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Abstract. We determine explicitly the structure of the torsion group over the maximal
abelian extension of Q and over the maximal p-cyclotomic extensions of Q for the family of
rational elliptic curves given by y2 = x3 +B, where B is an integer.
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1. Introduction

Let E be an elliptic curve defined over a number field K. The Mordell-Weil

theorem states that the set E(K) of K-rational points on E is a finitely generated

abelian group. That is, E(K) is isomorphic to a direct sum of the form Zr⊕E(K)tors
for some nonnegative integer r (called the rank of E) and finite groupE(K)tors, called

the torsion subgroup of E(K). Over the last few decades the characterization of the

possible structures of E(K)tors has been of considerable interest. The case K = Q

was given by Mazur, see [17], while the case of quadratic fields ([K : Q] = 2) was

completed by Kamienny, see [12] and Kenku and Momose, see [14]. The past few

years saw development in the classification of the torsion structure over number fields

of higher degree for elliptic curves defined over Q. These were provided by Najman,

see [18] for cubic fields, by González-Jiménez and Lozano-Robledo, see [11] for quartic

fields and by González-Jiménez, see [10] for quintic number fields. Results were

also obtained for the torsion subgroup of specific families of rational elliptic curves

over arbitrary number fields. More recently, Dey in [4] and [5] studied the possible
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structures of E(K)tors for rational CM-elliptic curves E that lie in the families y
2 =

x3 +B and y2 = x3 +Ax, where A,B ∈ Q.

When K is an infinite extension of Q, the Mordell-Weil theorem no longer applies.

In particular there is no guarantee for the finiteness of the torsion subgroup of E(K).

For instance, if for a fixed integer d > 1 we write Q(d∞) for the compositum of all

field extensions K/Q of degree d, then E(Q(d∞)) is not finitely generated for elliptic

curves E over Q (see [6] and [9]). But even so, the torsion subgroup can be finite.

The possible torsion structures have been classified by Laska and Lorenz, see [15]

and Fujita, see [7], [8] for d = 2, and by Daniels, Lozano-Robledo, Najman and

Sutherland, see [3] for d = 3.

A result of Ribet, see [13] states that if K is a number field and K(µ∞) is the

field extension of K obtained by adjoining all the roots of unity then for any elliptic

curve E over K, E(K(µ∞))tors is finite. In particular, for an elliptic curve E defined

over Q, the torsion subgroup of E over the maximal abelian extension Qab of Q is

finite.

In this paper, we study the family of rational elliptic curves EB : y2 = x3 + B,

where B ∈ Q. Note that by performing a rational transformation, we may assume

that B is an integer that is sixth power-free. For this family of elliptic curves, we

determine the structure of the torsion subgroup of the group of rational points of EB

over Qab and over the maximal p-cyclotomic extension Q(ζp∞) of Q, where p is

a prime number. The proofs indicate the coordinates of the points that belong to

the torsion subgroup, see [5].

2. Statements of results

Let n be a positive integer. The nth cyclotomic extension Q(ζn) is the splitting

field of the polynomial xn − 1 over Q. Here, ζn denotes a primitive nth root of

unity. The field Q(ζn) is a Galois extension over Q with the cyclic Galois group

isomorphic to the unit group (Z/nZ)
×
. Let p be a prime number. If p is an odd

prime, then Q(ζpn) has a unique quadratic subfield given by Q(
√
p∗), where p∗ =

(−1)(p−1)/2p. If p = 2, we have Q(ζ2) = Q, Q(ζ4) = Q(i), and for n > 3, Q(ζ2n)

has 3 quadratic subfields given by Q(i), Q(
√
2) and Q(

√
−2). The pnth cyclotomic

extensions (n > 1) form an increasing tower

Q(ζpn) ⊆ Q(ζpn+1), n > 1.

We define the maximal p-cyclotomic extension Q(ζp∞) to be the union

Q(ζp∞) =
⋃

n>1

Q(ζpn).
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The field Q(ζp∞) is Galois over Q with the Galois group

Gal(Q(ζp∞)/Q) = lim←−
n

(Z/pnZ)× = Z×
p ≃

{
Zp ⊕ (Z/pZ)× if p 6= 2,

Zp ⊕ Z/pZ⊕ Z/pZ if p = 2.

The Kronecker-Weber theorem states that any abelian extension of Q is contained

in some nth cyclotomic extension. The maximal abelian extension Qab of Q is the

union of all the nth cyclotomic extensions, as n runs through the set of all positive

integers. Equivalently, Qab is the composite field of all the maximal p-cyclotomic

extensions, as p runs through the set of primes. We have

Gal(Qab/Q) ≃ Ẑ× ≃
∏

p

Z×
p .

In this paper we prove the following classification of the torsion subgroup of the

elliptic curve y2 = x3 +B over the maximal abelian extension Qab of Q and over the

maximal p-cyclotomic extensions Q(ζp∞) for each prime p.

Theorem 2.1. Let EB : y2 = x3 + B be an elliptic curve, where B is a nonzero

sixth power-free integer. We have

EB(Q
ab)tors =





Z/3Z⊕ Z/9Z if B = 2t3,where t ∈ Z,

Z/2Z⊕ Z/6Z if B = s3,where s ∈ Z,

Z/3Z otherwise.

Theorem 2.2. Let EB : y2 = x3 + B be an elliptic curve, where B is a sixth

power-free integer. For a prime p, let TB,p be the torsion subgroup of EB(Q(ζp∞)).

Then TB,p is given by the following tables.

TB,p (p > 3) conditions

Z/6Z B = 1 or (p∗)3

Z/2Z B = t3 (where t 6= 1, p∗)

Z/3Z B = −432,−432(p∗)3, 16(p∗)3, or B = s2 (where s 6= ±1) or
B = p∗s2 (where s 6= ±p∗)

{O} otherwise

TB,3

Z/3Z⊕ Z/9Z B = 16,−432
Z/2Z⊕ Z/6Z B = 1,−27
Z/2Z⊕ Z/2Z B = t3 (where t 6= 1,−3)

Z/3Z B = s2 (where s 6= ±1± 4), or B = −3s2 (where s 6= ±3± 12)

{O} otherwise
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TB,2 conditions

Z/2Z⊕ Z/6Z B = ±1,±8
Z/2Z B = t3 (where t 6= ±1,±2)
Z/3Z B = ±54,±432, or B = ±s2 (where t 6= 1), or

B = ±2s2 (where t 6= 2)

{O} otherwise

3. Preliminary observations

Let E be an elliptic curve over Q and K a field extension of Q. For an integer n,

we write

E(K)[n] := {P ∈ E(K) : nP = O} ∪ {O}.
For a prime q, we introduce

E(K)[q∞] :=
⋃

n∈N

E(K)[qn],

called the q-primary part of E(K). The torsion subgroup is a direct sum of its

q-primary parts:

E(K)tors =
⊕

q : prime

E(K)[q∞].

In order to determine the torsion subgroup of E(K), it helps to know the possible

primes that give nontrivial contributions to the direct sum. To do this, we need the

following facts.

Proposition 3.1 ([4], Proposition 4). Let K be a number field and E : y2 =

x3 + Ax + B be an elliptic curve for some integers A and B. Let T be the torsion

subgroup of E(K). Write OK for the ring of integers in K. Let P be a prime ideal
in OK lying above an odd prime p. If E has good reduction at P , we let Φ be the
reduction map on T . Then Φ is an injective homomorphism except for finitely many

prime ideals P .

Lemma 3.2 ([5], Corollary 1). Let EB : y2 = x3+B be an elliptic curve for some

nonzero integer B with discriminant ∆. Let p ≡ 2 (mod 3) be an odd prime such

that p ∤ ∆. Write EB for the reduction of E modulo p. Then

#EB(Fpn) =

{
pn + 1 if n is odd,

(pn/2 + 1)2 if n ≡ 2 (mod 4).
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Proposition 3.3. Let EB : y2 = x3 + B be an elliptic curve for some nonzero

integer B and n ∈ N. If q is a prime divisor of the order of EB(Q(ζn))tors then q = 2

or 3.

P r o o f. This result is known for n = 1, 2 so we assume henceforth that n > 3. As-

sume that q is a prime greater than 3 such that q divides the order of EB(Q(ζn))tors.

Dirichlet’s theorem on primes in arithmetic progression allows us to choose a prime l

relatively prime to q and n of good reduction with

l ≡ −1 (mod n) and l ≡ 1 (mod q), if 3 | n,
l ≡ 1 (mod n) and l ≡ q2 + 1 (mod 3q), otherwise.

The ideal generated by l in the ring of integers Z[ζn] decomposes as

lZ[ζn] = le1 . . . l
e
g,

where the lj ’s are distinct prime ideals in Z[ζn] lying above l and e is the com-

mon ramification index for the lj ’s. Since Q(ζn) is Galois over Q we also have the

fundamental identity in algebraic number theory: efg = [Q(ζn) : Q], where f is the

common residue degree for the lj , namely, the integer f such that #(OQ(ζn)/lj) = lf .

For cyclotomic extensions Q(ζn), it is known that f is the order of l modulo n (see for

instance, [16], Theorem 26). We take a prime ideal lj and consider the reduction EB

of EB modulo lj . In any case we have l ≡ 2 (mod 3). Lemma 3.2 implies

#EB(OK/lj) =

{
(l + 1)2 if 3 | n,
l+ 1 otherwise.

From Proposition 3.1 we see that in any case

l + 1 ≡ 0 (mod q).

But as l ≡ 1 (mod q) we also have

l + 1 ≡ 2 (mod q).

This is absurd since q > 3. This proves the lemma. �

Corollary 3.4. Let q > 3 be an odd prime. Then we have

EB(Q
ab)[q∞] = {O}.

Consequently,

EB(Q(ζp∞))[q∞] = {O}
for any prime p.
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P r o o f. Note that EB(Q
ab)[q] is a subset of the finite group EB(C)[q]. Then

there exists n ∈ N such that

EB(Q
ab)[q] = EB(Q(ζn))[q].

By Proposition 3.3 we have EB(Q
ab)[q] = {O}, since q > 3. If m > 1 and O 6= P ∈

EB(Q
ab)[qm] then qm−1P is a nontrivial element of EB(Q

ab)[q], which is absurd.

The result follows. �

Corollary 3.4 implies that the torsion subgroup of EB over Q
ab is completely

determined by its 2-primary and 3-primary parts. The determination of the possible

structures of the 2-primary and 3-primary parts will be covered by the next three

sections.

4. Points whose order is a power of 2

Lemma 4.1. Let K be a Galois extension of Q (possibly of infinite degree) whose

Galois group does not have a quotient isomorphic to S3. Then

EB(K)[2] =





{O, (−t, 0), (−tζ3, 0), (−tζ23 , 0)} if B = t3, ∃ t ∈ Z and
√
−3 ∈ K,

{O, ( 3
√
B, 0)} if B = t3, ∃ t ∈ Z but

√
−3 6∈ K,

{O} otherwise.

P r o o f. Let P = (x, y) be a point of order 2 in EB(K). Then y = 0 and x is

a solution of X3 +B = 0. Observe that

X3 +B =
(
X +

3
√
B
)(
X +

3
√
Bζ3

)(
X +

3
√
Bζ23

)
.

If B is a perfect cube of an integer and
√
−3 ∈ K then all the three roots belong

to K. If B is a perfect cube of an integer and
√
−3 6∈ K then only − 3

√
B belongs

to K. Suppose B is not a cube of an integer. Then X3 + B is irreducible over Q.

Since K is Galois over Q, if one of its roots belongs to K then all the three must be

in K. This implies that Q( 3
√
B, ζ3) is a subfield of K, contrary to our assumption.

�

Lemma 4.2. Let K be a Galois extension of Q (possibly of infinite degree) whose

Galois group does not have a quotient isomorphic to S3. Then EB(K) has no element

of order 4.
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P r o o f. If EB(K) has an element of order 4, then it has an element of order 2.

The previous lemma implies that B = t3 for some nonzero square-free integer t.

Let P = (x, y) ∈ EB(K) be an element of order 4. Then y(2P ) = 0. By the

duplication formula we have

x6 + 20t3x3 − 8t6 = 0.

Thus

x3 = (−10± 6
√
3)t3 = (−1±

√
3)3t3.

If
√
3 ∈ K then

x = (−1±
√
3)t ∈ Z[

√
3] ⊆ K

and EB(K) has no point of order 4 if
√
3 6∈ K.

Suppose
√
3 ∈ K. As x ∈ Z[

√
3] and y2 = x3 + t3 ∈ Z[

√
3], we have y ∈ Z[

√
3].

We write y = a+ b
√
3 for some a, b ∈ Z. From the relation y2 = x3 + t3, we obtain

the equations

a2 + 3b2 = −9t3 and ab = ±3t3.

From these we get a2+3b2±3ab = 0. If we put c := a/b ∈ Q, we see that c2±3c+3 = 0

so that

c =
∓3±

√
−3

2
6∈ Q,

a contradiction. Therefore there is no point of order 4 in EB(K) even if
√
3 ∈ K. �

The previous lemmas give the following result.

Proposition 4.3. Let K be a Galois extension of Q (possibly of infinite degree)

whose Galois group does not have a quotient isomorphic to S3. Then

EB(K)[2∞] =





{O, (−t, 0), (−tζ3, 0), (−tζ23 , 0)} if B = t3, ∃ t ∈ Z and
√
−3 ∈ K,

{O, ( 3
√
B, 0)} if B = t3, ∃ t ∈ Z but

√
−3 6∈ K,

{O} otherwise.

Now let p be a prime and consider Q(ζp∞). The Galois group Gal(Q(ζp∞)/Q) is

abelian; and thus does not have a quotient isomorphic to S3. If p is odd, then Q(
√
p∗)

is the unique quadratic subfield of Q(ζp∞). On the other hand, Q(ζ2∞) has three

quadratic subfields: Q(i), Q(
√
2), andQ(

√
−2). In particular we have

√
−3 ∈ Q(ζp∞)

if and only if p = 3. From Proposition 4.3, we have the following result.
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Proposition 4.4. Let p be a prime. Then we have

EB(Q(ζp∞))[2∞] =





Z/2Z⊕ Z/2Z if B = t3 for some integer t and p = 3,

Z/2Z if B = t3 for some integer t and p 6= 3,

{O} otherwise.

Moreover,

EB(Q
ab)[2∞] =

{
E(Q(

√
−3))[2∞] ≃ Z/2Z⊕ Z/2Z if B = t3 for some integer t,

E(Q)[2∞] = {O} otherwise.

5. Points of order 3

Let P = (x, y) ∈ EB(K) be a point of order 3. Then P 6= O and 2P = −P . In
particular, x(2P ) = x(−P ) = (x,−y). By the duplication formula

x4 − 8Bx

4(x3 +B)
= x.

Equivalently, x is a solution of the polynomial equation

(5.1) X(X3 + 4B) = 0.

We use this observation in the succeeding lemma, which generalizes Lemmas 5 and 6

of [5].

Lemma 5.1. Let K be a Galois extension of Q (possibly of infinite degree) whose

Galois group does not have a quotient isomorphic to S3. If B 6= 2t3 for any integer t

then

EB(K)[3] =

{
{O, (0,±

√
B)} if

√
B ∈ K,

{O} otherwise.

On the other hand, if B = 2t3 for some square-free integer t then EB(K)[3] is given

by the following table:
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E(K)[3] conditions

{O, (0,±4)} if t = 2 and
√
−3 6∈ K

{O, (0,±4), (−4,±4
√
−3),

(−4ζ3,±4
√
−3), (−4ζ23 ,±4

√
−3)} if t = 2 and

√
−3 ∈ K

{O, (12,±36)} if t = −6 and
√
−3 6∈ K

{O, (0,±12
√
−3), (12,±36),

(12ζ3,±36), (12ζ23 ,±36)} if t = −6 and
√
−3 ∈ K

{O, (0,±t
√
2t)} if t 6= 2,

√
2t ∈ K and

√
−6t 6∈ K

{O, (−2t,±t
√
−6t)} if t 6= −6,

√
−6t ∈ K and

√
2t 6∈ K

{O, (0,±t
√
2t), (−2t,±t

√
−6t),

(−2tζ3,±t
√
−6t), (−2tζ23 ,±t

√
−6t)} if t 6= 2,−6 and

√
−6t,

√
2t ∈ K

{O} otherwise

P r o o f. If P = (x, y) is a point of order 3 then x is a solution of equation (5.1).

Consider the polynomial X3 + 4B. If X3 + 4B is reducible over Q then there exists

an integer α such that α3 = 4B. But this implies B = 2t3 for some integer t,

a contradiction. If X3 + 4B is irreducible over Q but reducible over K then it splits

over K, so that Q( 3
√
4B, ζ3) ⊆ K, a contradiction. Therefore X3 + 4B is irreducible

over K which tells us that x = 0 and y = ±
√
B.

If
√
B ∈ K then (0,±

√
B) are the only points of order 3 in EB(K). Otherwise,

there is no point of order 3 in EB(K).

Now suppose that B = 2t3 for some square-free integer t. We consider once again

equation (5.1). If x = 0 then y = ±
√
B = ±t

√
2t. If t 6= 2 then 2t is not a square and

(0,±t
√
2t) are points of order 3 in EB(K) if and only if K contains the quadratic

field Q(
√
2t). If t = 2 then we see that (0,±4) are points of order 3 in EB(Q), hence

in EB(K).

If x 6= 0, then x3 = −4B = −8t3 = (−2t)3. So x is one of −2t, −2tζ3, or −2tζ23 .
For this case we have y = ±t

√
−6t. If t = 2, then (−4,±4

√
−3), (−4ζ3,±4

√
−3),

and (−4ζ23 ,±4
√
−3) are points of order 3 in EB(K) if and only if

√
−3 ∈ K. If

t = −6 then (12,±36) are points of order 3 in EB(Q), hence in EB(K). Moreover,

the points (0,±12
√
−3), (12ζ3,±36), and (12ζ23 ,±36) are points of order 3 in EB(K)

if and only if
√
−3 ∈ K. If t 6= −6 then −6t is not a square and (−2t,±t

√
−6t) are

points of order 3 in EB(K) if and only if K contains the quadratic field Q(
√
−6t). If

this is the case, the points (−2tζ3,±t
√
−6t) and (−2tζ23 ,±t

√
−6t) are also contained

in EB(K) if and only if
√
−3 (equivalently

√
2t) belongs to K. �

Since Qab contains all the quadratic extensions of Q, we obtain the following

statement.
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Proposition 5.2. We have

EB(Q
ab)[3] =





{O, (0,±
√
B)} if B 6= 2t3 for any integer t,

{O, (0,±t
√
2t), (−2t,±t

√
−6t),

(−2tζ3,±t
√
−6t),

(−2tζ23 ,±t
√
−6t)} if B = 2t3 for some square-free t.

For the p-cyclotomic extensions Q(ζp∞), the subgroup of 3-torsion points is given

as follows.

Proposition 5.3. Let p > 3 be a prime. Then

EB(Q(ζp∞))[3] =





{O, (0,±s)} if B = s2, where s ∈ Z,

{O, (0,±s√p∗)} if B = p∗s2, where s ∈ Z,

{O, (0,±4p∗√p∗)} if B = 16(p∗)3,

{O, (12,±36)} if B = −432,
{O, (12p∗,∓36p∗√p∗)} if B = −432(p∗)3,
{O} otherwise.

Furthermore we have

EB(Q(ζ3∞))[3] =





{O, (0,±4), (−4,±4
√
−3),

(−4ζ3,±4
√
−3),

(−4ζ23 ,±4
√
−3)} if B = 16,

{O, (0,±12
√
−3), (12,±36),

(12ζ3,±36), (12ζ23 ,±36)} if B = −432,
{O, (0,±s)} if B = s2, where s 6= ±4,
{O, (0,±s

√
−3)} if B = −3s2, where s 6= ±12,

{O} otherwise,

and

EB(Q(ζ2∞))[3] =





{O, (0,±
√
B)} if B = ±s2 or ± 2s2, where s ∈ Z,

{O, (−2t,±t
√
−6t)} if B = 2t3, where t = ±3,±6,

{O} otherwise.
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P r o o f. We write Kp := Q(ζp∞). Suppose that p > 3. Recall that Q(
√
p∗) is

the unique quadratic subfield of Kp. If B 6= 2t3 for any integer t then
√
B ∈ Kp

if and only if B = s2 or p∗s2 for some cube-free integer s. In the former case,

we have EB(Kp) = {O, (0,±s)}, while EB(Kp) = {O, (0,±s√p∗)} in the latter
case by Lemma 5.1. Suppose B = 2t3 for some square-free integer t. We apply

Lemma 5.1 to this case. Note that if both
√
−6t and

√
2t lie in Kp then

√
−3 ∈ Kp,

which is absurd. We have
√
2t ∈ Kp if and only if t = 2 or 2p∗. If t = 2, then

B = 16 and EB(Kp) = {O, (0 ± 4)}. If t = 2p∗ then B = 16(p∗)3 and EB(Kp) =

{O, (0 ± 4p∗
√
p∗)}. Moreover,

√
−6t ∈ Kp if and only if t = −6 or t = −6p∗. In

the first case we have B = −432 and EB(Kp) = {O, (12,±36)}. In the second
case, B = −432(p∗)3 and EB(Kp) = {O, (12p∗,±36p∗√p∗)}. If the above forms
for B are not satisfied, EB(Kp) is trivial. By doing a similar case work, we obtain

the corresponding results for p = 2, 3. We just keep in mind that Q(
√
−3) is the

unique quadratic subfield ofK3, while K2 has three distinct quadratic subfields given

by Q(i), Q(
√
2) and Q(

√
−2). �

6. Points whose order is a power of 3

Proposition 6.1. The group EB(Q
ab) has a point of order 9 if and only if B = 2t3

for some square-free integer t. In this case, we have

EB(Q
ab)[9] = EB

(
Q
(
ζ9,

√
−12θ2 − 4θ + 35,

√
3B

))
[9] ≃ Z/3Z⊕ Z/9Z,

where θ = ζ9 + ζ−1
9 .

Consequently, EB(Q(ζp∞)) has a point of order 9 if and only if p = 3 and B = 16

or −432. In this case, we have EB(Q(ζ3∞))[9] ≃ Z/3Z⊕ Z/9Z.

P r o o f. Suppose that EB(Q
ab) has a point P = (x, y) of order 9. Then EB(Q

ab)

has a point of order 3 given by 3P . The addition formula in EB shows that the

x-coordinate of 3P is given by:

(6.1) x(3P ) =
x9 − 96Bx6 + 48B2x3 + 64B3

(3x4 + 12Bx)2
.

We consider the following cases:

Case 1 : Assume that x(3P ) = 0. Put f(X) = X9 − 96BX6 + 48B2X3 + 64B3

and consider the equation

(6.2) f(X) = 0.
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The substitution Y = X3/4B gives rise to the equation

Y 3 − 24Y 2 + 3Y + 1 = 0.

With the aid of Magma, see [1], we find that this cubic splits in the field Q(θ), where

θ := ζ9 + ζ−1
9 . The roots are given by

X1 = −9θ2 − 3θ + 26 = (−θ2 + 3)3,(6.3)

X2 = 3θ2 − 6θ + 2 = (−θ + 1)3,(6.4)

X3 = 6θ2 + 9θ − 4 = (θ2 + θ − 1)3.(6.5)

From these we obtain the 9 roots of equation (6.2):

X1,j =
3
√
4B(−θ2 + 3)ζj3 , X2,j =

3
√
4B(−θ + 1)ζj3 ,(6.6)

X3,j =
3
√
4B(θ2 + θ − 1)ζj3 ,

where j ∈ {0, 1, 2}. From this, we see that the splitting field of f(x) over Q is

(6.7)

{
Q(ζ9) if B = 2t3 for some square-free t,

Q(θ, ζ3,
3
√
4B) otherwise,

with the latter satisfying Gal(Q(θ, ζ3,
3
√
4B)/Q(θ)) ≃ S3. Hence, EB(Q

ab) has no

point of order 9 if B 6= 2t3 for any integer t.

Assume B = 2t3. Then

X3
1,j +B = 3B(−12θ2 − 4θ + 35), X3

2,j +B = 3B(4θ2 − 8θ + 3),

X3
3,j +B = 3B(8θ2 + 12θ − 5).

Put α :=
√
−12θ2 − 4θ + 35. Its irreducible polynomial over Q is

p(x) = x6 − 33x4 + 27x2 − 3.

The splitting field Q(α) of p(x) is an abelian extension of degree 6 over Q that

contains Q(θ) as a subfield. The conjugates of α are −α,±
√
4θ2 − 8θ + 3 and

±
√
8θ2 + 12θ − 5. Since Q(ζ9), Q(α) and Q(

√
3B) are all abelian extensions of Q,

then so is their compositum Q(ζ9, α,
√
3B). So an element P of EB(Q

ab) of order 9

such that the x-coordinate of 3P equals 0 must be one of the following 18 points:

(
X1,j ,±

√
3B(−12θ2 − 4θ + 35)

)
,

(
X2,j ,±

√
3B(4θ2 − 8θ + 3)

)
,

(
X3,j ,±

√
3B(8θ2 + 12θ− 5)

)
,

where j ∈ {0, 1, 2}.
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Case 2 : Suppose P = (x, y) ∈ EB(Q
ab) is a point of order 9 such that x(3P ) 6= 0.

Then B = 2t3 for some square-free t and P satisfies x(3P ) = −2t, −2tζ3 or −2tζ23 .
Then we have the following polynomial equations from equation (6.1):

(6.8) x9 + 18tζj3x
8 − 192t3x6 + 288ζj3t

4x5 + 192t6x3 + 1152ζj3t
7x2 + 512t9 = 0

for j = 0, 1, 2. For each j, we write

fj(X) := X9 + 18tζj3X
8 − 192t3X6 + 288ζj3t

4X5 + 192t6X3 + 1152ζj3t
7X2 + 512t9.

The change of variable Y = X/2t gives the polynomials

gj(Y ) := Y 9 + 9ζj3Y
8 − 24Y 6 + 18ζj3Y

5 + 3Y 3 + 9ζj3Y
2 + 1

for j = 0, 1, 2. With the aid of Magma, see [1], we verify that each gj is irreducible

overQ(
√
−3). The splitting field Lj of gj overQ(

√
−3) is a degree 18Galois extension

of Q listed in the following table.

j defining polynomial for Lj over Q

0 x18 + 27x17 + 279x16 + 1476x15 + 4914x14 + 11934x13 + 23166x12

+37260x11 + 51840x10 + 61182x9 + 59049x8 + 41310x7 + 19197x6

+5103x5 + 8019x4 + 13122x3 + 10935x2 + 4374x+ 729

1 and 2 x18 − 9x17 + 81x16 − 48x15 + 198x14 + 324x13 + 582x12 + 396x11

+486x10 − 142x9 + 153x8 + 324x7 − 39x6 − 45x5

+81x4 + 6x3 − 9x2 + 1

Each extension Lj has a nonabelian Galois group. From this we conclude that in

this case EB(Q
ab) has no point P of order 9 that satisfies the conditions specified

for x(3P ). This completes the proof of our claim for EB(Q
ab).

Now consider EB(Q(ζp∞)). Case 2 above shows that if EB(Q(ζp∞)) has a point P

of order 9 then the x-coordinate of 3P must be zero. If this is the case then the result

indicated by (6.7) implies that EB(Q(ζp∞)) has no point of order 9 when p 6= 3. On

the other hand, if p = 3, then the 9 points in (6.6) are in Q(ζ3∞) if and only if 4B

is the cube of an integer. But at the same time, Proposition 5.3 requires that B is

also square in Q(
√
−3). Hence, B = 16 or −432.

If B = 16 then we have the following 18 points in EB(Q(ζ3∞)) of order 9 whose

triple has the x-coordinate equal to 0:

(X1,j,±(16ζ59 + 8ζ49 + 8ζ29 − 8ζ9 − 12)),(6.9)

(X2,j,±(8ζ59 − 8ζ49 + 16ζ29 − 16ζ9 + 12)),(6.10)

(X3,j,±(8ζ59 + 16ζ49 − 8ζ29 + 8ζ9 + 12))(6.11)

for j = 0, 1, 2.
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Finally, for B = −432 we have the following 18 points in EB(Q(ζ3∞)) of order 9

whose triple has x-coordinate equal to 0:

(X1,j ,±(72ζ49 + 72ζ39 + 72ζ29 + 72ζ9 + 36)),(6.12)

(X2,j ,±(72ζ59 − 72ζ49 + 72ζ39 + 36)),(6.13)

(X3,j ,±(72ζ59 − 72ζ39 + 72ζ29 + 72ζ9 − 36))(6.14)

for j = 0, 1, 2. This concludes the proof of Proposition. �

To account for possible points of order 27, we apply the following result.

Lemma 6.2 ([2], Theorem 2.6). Let E/C be an OK-CM elliptic curve for some

imaginary quadratic field K. Let M ⊂ E(C) be a finite OK-submodule. Write

annM for the annihilator of M . Then M = E[annM ] ≃OK
OK/(annM) and thus

the orders of M and annM are equal.

Proposition 6.3. The group EB(Q
ab) has no element of order 27.

P r o o f. If EB(Q
ab) has an element of order 27 then it has a point of order 9 and

Proposition 6.1 implies that we have EB(Q
ab)[27] ≃ Z/3Z ⊕ Z/27Z. The elliptic

curve y2 = x3 +B has CM by the maximal order OK of the quadratic number field

K = Q(
√
−3). The prime 3 ramifies in K, so 3OK = p2 for some prime ideal p

in OK . Now Lemma 6.2 implies that

EB[27] := EB(C)[27] ≃ OK/p6 ≃Z Z/27Z⊕ Z/27Z.

The ideals of OK/p6 are of the form I/p6, where I is an ideal of OK such that p
6 ⊆ I.

Since OK is a Dedekind domain, I = pa for some 0 6 a 6 6. Consequently, any

OK-submodule of EB[27] must be of the form pa/p6 for some 0 6 a 6 6. The torsion

subgroup of EB(Q
ab) is an OK-submodule of EB(C). Thus,

pa/p6 ≃ EB(Q
ab)[27] ≃Z Z/3Z⊕ Z/27Z.

Hence

OK/pa ≃ (OK/p6)/(pa/p6) ≃Z Z/9Z.

So a = 2. However, OK/p2 is isomorphic to Z/3Z ⊕ Z/3Z as an additive group.

Therefore, EB(Q
ab) has no element of order 27. �
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The results of Propositions 5.2, 5.3, 6.1 and Corollary 6.3 combine to give the

3-primary part of EB .

Corollary 6.4. We have

EB(Q
ab)[3∞] =

{
Z/3Z⊕ Z/9Z if B = 2t3, where t ∈ Z,

Z/3Z otherwise.

If p > 3, we have

EB(Q(ζp∞))[3∞] =

{
Z/3Z if B=−432,−432(p∗)3, 16(p∗)3, s2 or p∗s2 with s∈Z,
{O} otherwise.

Moreover,

EB(Q(ζ3∞))[3∞] =





Z/3Z⊕ Z/9Z if B = 16 or − 432,

Z/3Z if B = s2 for s 6=±4 or B =−3s2 for s 6=±12,
{O} otherwise,

and

EB(Q(ζ2∞))[3∞] =

{
Z/3Z if B = ±54,±432,±s2 or± 2s2 for s ∈ Z,

{O} otherwise.

7. Proofs of the main results

We are now ready to give the proof of our results for the torsion subgroup of EB :

Y 2 = X3 +B over Qab and Q(ζp∞). This is carried out by combining Corollary 3.4,

Proposition 4.4, and Corollary 6.4.

P r o o f of Theorem 2.1. By Corollary 3.4, any prime divisor of the order

of EB(Q
ab)tors has to be less than 5. So the torsion subgroup is determined by

Proposition 4.4 and Corollary 6.4. We only note that by the unique factorization of

integers, if B = 2t3 for some square-free integer t, then B 6= s3 for any square-free

integer s. The result follows. �

P r o o f of Theorem 2.2. By Proposition 3.3, the structure of TB,p is completely

determined by its 2-primary and 3-primary parts.

Assume p > 3. If B = t3 for some square-free integer t then the 2-primary part

of TB,p is a cyclic group of order 2 by Proposition 4.4. Moreover, TB,p has a point
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of order 3 if and only if B = 1 or B = (p∗)3 by Corollary 6.4. Thus TB,p ≃ Z/6Z

if B = 1 or B = (p∗)3 and TB,p ≃ Z/2Z if B = t3 with t 6= 1, p∗. If B 6= t3 for

any integer t then the 2-primary part of TB,p is trivial and so TB,p is nontrivial if

and only if it has a point of order 3. Corollary 6.4 implies that TB,p ≃ Z/3Z if

B = −432,−432(p∗)3, 16(p∗)3, s2 (with s 6= ±1), or p∗s2 (with s 6= ±p∗).
Let p = 3. If B = t3 for some square-free integer t then the 2-primary part of TB,3

is isomorphic to the Klein-4 group by Proposition 4.4. By Corollary 6.4, TB,3 has

a point of order 3 if and only if B = s2 or −3s2 for some integer s. Since t is

square-free, we obtain B = 1 or −27. So TB,3 ≃ Z/2Z⊕Z/6Z if B = 1 or −27, while
TB,3 ≃ Z/2Z ⊕ Z/2Z if B = t3 (with t 6= 1,−3). Suppose B 6= t3 for any integer t.

Then TB,3 has no point of order 2 and Corollary 6.4 gives the structure of TB,3.

Finally we consider the case where p = 2. If B = t3 for some square-free integer t

then the 2-primary part of TB,2 is a cyclic group of order 2 by Proposition 4.4. By

Corollary 6.4, TB,2 has a point of order 3 if and only if B = ±s2 or B = ±2s2
for some integer s. Since B is sixth-power free, we get B = ±1 or B = ±8. So
TB,2 ≃ Z/2Z⊕Z/3Z if B = ±1,±8; while TB,2 ≃ Z/2Z if B = t3 with t 6= ±1,±2. If
B 6= t3 for any integer t then TB,2 has no point of order 2. In this case Corollary 6.4

gives the structure of TB,2. �
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