent to β and satisfies

β1(e2, e3) = 0.

Similarly we can take ϕ2 : g → P(R2) such that ϕ2(e2) = 0, ϕ2(e3) = 0 and

∂yϕ2(e1) = β1(e1, e2). Then β2 := β1 − ∂ϕ2 is a 2-cocycle which is also equivalent

to β and we have β2(e2, e3) = β2(e1, e2) = 0. Thus equation (5.3) for β2 implies that

∂yβ2(e1, e3) = 0, hence there exists a polynomial P (z) such that β2(e1, e3) = P (z).

Now, let

Q(z) =
1

2

∫ 1

0

P (tz) dt

and let ϕ3 : g → P(R2) be the linear map defined by ϕ3(e1) = Q(z), ϕ3(e2) =

ϕ3(e3) = 0. Then we see easily that Q(z) + z(∂zQ) = 1
2P (z) and, consequently, we

have

(∂ϕ3)(e1, e3) = [ϕ3(e1),−2yz]∗ + 2ϕ3(e1) = 2z(∂zQ) + 2Q(z) = P (z) = β2(e1, e3)

and also

(∂ϕ3)(e2, e3) = 0 = β2(e2, e3) and (∂ϕ3)(e1, e2) = ∂yϕ3(e1) = 0 = β2(e1, e2).

Finally we have β2 = ∂ϕ3. The result then follows. �
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Proposition 5.4. Let ϕ0 be as in Proposition 5.2. Then the map Φ: X →

Φ0(X) + tϕ0(X) is a formal deformation of Φ0.

P r o o f. Recall that Φ0 : g → P(R2) is a Lie algebra homomorphism and that ϕ0

is a 1-cocycle. Moreover, note that for any X,Y ∈ g, we have [ϕ0(X), ϕ0(Y )]∗ = 0.

Then, for any X,Y ∈ g, we have

[Φ(X),Φ(Y )]∗ = [Φ0(X),Φ0(Y )]∗ + t([Φ0(X), ϕ0(Y )]∗ + [ϕ0(X),Φ0(Y )]∗)

= Φ0([X,Y ]) + tϕ0([X,Y ]) = Φ([X,Y ]).

�

Then we can apply Proposition 2.4 and obtain a description of all formal defor-

mations of Φ0 (hence of ̺0). Moreover, we can also recover the representations ̺ν
as shown by the following proposition.

Proposition 5.5. For any ν ∈ R and any X ∈ g, we have ̺ν(X) = ̺0(X) +

iνW (ϕ0(X)).

P r o o f. This is immediate by equation (4.1). �

Note that we do not need to continue the deformation process further. Indeed,

let us fix ν ∈ R and consider the problem of deforming ̺ν or, equivalently, the Lie

algebra homomorphism Φν : g → P(R2) defined by Φν(X) = −iW−1(̺ν(X)). Then,

denoting by H1
ν (g,P(R2)) the first cohomology space corresponding to the g-module

structure defined on P(R2) by X ·f := [Φν(X), f ]∗, we have the following result that

implies that deforming ̺ν (for a given ν) produces nothing but the series (̺ν′) again.

Proposition 5.6. The space H1
ν (g,P(R2)) is one-dimensional and generated by

the cohomology class of ϕ0 defined at Proposition 5.2.

P r o o f. Similar to that of Proposition 5.2. �

6. Principal series representations of SL(2,C)

In this and the next section we take G = SL(2,C), g = sl(2,C). Let K = SU(2),

A =

{(
a 0

0 1/a

)
: a > 0

}
, N =

{(
1 z

0 1

)
: z ∈ C

}
.

Then we have

M =

{(
u 0

0 ū

)
: u ∈ C, |u| = 1

}
.
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The principal series of G is then indexed by pairs (ν, n), where ν ∈ R determines

the character χν :
(

a 0

0 1/a

)
→ aν of A and the integer n determines the character

χ′

n :
(

u 0

0 ū

)
→ un ofM . We can then verify that πν,n := IndGMAN (χ′

n⊗χν ⊗ 1N ) can

be realized in L2(C) as

(πν,n(g)u)(y) = (−by + d)n|−by + d|−2−iν−nu
( ay − c

−by + d

)
,

where g =
(

a b

c d

)
∈ SL(2,C), u ∈ L2(C) and y ∈ C, see [20], [28].

By differentiating the preceding equation, we can also verify that for any X =(
α β

γ −α

)
∈ g = sl(2,C), u ∈ C∞

0 (C) and y ∈ C, we have

(dπν,n(X)u)(y) =
(
1 + i

ν

2

)
(βy + βy + α+ α)u(y)

+
n

2
(βy − βy + α− α)u(y) + (βy2 + 2αy − γ)∂yu

+ (βy2 + 2αy − γ)∂yu.

In order to use the Weyl correspondence, it is convenient to consider the equivalent

representation ˜̺ν,n which is obtained by transferring dπν,n to functions on R
2 taking

into account the identification C ∼= R
2 given by (y1, y2) → y1 + iy2, (y1, y2) ∈ R

2.

More precisely, for any X =
(

α β

γ −α

)
∈ sl(2,C), u ∈ C∞

0 (R2) and (y1, y2) ∈ R
2, we

have

(˜̺ν,n(X)u)(y1, y2) =
(
1 + i

ν

2

)
(β(y1 + iy2) + β(y1 − iy2) + α+ α)u(y1, y2)

+
n

2
(β(y1 + iy2)− β(y1 − iy2) + α− α)u(y1, y2)

+
1

2
(β(y1 + iy2)

2 + 2α(y1 + iy2)− γ)(∂y1
u− i∂y2

u)

+
1

2
(β(y1 − iy2)

2 + 2α(y1 − iy2)− γ)(∂y1
u+ i∂y2

u).

We denote by ̺ν,n the representation of g = sl(2,C) on P(R2) defined by the same

formula as ˜̺ν,n.

Let us introduce the scalar product on g by 〈X,Y 〉 = ℜTr(XY ). We give now

a result that is analogous to Proposition 4.1.

Proposition 6.1.

(1) The map

ψ′ : (y, z) →

( 1
2 (ν − in)− yz z

(ν − in)y − y2z yz − 1
2 (ν − in)

)
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is a diffeomorphism from C
2 to the set of all matrices of the form

1

2
(ν − in)Ad(g)

(
1 0

0 −1

)
,

where g =
(

a b

c d

)
∈ SL(2,C) with a 6= 0, which is a dense open subset of the

orbit of 1
2 (ν − in)

(
1 0

0 −1

)
under the adjoint action of G.

(2) Let W be the Weyl correspondence on R
4, see Section 3. Then, for any X ∈ g

and (y1, y2, z1, z2) ∈ R
4, we have

W−1(̺ν,n(X))(y1, y2, z1, z2) = i〈ψ′(y, z), X〉,

where y = y1 + iy2 and z = z1 + iz2.

P r o o f. Statement (1) can be verified easily. To prove statement (2), let

X =
(

α β

γ −α

)
∈ g. Write α = α1 + iα2, β = β1 + iβ2 and γ = γ1 + iγ2 with

α1, α2, β1, β2, γ1, γ2 ∈ R. Then, using equation (3.1), we find

−iW−1(̺ν,n(X))(y1, y2, z1, z2) = ν(β1y1 − β2y2 + α1) + n(β2y1 + β1y2 + α2)

− (β1y
2
1 − 2β2y1y2 − β1y

2
2 + 2α1y1 − 2α2y2 − γ1)z1

− (β2y
2
1 + 2β1y1y2 − β2y

2
2 + 2α2y1 + 2α1y2 − γ2)z2.

The result follows. �

7. Deformations of ̺0,0

In this section, we study the formal deformations of ̺0,0 in D(R2) by following

the same lines as in Section 5. As already explained, it is equivalent to studying the

formal deformations of the Lie algebra homomorphism Ψ0 : g → P(R4) defined by

Ψ0(X) = −iW−1(̺0,0(X)).

More precisely, let us introduce the following basis of g = sl(2,C) (considered as

a real Lie algebra)

e1 =

(
0 1

0 0

)
; e2 =

(
0 0

1 0

)
; e3 =

(
1 0

0 −1

)
;

f1 =

(
0 i

0 0

)
; f2 =

(
0 0

i 0

)
; f3 =

(
i 0

0 −i

)
.
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Then, by using the expression forW−1(̺0,0(X)) given in the proof of Proposition 6.1,

we get

Ψ0(e1) = (−y21 + y22)z1 − 2y1y2z2; Ψ0(f1) = 2y1y2z1 − (y21 − y22)z2;

Ψ0(e2) = z1; Ψ0(f2) = z2; Ψ0(e3) = −2(y1z1 + y2z2); Ψ0(f3) = 2(y2z1 − y1z2).

Proposition 7.1. The space H1(g,P(R4)) is of dimension 2 and consists of the

classes of 1-cocycles ψλ,µ : g → P(R4) defined by

ψλ,µ(e1) = λy1 + µy2; ψλ,µ(f1) = µy1 − λy2;

ψλ,µ(e2) = ψλ,µ(f2) = 0; ψλ,µ(e3) = λ; ψλ,µ(f3) = µ

for λ, µ ∈ R.

P r o o f. The proof follows the same lines as that of Proposition 5.2 and thus we

only sketch it.

Let ψ : g → P(R4) be a 1-cocycle. Then, for any X,Y ∈ g, we have

(7.1) [Ψ0(X), ψ(Y )]∗ + [ψ(X),Ψ0(Y )]∗ − ψ([X,Y ]) = 0.

Step 1. We first apply equation (7.1) to X = e2 and Y = f2. Then we get

∂y2
ψ(e2) = ∂y1

ψ(f2). Thus, by Poincaré’s Lemma, there exists u ∈ P(R4) such that

∂y1
u = ψ(e2) and ∂y2

u = ψ(f2). Hence, replacing ψ by the equivalent 1-cocycle

ψ + [Ψ0(·), u]∗ we can assume that ψ(e2) = ψ(f2) = 0.

Step 2. By successively applying equation (7.1) to (e2, e3), (f2, e3), (f2, f3) and

(e2, f3) we verify that ψ(e3) and ψ(f3) do not depend on y1, y2. Then there exist

two polynomials v(z1, z2) and w(z1, z2) such that ψ(e3) = v and ψ(f3) = w.

Step 3. Now we apply equation (7.1) successively to the cases (X,Y ) =

(e1, e2), (e1, f2), (e2, f1) and (f1, f2). Then we get

∂y1
ψ(e1) = v; ∂y2

ψ(e1) = w; ∂y1
ψ(f1) = w; ∂y2

ψ(f1) = −v.

This implies that there exist two polynomials s(z1, z2) and r(z1, z2) such that

ψ(e1) = vy1 + wy2 + s; ψ(f1) = wy1 − vy2 + r.

Step 4. We choose a polynomial h(z1, z2) such that

2(z1∂z1h+ z2∂z2h) = v(z1, z2)− v(0, 0)
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and replace ψ by the equivalent 1-cocycle ψ + [Ψ0(·), h]∗. This does not modify the

equalities ψ(e2) = ψ(f2) = 0 and, moreover, we have

ψ(e3) + [Ψ0(e3), h]∗ = v(0, 0).

We see that one can assume that Ψ0(e3) = v is a constant λ.

Step 5. We write equation (7.1) for (X,Y ) = (e1, e3). Then, on the one hand, we

get

z1∂z1w + z2∂z2w = 0

and, since w is a polynomial, we see that w is a constant µ.

On the other hand, we also obtain

z1∂z1s+ z2∂z2s+ s = 0.

Then, since s is a polynomial, we find that s = 0.

Finally, by writing equation (7.1) for (X,Y ) = (e1, f3), we also obtain that r = 0.

Step 6. It remains to show that, for any λ, µ ∈ R such that (λ, µ) 6= (0, 0), ψλ,µ is

not a 1-coboundary.

Assume that (λ, µ) 6= (0, 0) and that there exists F ∈ P(R4) such that for any

X ∈ g, we have ψλ,µ(X) = [Ψ0(X), F ]∗. Then by taking X = e2 and X = f2, we

get [z1, F ]∗ = [z2, F ]∗ = 0 and we see that F does not depend on y1, y2. Moreover,

by taking X = e3, we obtain

−2z1∂z1F − 2z2∂z2F = λ.

Since F (z1, z2) is a polynomial this gives λ = 0 and F constant. But then we get

ψλ,µ(f3) = [Ψ0(f3), F ]∗ = 0 and hence µ = 0. This contradicts (λ, µ) 6= (0, 0) and

then the proof is finished. �

As in Section 5, we can verify that for any (λ, µ) ∈ R
2, the map Ψ: X → Ψ0(X)+

tψλ,µ(X) is a formal deformation of Ψ0 on P(R4) and we obtain a description of all

formal deformations of Ψ0 on P(R4) – hence of all formal deformations of ̺0,0 –

by using Proposition 2.4. Moreover, we can also recover the representations ˜̺ν,n of

Section 6 by considering the maps X → ˜̺0,0(X) + iW (ψν,n(X)).

Note that the direct computation of H2(g,P(R4)) is rather complicated and here

we have not succeeded in performing it.

As in the case of sl(2,R), we can verify that the deformation process when applied

to a given representation ̺ν,µ does not produce ‘more’ representations. Indeed, the

problem of deforming ̺ν,µ is equivalent to that of deforming the homomorphismΨν,µ :

g → P(R4) defined by Ψν,µ(X) = −iW−1(̺ν,µ(X)). Then we can endow P(R4)
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with the g-module structure defined by X · F := [Ψν,µ(X), F ]∗ and we denote by

H1
ν,µ(g,P(R4)) the corresponding first cohomology space. Thus we have the following

result.

Proposition 7.2. The space H1
ν,µ(g,P(R4)) is generated by classes of the

1-cocycles ψ1 and ψ2 defined by

ψ1(e1) = y1; ψ1(f1) = − y2; ψ1(e2) = ψ1(f2) = ψ1(f3) = 0; ψ1(e3) = 1;

ψ2(e1) = y2; ψ2(f1) = y1; ψ2(e2) = ψ2(f2) = ψ2(e3) = 0; ψ2(f3) = 1.

P r o o f. The proof is analogous to that of Proposition 5.2. �

Acknowledgement. I would like to thank the referee for numerous pertinent

remarks.
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Mathématiques 2. Cedic, Paris, 1980. (In French.) zbl MR

950

https://zbmath.org/?q=an:0923.17010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1656166
http://dx.doi.org/10.5802/afst.894
https://zbmath.org/?q=an:0864.17010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1414547
https://zbmath.org/?q=an:0843.22020
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1371298
http://dx.doi.org/10.1007/BF00403252
https://zbmath.org/?q=an:0987.22008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1863645
http://dx.doi.org/10.5802/ambp.133
https://zbmath.org/?q=an:1117.81087
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2311733
http://dx.doi.org/10.1016/j.difgeo.2006.08.005
https://zbmath.org/?q=an:1272.22007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3090642
http://dx.doi.org/10.4171/RSMUP/129-16
https://zbmath.org/?q=an:07096440
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3977786
http://dx.doi.org/10.1142/S0219498819501251
https://zbmath.org/?q=an:1243.81004
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2952171
http://dx.doi.org/10.1007/978-94-007-0196-0
https://zbmath.org/?q=an:1140.81416
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2396768
http://dx.doi.org/10.1007/s10773-007-9454-7
https://zbmath.org/?q=an:1073.22012
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2166626
http://dx.doi.org/10.1088/0305-4470/38/28/006
https://zbmath.org/?q=an:1294.14008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3230454
http://dx.doi.org/10.1016/j.laa.2014.05.014
https://zbmath.org/?q=an:0682.43001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0983366
http://dx.doi.org/10.1515/9781400882427
https://zbmath.org/?q=an:0123.03101
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0171807
http://dx.doi.org/10.2307/1970484
https://zbmath.org/?q=an:0464.22001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0644979


[15] S.Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Stud-
ies in Mathematics 34. American Mathematical Society, Providence, 2001. zbl MR doi

[16] R.Hermann: Analytic continuation of group representations. IV. Commun. Math. Phys.
5 (1967), 131–156. zbl MR doi

[17] L.Hörmander: The Analysis of Linear Partial Differential Operators. III. Grundlehren
der Mathematischen Wissenschaften 274. Springer, Berlin, 1985. zbl MR doi

[18] A. Joseph: Minimal realizations and spectrum generating algebras. Commun. Math.
Phys. 36 (1974), 325–338. zbl MR doi

[19] A.A.Kirillov: Lectures on the Orbit Method. Graduate Studies in Mathematics 64.
American Mathematical Society, Providence, 2004. zbl MR doi

[20] A.W.Knapp: Representation Theory of Semisimple Groups: An Overview Based on
Examples. Princeton Mathematical Series 36. Princeton University Press, Princeton,
1986. zbl MR doi

[21] M.Lesimple, G. Pinczon: Deformations of Lie group and Lie algebra representations. J.
Math. Phys. 34 (1993), 4251–4272. zbl MR doi

[22] M.Levy-Nahas: Deformation and contraction of Lie algebras. J. Math. Phys. 8 (1967),
1211–1222. zbl MR doi

[23] M.Levy-Nahas, R. Seneor: First order deformations of Lie algebras representations, E(3)
and Poincaré examples. Commun. Math. Phys. 9 (1968), 242–266. zbl MR doi

[24] A.Nijenhuis, R.W.Richardson, Jr.: Cohomology and deformations in graded Lie alge-
bras. Bull. Am. Math. Soc. 72 (1966), 1–29. zbl MR doi

[25] A.Nijenhuis, R.W.Richardson, Jr.: Deformations of homomorphisms of Lie groups and
Lie algebras. Bull. Am. Math. Soc. 73 (1967), 175–179. zbl MR doi

[26] A.Nijenhuis, R.W.Richardson, Jr.: Deformations of Lie algebras structures. J. Math.
Mech. 17 (1967), 89–105. zbl MR doi

[27] A.Voros: An algebra of pseudo differential operators and the asymptotics of quantum
mechanics. J. Funct. Anal. 29 (1978), 104–132. zbl MR doi

[28] N.R.Wallach: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathe-
matics 19. Marcel Dekker, New York, 1973. zbl MR

Author’s address: B e n j am i n C a h e n, Université de Lorraine, Site de Metz,
UFR-MIM, Département de mathématiques, Bâtiment A, 3 rue Augustin Fresnel, BP 45112,
57073 Metz Cedex 03, France, e-mail: benjamin.cahen@univ-lorraine.fr.

951

https://zbmath.org/?q=an:0993.53002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1834454
http://dx.doi.org/10.1090/gsm/034
https://zbmath.org/?q=an:0144.46105
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0231948
http://dx.doi.org/10.1007/BF01646842
https://zbmath.org/?q=an:0601.35001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0781536
http://dx.doi.org/10.1007/978-3-540-49938-1
https://zbmath.org/?q=an:0285.17007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0342049
http://dx.doi.org/10.1007/BF01646204
https://zbmath.org/?q=an:1229.22003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2069175
http://dx.doi.org/10.1090/gsm/064
https://zbmath.org/?q=an:0604.22001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0855239
http://dx.doi.org/10.1515/9781400883974
https://zbmath.org/?q=an:0798.22009
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1233270
http://dx.doi.org/10.1063/1.529998
https://zbmath.org/?q=an:0175.24803
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0224747
http://dx.doi.org/10.1063/1.1705338
https://zbmath.org/?q=an:0161.46003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0235804
http://dx.doi.org/10.1007/BF01645689
https://zbmath.org/?q=an:0136.30502
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0195995
http://dx.doi.org/10.1090/S0002-9904-1966-11401-5
https://zbmath.org/?q=an:0153.04402
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0204575
http://dx.doi.org/10.1090/S0002-9904-1967-11703-8
https://zbmath.org/?q=an:0166.30202
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0214636
http://dx.doi.org/10.1512/iumj.1968.17.17005
https://zbmath.org/?q=an:0386.47031
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0496088
http://dx.doi.org/10.1016/0022-1236(78)90049-6
https://zbmath.org/?q=an:0265.22022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0498996

		webmaster@dml.cz
	2021-02-10T10:03:01+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




