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Abstract. This paper studies the compression of a kth-order slant Toeplitz operator on
the Hardy space H 2 (T™) for integers k > 2 and n > 1. It also provides a characterization of
the compression of a kth-order slant Toeplitz operator on H 2 (T™). Finally, the paper high-
lights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral
radius of the compression of kth-order slant Toeplitz operator on the Hardy space H 2 (T
of n-dimensional torus T".
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1. INTRODUCTION

Throughout the paper, the set of all complex numbers, the open unit disc and
the unit circle in the complex plane are denoted by C, D and T, respectively. The
theory of slant Toeplitz operators on L?(T) was developed by Ho (see [5], [7]), who
investigated several features of the slant Toeplitz operators on L?(T), such as norms,
spectrum and eigen spaces etc. Arora and Batra in [1] and [2] extended this concept
to the kth-order slant Toeplitz operators on L?(T) and its compression on H?(T).
Ding, Sun and Zheng studied Toeplitz operators and their commutativity on the
bi-disk in [4]. Lu and Zhang discussed the notion of commuting Hankel and Toeplitz
operators on the Hardy space of the bi-disk, see [8]. The study of the Toeplitz
operator is generalized to a m-dimensional structure in [9]. For the fundamental
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terminologies and concepts of Toeplitz and Hankel operators, one is referred to [10].
Enlightened from the work of Ho (see [5], [7]), slant Toeplitz operators are considered
on L?(T™) in [3]. This paper extends the study of the compression of kth-order slant
Toeplitz operators to H?(T™), where the set T® C C", the distinguished boundary
of open unit polydisc D™ in C", denotes the Cartesian product of n copies of the
unit circle T C C.

Throughout the paper, the space of all Lebesgue measurable complex valued func-
tions defined on T, which satisfies

/’ |f|? do < oo,

where do is a normalized Lebesgue Haar measure, is denoted by L2?(T"). The
space L>°(T") represents the space of all essentially bounded measurable functions
on T™. By the use of multiple Fourier series on T™ from the Chapter VII of [11], the
space L?(T™) can be expressed as

L2(T") = {f f(z1,22,. ., 2n) = Z Smimar o mn 21 2 22

(m1,ma,...,mp)€L™
Z |fm17m2,...,mn 2 < OO}

(m1,ma2,...;mn)EL™
In the similar way, the space H2(T") of n-dimensional torus T™ is given by

HQ(T”) = {f: f(z1,22, .0, 2n) = Z St mamn 21 2 22

(m17m/27---7m’n)621
2 < oo},

Z |fm1,mz,m,m,,t
where Z and Z indicate the set of all integers and the set of all non-negative integers,

(m17m/27---7m’n)ezi

respectively. The space H?(T") is the Hilbert space with the norm induced by the
inner product given by

1 21 21 2n . . )
(f.9)= ) / / o fE0 el el g(elfr eifz . eifn)df; dfs ... df,.
0 JO 0
—_———
n-times

The collection

{eml,mz,.,,,m" : (ml’ ma,... 7mn) S Zi}a
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where

__ ,m1_m2 M
Cmr man (21,22, oo 2n) = 2] “ 25 2 L 2,

forms an orthonormal basis for the space H?(T™). The basis elements are usually
written as 27" 252 ... z" instead of em, ms,...,m, Whenever there is no confusion.
This space can also be viewed as the closed subspace of L?(T™) consisting of all
those elements f of L?(T™) for which (f, em, ms.....m,) = 0, whenever m; < 0 for at
least one j =1,2,...,n (see [6]).

For n > 1, let D™ denote the open unit polydisc in C*. The Hardy space H?(D")
over D" is the Hilbert space of all holomorphic functions on D" such that

1/2
Ifl = ( sup / |f(ret® rel® . rel®) |2 d6; by . .. dHn) < 00,

o<r<1

where df; dfs ... df, indicates the normalized Lebesgue measure on the torus T™.

One can see the identification between the Hardy space H2(D") and H?(T") via
the radial limits of functions in H?(D") (see [9] and the references therein). From
now onwards, by the analytic function in L?(T") we mean that a function with
Fourier coeflicients fi,, ms,.,...,m, = 0, whenever m; < 0 for at least one j, 1 < j < n.
A function g € L?(T") is co-analytic if 7 is analytic in the above sense. Also, we
denote the standard basis of R™ by B,, i.e.

B, ={(1,0,0,...,0),(0,1,0,...,0),...,(0,0,0,...,1)}.

Throughout the paper, k and n are chosen as integers such that £ > 2 and n > 1.

2. CHARACTERIZATION OF THE COMPRESSION OF kTH-ORDER
SLANT TOEPLITZ OPERATOR

We begin the section by recalling a few definitions and basic information related
with kth-order slant Toeplitz operator.

Definition 2.1 ([9]). Let ¢ € L>(T"); then the Toeplitz operator T, ,, induced
by symbol ¢, on H?(T") is defined as

Tyon(f) = PMy(f) forall fe H*(T"),

where M, is the multiplication operator, induced by ¢, and P is the orthogonal
projection from the space L?(T") onto the space H?(T").
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Definition 2.2 ([3]). For ¢ € L°°(T"), the kth-order slant Toeplitz opera-
tor Ay, kn on L2(T™) is given by

Ap k() = ExnMy(f) forall f e L*(T™),

where Ej, is a bounded operator on L?(T™) for a fixed integer k > 2, given by

z?/kzéz/k _.z/®if each i; € Z is a multiple of k,

Epn(zizl . 2y = I<jsn,

0 otherwise.

Now we are in a position to define the compression of kth-order slant Toeplitz
operator on the Hardy space H?(T").

Definition 2.3. Let ¢ be an element of the space L (T™). Then the compres-
sion Vi, k.n of kth-order slant Toeplitz operator A, i n to the Hardy space H?(T") is
defined as

Ve kon(f) = PApn(f) forall fe H*(T"),

where P is the orthogonal projection from the space L?(T™) onto the space H?(T™).
Equivalently, V,, k.n = PAg k|2 (1r)-

Let
m m n
O(z1,22, ...y 2n) = g Omima,.omn 21 125 2 z0m € LO(T™).
(m1,ma2,...;mp)€L™
In order to know the Toeplitz operator T, ,, we see that for (iy,i2,...,4,) € 27,
i1 0 in\ __ mi m n
T%n(zllz; s Z;Ll ) - E Pmi—i1,ma—iz,...,mn—in?1 122 ?.. Z;n :
(thI’LQ,...,mn)EZi
A simple calculation yields that 77, = PMj| ., (Tny* Similarly, the action of the
compression V,, 1, of the kth-order slant Toeplitz operator on basis elements can be
seen as
i1 % in\ __ mi m n
Vo ke (2125 . 20) = Z Ol —in kma—iz,....kmn—in 21 29 > o 20"

(m1,ma,...,mn)€ELY

On taking the adjoint in the definition of Vi, 1, we get that V7, = PAZ | .. (Tn)"

Again, simple computation yields that

* i1 %2 in) = . . mi ma m
V‘kaﬁb(zl O Zn”) - Z Pkiy —m1,kiz—ma,...kin—mn 21 22 - Zn

(m1,ma,...,mn)ELY
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for each (i1,i2,...,i,) € Z'}. With the help of Proposition 2.9 of the paper [3], the
compression of A, 1 to the space H?(T™) can be expressed as

Vga,k,n = PA«p,k,n|H2(Tn) = PEk7nM4P‘H2(ﬂ'7L) = Ek,YLPM(P|H2(‘[|'n) = Ek,nTcp,m

where T, ,, is the Toeplitz operator on H?(T™). Also, we observe that

Tcp,nEk,n|H2(1Tn) = PEy M

@(21 .25, 28)

|4

H2(Tn) = Veo(zh 28, 028) ke

The linearity of the mapping ¢ — Vi, i.n follows from the linearity of A, ., and P.
Further, we prove the following.

Theorem 2.4. The linear correspondence ¢ +— V1, is an injective mapping
from the space L>°(T") to B(H?(T")), the space of all bounded operators on H?(T™).

Proof. In order to prove the injectivity, assume that Vi, = 0. Then, for
(i15i27 oo ;in)v (jl,jQ, ‘e ,jn) S Zi, we have

(2.1) 0= <V%k,n(zilz§2 .. zfl), z{lzgz . zf;”)

. my _m my  LJ1 .72 jn
- < E Phkmi—i1,kma—iz,....kmp—in?1 122 : SRy R R sz >
(ma,....mn)ELY
= Pkjr—i1,kjz—iz,....kjn—in -
Now, for an arbitrary n-tuple (p1,pe,...,pn) € Z", the substitution j; = |p:| and

the replacement [k — sgn(p;)]|p:| in place of i; for each integer ¢ such that 1 <t < n
in the above expression give that

Pklps |~ [k—sgn(p1)][p1ls-..k|pn | —lb—sgn(pn)]lpn| = 0-

The function sgn(p), appearing in the above expression, is the sign or signum func-
tion. This reduces t0 Ysgn(p,) (1| sen(pa)lpsl, ...sen(pn)|pn| = O forall (p1,pa, ... pn) € 27
It yields that ¢p, p,,...p, = 0 for all (p1,p2,...,pn) € Z" and hence ¢ = 0. In the
view of the above observation, the injectivity of the correspondence follows. O

An immediate corollary that follows from the above theorem is the following.

Corollary 2.5. The operator V,, 1, is the zero operator if and only if ¢ = 0.

Primarily, we intend to have a necessary condition for a bounded operator
on H?(T™) to be the compression of kth-order slant Toeplitz operator. Secondly, we
provide a characterization for the compression of kth-order slant Toeplitz operator
on H?(T") for a special kind of inducing function.
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Theorem 2.6. Let V € B(H?(T")) be a compression of kth-order slant Toeplitz
operator on the space H*(T"). Then, it satisfies

(22) V = T:flz'gQ...zf,',",nVTzfngm...zﬁp”,n for each (p17p2a e ;pn) € Zi

Proof. Let V be a compression of kth-order slant Toeplitz operator, that is,
V = Vi k.n for some ¢ € L>(T™) given by

— mi m2 m
©(z1,22, ...y 2n) = g Oy ma,.mn 21 29 22N

(m1,m2,....,mp)€L™

NOW7 fOI’ (i17i2; .. ain)a (p17p27 o apn) S Zn7 we get

* i1 02 in
Tzflz?...zfi”,n‘/Tzfz’lz;‘pz...zﬁp”,n(zl Zy A )
= * . . my ,m2 m,
= Tzflzggngn,n § Phkmi—ir—kp1,....kmp—in—kpn?1 22 - Zpn "]
(m1,m27~~~amn)ezi
— R R mi1—p1 mMm2—p2 Mp—p
= P|: g Phkmy—ii—kp1,....kmy, —in —kpn 21 Z9 cee 2 n:| .

(m1,ma,....mn)ELY
On replacing m; by m; + p; for each integer j, 1 < j < n, we obtain that

T* i1 02 in
p1 P2 D VT kpy _kpa kp (Z Zo .. Z
21 257z zy T2y Yizn 12 n

0o
mi,,m2 m
P|: Z Spkmlfil7km2*i2,...,kmn7i”zl 2:2 e Zn n:|
mj=—p; 1<j<n

— mi M2 M
= E Pkmq—i1,kmo—iz,....km,—i, 21 22 - Zp
(m17m2,---7mn)ezi
_ i1 02 in) — i1 02 in
=Vorn(21'29 .. 200) =V (21 25 ... 2."),
which furnishes the desired result. O

Now, we look for a condition which not only acts as a necessary condition but also
as a sufficient condition for a bounded operator on H?(T") to be the compression
of Ay k,n for some specific ¢ € L>(T™). The following result uses the fact that
Ernlf(zF,...,28)g] = flExn(g)] for f,g € L*(T") satisfying fg € L*(T"), which is
derived in Proposition 2.2 of [3].

Theorem 2.7. A necessary and sufficient condition for a bounded operator V
on H?(T™) to be the compression of kth-order slant Toeplitz operator induced by
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the symbol

o0

(2’3) w(zl722""’zn) = Z melym2~~~7mnzinlz£n2 "'Z’Inl/bn 6 Lw(—ﬂ—n)v
mj=—(k—1),1<j<n

is that Tzflzggngn,nV = VTZ;fplzgpzmzﬁpn,n for each (p1,p2,...,pPn) € Bn.

Proof. Let V (= V, x,n) be the compression of a kth-order slant Toeplitz oper-
ator induced by ¢ € L>®(T™), given by

o0

— mi ,m2 My
©(z1,22, ..., 2n) = g Oy ma.. mn 21 125 220
mjzi(kil)vlgjgn

The above expression of ¢ can be rewritten as

— mi1 . m2 m,
(21,22, ., 20) = E Pmy,ma...,mp?1 Z2 - Zp "

(m1,ma,...;mn)€L™

with the condition that ¢y, ms,...m, = 0 if m; < —k for some integer j, 1 < j < n.
Now, for each (i1, 42,...,i,) € 2} and (0,0,...,0) # (p1,p2,...,Pn) € Z7}, the above
form of ¢ yields that

i1 1 ; i1+k io+k in ,
(2.4) VT kor koo ko (21" 29" .. 2y0) = Vi o (2 TP 22 HkP2 [ pinthpn)
AR LT

n
— . . mi ,m2 m,
- E Phmi—i1—kp1,...kmn—in—kp, 21 %2 ---Zp "
(thI’LQ,...,mn)GZi’
o0
— X X mi ,ma2 m
= § Phkmy—i1—kp1,....kmp—in—kpn 21 22 - Zn "
m;=p;,1<j<n
E . . mi m
+ Phmi—i1—kp1,...kmp—in—kpn 21 - %p
(ml,...,mn)el",
at least one m;, <p;,—1,
1<jo<n for which p;,7#0
00
— . mi ,m2 m
= E Phkmy—i1—kp1,...kmp—in—kpn?1 22  ---Rp -
m;=p;,1<j<n
Again, for (iy,i2,...,i,) € 27} and (p1,p2,...,pn) € £7}, we get
i1 42 in\ _ . i1 02 in
Toov on V(21297 2) =T on Vo kn (21257 - 27)
_ ., . ) ) mi m,
- Tzfl...zﬁ",n E Phma—i1,.. kmp—in?1 -+ Fn

(ml,...,mn)EZQL_
= E . ., mitp1 ma+p2 My +p,
- Phmi—iz,....kmp—in 21 29 ceeZp T

(my,...,mn)€L
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Replacing m; by m; — p; for 1 < j < n in the above expression, we get

oo

n

(25) Tzflzg2...zf;”,

— . . my ,ma2 m
= E Phmi—i1—kp1,...kmp—in—kpa 21 %2 -+ Zp -
m;=p;,1<j<n

The equations (2.5) and (2.4) apparently provide that

Tzf1zg2ngn7nv = VTz’f"lz;pz Lzken

for each (0,...,0) # (p1,p2,...,pn) € 2. Also, for (p1,...,pn) = (0,...,0), the

preceding relation is vacuously satisfied. Hence, Tzlfl A2 g0 2V = VTZ;fplzspz L2k,

for each (p1,p2,...,pn) € 2% and in particular for (p1,p2,...,pn) € Bn.
Conversely, suppose that V' is an operator on H?(T") which satisfies

Toprapz apn iV = VTzf“ 25P2 zhPn

for all (p1,pa,...,pn) € B,. It is easy to verify that the preceding condition also
holds for all (p1,p2,...,pn) € 2. Let f € H?(T") be of the form

— my ,m2 m,
f(Z1,ZQ,...,Zn) - E fmlym27~~~:mnzl Zg Tz
(ml,mg,...,mn)Ezi
= E fm11m27~~~:mnTZ;n1Z;WQ...ZZLW' (1)(217 TR azn)'

(ml,mg,...,mn)Ezi

For each i; € {0,1,2,....,k — 1}, 1 < j < n and f € H?*(T"), the condition
Tzi’lzé’2“_2£n7nv = VTz;fplz;pgmzﬁ,,n’n helps to conclude that

(2.6) V[zitzl .. 20 f(2F 25 2 (21, 22, s 20)

= V|: Z fm1,...,mnTzkm1+7:1ka2+1:2 Jkmntin (1) (2:1, RN Zn)
X . L2k

(ml,...,mn)EZQL_

= Z fm1,~~~7mn [Tzl'”z;"z...zzl” V(Z? 232 s Ziirl)](zla cee azn)
(mh---,mn)EZi
= > Frnrema 20 2572 20V (21 25 2 (21, -5 20)
(mh---,mn)EZi
= f(z1, 22, . - ,Z,Z)V[zilzg2 ... z;](zl, 29,y 2n).
Let @i, 4y...4, Tepresent the function V(21222 ... zin) for each i; € {0,1,2,...,k—1},
1 < j < n. Ultimately, we intend to prove that each function ¢;, ;..
to L>°(T™). Further, equation (2.6) gives that

belongs

coyln

V(2. 2l h) = V(22 20) = F Girinnnin,
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where h(z1, 2,...,2n) = f(25,25,...,2F). The above expression provides that
1F - Constanoinl = IV (2 2 W3 < VI < o0
Wi yiz,nsin |2 172+ %n 2 X 2 )

€ H?(T™). Therefore, by the above observation and
the solution of Problems 50 and 53 of [6], each function ¢;, ;, . ;
space L>(T™) for all i; € {0,1,2,...,k—1}and 1 < j < n.

Now we aim to construct a function ¢ using these functions ;, i, ..
p € L*(T") and V =V, ». For this, consider the function

which implies that f - ¢;, i,

coyln

belongs to the

n

so that

.,l”

k—1
Y = E Ciyin,..yinJit,in, ... in>

11,12,...,in=0

where
_ N =in
Cinvimrin(Fly vy 2n) =Z1' 25 ... 2
and
_ k k
i, yin (21,...,2n) = Pi1in,... in (21, ,Zn)~
Thus, it yields the desired form of ¢ as
k—1
_ =11 512 Sin A . . k _k k
o(z1,22, s 2n) = E ZUER o By 0y i (BT By e ey 2 )y

11,12,...,in =0

which is an element of the space L>(T").
Now we are left to prove that V = V, . For, let f be an arbitrary element
of H?(T™) given by

f(z1,22,. ., 2n) = Z Fmtma,mn 21 g 220

(m17m2,---7mn)621

We express f as

k—1

7 in ¥ ko k k
f(z1,29,...,2n) = Z 210257 2 [ igin (BT 25 20 ),

11,82, .0y00 =0

where
7 k k
Rivooin (215003 20) = fir,oin (20,0 20)
= Z fkm1+i17~~~;kmn+inzi€m1 Y

(ma,...,mn)€LT
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These expressions of f and ¢ along with Proposition 2.2 of [3] and relation (2.6)
provide that

th,k,nf(zla 22y ey Zn) = PEk,nMLpf(Zla 22y ey Zn)

= PE, {9 f}z1,22,...,2n)
k-1

= PEy, E Gir yinyernsin * iy in..in

11,12,...,in =0

other terms which cannot be generated by the set
(z1,22.. ., 2n)

{me1 o 2B O ey kmy,  (Ma,ma, .. my) € %}

k-1
P|: Z fi17i27~~~1in *Piyin,in (Zlv 225 azn)
11,12,..,in =0
k-1
= Z Jivsigrin (71522, oy 20) V]2 252 o 20 (21, 22, - oy 20)
11,82, 0y80 =0
k-1
v s . k _k k\ i1 i2 in
(V{fir,in (21,25, ..y zp)2y 2 ooz 1) (21, 22 .o, 2n)
11,82,..,in =0
k-1
i1 02 in £ k _k k
14 Z 21022 2t fan i (BT, 25 2) | (B, 22 -5 2n)
11,12,..,in =0

=Vf(z1,22...,2n)

Thus, we have V = V,, 1, for ¢ € L>(T"). This completes the proof. O

The proof of the above theorem suggests the following without any extra effort.

Theorem 2.8. A bounded operator V on H?(T") is the compression of kth-order
slant Toeplitz operator with symbol ¢ given in (2.3) if and only if it satisfies

(2.7) Tzflz§2'”2£n7nv = VTZ;fplzgpz__zﬁp,,,n for each (p1,p2,...,pn) € Z7.

It is important to note that the characterizations provided in Theorems 2.7 and 2.8
are valid only for the compression of kth-order slant Toeplitz operators that are in-
duced by symbols given in (2.3). We can see that the compressions may fail to satisfy
the characterizations given in above theorems. For choose ¢ = 27" and V =V, 1 -
Then ¢ € L*°(T™) but is not of the form given in (2.3). Clearly V is a bounded
operator on H?(T™) and is the compression of kth-order slant Toeplitz operator with
symbol ¢. For (p1,p2,...,pn) = (1,0,0,...,0), the expressions VTzzfplmzﬁpn and

,n
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Tprp2 o,V are given by

zil/ 232/ .2k if each i; is a multiple of k,
i1 02 in) <7<
‘/zl_k,k,nTZIf,n(Zl 2'2 .. .Zn ) = ]- N,

0 otherwise

and

iv k=1 _ia/k in/k - .
zil/ z?/ ... z/* if each i; is a multiple

TZl’anl_k’km(zil 22 ozp) =T, o P of k,
0 otherwise.
In particular, for iy = 0, ie = k, i3 = i4 = ... = i,, = 0, the above expressions
show that

Tzthzl_k’k’n(zil o) =0#£ 29 = ‘/Zl—k7k7nTZ{c7n(Zil Z2 2.
This justifies that the operator V fails to satisfy the characterizations obtained in
Theorems 2.7 and 2.8.

Remark 2.9. It is evident to see that any bounded operator V on HZ(T")
satisfying (2.7) satisfies (2.2). However, the above example proves that the converse
is not true.

It can be shown that a Toeplitz operator Ty, ,, on H 2(T™) is compact if and only
if = 0. In order to prove this, consider f € H?(T™), which is given by

flz1,29,.00,2,) = Z (fs €mama,..omn YEma,ma,omn (Z1s - - - Zn)
(m1,ma,....mn)ELY

and satisfies > [{fs €ma.ma,...mn)|> < 00. As a consequence of the absolute

(ml,...,mn)EZi
convergence of the preceding series, one can conclude that for each f € H?(T"),

(f,emi,ma,..,m,) converges to 0 as each m; — oo for 1 < 4 < n. This means that
the sequence {€m,,ms,....m, } converges to 0 weakly as each m; — oo for 1 < i < n.
Since Ty, is compact, it follows that Ty, n(€m; msy,...m,) — O strongly as all m;’s
approach to co. Now, for given (i1,is,...,in) € Z", we construct two n-tuples
(P1,p2,---,Pn)s (q1,G2,--.,qn) € 27 such that

0 ifi; >0, i; ifi; >0,
pj = ) ) and ¢; = ) for 1 <j < n.
—1; iij<0 0 ifZ]‘<0
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Clearly, we have i; = ¢; — p; for 1 < j < n. Now,

= |<T%n(z{)1+mz§2+m . .Zg,ﬂrm)’ Zill+m232+ng’L+m>|

|9g1—p1,g2—p2+ . s0m P

< T, (epi+m,patm,...put+m)|| = 0 asm — oo

It shows that ¢, 4,,....;, = 0 and hence ¢ = 0.

Now we investigate the connections between the compression of kth-order slant
Toeplitz operators and Toeplitz operators. Further, we also extract the inducing
function ¢ € L>®(T") for Vi, 1n to be a compact operator. The following theorem
uses a relation Ey My Ep = Mg, (), which can be seen by applying operators
on basis elements and is shown in [3].

Theorem 2.10. For ¢ € L*°(T"), the following conclusion can be made:

(1) ExnVykn =TEi 0 (@)m-

(2) If  is co-analytic then VoV kon = Ty 0 (10]2) -

(3) Vi,k,n is compact if and only if ¢ = 0.

Proof. (1) For ¢ € L*°(T™), in the view of proof of the Lemma 3.12 of [3], one
can observe that

Ek,nV;,k,n = Ek,nPA:;’k’n|H2('[F”) == PEk,nMgZE;:’n|H2(TT")
= PMg, . |u2m) = Thy 0 (5) .-

(2) Suppose that ¢ is co-analytic. Then, again by the Lemma 3.12 of [3], we obtain
that

VornVikm = PApsnPAS ol iz(rn) = PEgn MyPMGEf | i (i)
= PEy M2 Ep a2 (1) = Tr, ,(j0]2)n-

(3) Assume that V, j , is a compact operator for ¢ € L>(T"), given by

— mi m2 m
O(21,22, ...y 2n) = g Oy ma,.mn 21 29 22N

(m1,ma,...,mp)EL"

Then this implies that Ein(VeknT.ri 02 .20 ,)" is also compact operator for
p; €{0,1,2,...,k — 1} with 1 < j < n. Now, by using the part (1) of the theorem,
we get that

* * —
Ek,n(V%k;nTzflng...zﬁ”,n) - Ekvn‘/(zflzg2...zgnip),k,n - TEkyn(zflzg2,,,zg”<p),n'

The preceding expression provides that TE’C is compact operator and

Y,,(zfl 252 ..2Bm )

hence Ej (27257 ...20"¢) = 0, for all p; € {0,1,2,...,k —1} with 1 < j < n
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because of the observation made on the above proposition. Consequently, we obtain
that

Z Phmy —Pl7km2—pz,...,kmn—pnz;nl2;”’2 e 221" =0,
(m1,ma,...,mp)€L™
which implies that @rm,—p,.kma—ps,....kmn—p, = 0 for each integer p; such that
0<p; <k-1,1<j < n. Hence, we get ¢ =0. 0

The following theorem points out the condition on inducing function so that the
product of the Toeplitz operator and compression of kth-order slant Toeplitz operator
is again a compression of kth-order slant Toeplitz operator.

Theorem 2.11. Let ¢ and v be two elements of the space L°°(T™). Then the
following statements are true.
(1) If either @ or v is analytic then Vg ik n Ty n = Vi koyn-
(2) If either ¢ or ¢ is analytic then Ty Vi k.n = Vit

B2t ke

Proof. Inorder to prove part (1), we initially claim that Ty, Ty 5 = Ty, When-
ever either ¢ or 1 is analytic. We also know that Ty, ,, Ty, = PM,P My |g2(rny. If 1)
is analytic, then the preceding expression reduces to Ty, nTyn = PMyMy|g2rn) =
Tou,n- Again, if ¢ is analytic, then we can observe that

(T%VLT%")* = PMEPM¢|H2(T,L) = PMEMQE H2(Tn) ;w,n'

From the above observation, we get the claim. Now, consider the expression
Ve kmTwn = ExnTonTyn = Vey kn,

which implies the desired result.
(2) Since either ¢ or ¢ is analytic. Therefore, from the observation made in
part (1), we get that

TpnVoin = TypnBrinTon = EinTy(at ok, ok)em = Vb 2, 28)p ks

Hence, the result follows. O
The next theorem provides a necessary and sufficient condition for V7, . to be an
isometry.
Theorem 2.12. The adjoint Ve km of Vi, k.n is an isometry if and only if ¢ is

co-analytic and Ej (|¢]?) = 1.
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Proof. Assume that ¢ is co-analytic and Ej,(Jp?) = 1. Then, by Theo-
rem 2.10, we get that

VorknVorn = Ton(e)n =1
which implies that Vg;"} k. 1S an isometry.

Conversely, suppose that V, kn is an isometry for ¢ € L>°(T™), given by

mi1 ,m2 Mn

50(21,22,...,,2”) = E Pmi,ma,...mpf1 R2 " -- g

(ml,TI’LQ,...,mn)EZ"

Then we have [V, (f)ll2 = || f]l2 for all f € H?(T™). In particular, if we choose

flz1, 22,0y 20) = z?z? ozl for (iy,ia,...,0,) € 27, we get

2
@9 1=l X Gk b

2

(m1,ma,....mn)ELY

2

= § |Phiy —m1 kiz—ma,....kin —mn,

(thI’LQ,...,mn)EZi

On substituting i; = 0 for each integer 1 < j < n, relation (2.8) reduces to

2

(2.9) 1= > [ R —

(m1,ma,....,mn)ELY

Again, for i; > 1, 1 < j < n, relation (2.8) can be rewritten as

— 2
(2.10) 1= E |<Pki1—M17ki2—m2,~~~,kin—mn
at least for one j,
0sm<kij—1,
(m1,ma,....,mn)€ZY

oo

+ ) |Phiy —m1 kiz—ma,..., ki —mn,
mj:kij,lgjgn

2

On observing relations (2.9) and (2.10), one can conclude that

2 _

E |Phiy —m1 kiz—ma,....kin —mn,

at least for one j,
0<m;<kiy;—1,
(thI’LQ,...,mn)EZZ_

for all integers i; > 1, 1 < j < n. Consequently, this gives that

(2.11) Pliy —my kig—ma,....kin—mn = 0
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for all integers i; > 1 and for each (mi,ma,...,my) € Z' provided that there is
at least one ¢, 1 < t < m such that 0 < m; < kiy — 1. Therefore, equation (2.11)
provides that

Omima,...,m, =0 for each (mq,mg,...,my,) € Z" such that at least one m; > 1.
Thus, we get that ¢ is co-analytic. Again, using the Theorem 2.10, we get
VorknVikn = TBen(e)n =1

which implies that Ej,(|¢|?) = 1. This completes the proof. O
Now, we provide an illustration in support of the preceding theorem.

Example 2.13. Let o(z1,22,...,2,) = (2122 Zn + 1)/v/2. Then, obviously, it
is a co-analytic function in the space L>°(T™) and

9  Z1%2...2n+Z122... 25+ 2

|QD(21,ZQ,...,Zn)| = 9 ’

which yields that Ej ., (|¢(21,22,...,2,)|?) = 1 and hence Vw,k,nV;,k,n = I. This
points out that Vo kn 1s an isometry. Thus, the Theorem 2.12 is satisfied for
0(21,22, ., 2n) = (Z1Z2 - 20 + 1)/V2.

3. SPECTRUM OF Vi, i.n

In this section, we focus on the investigation of the spectrum and spectral radius
of the compression of kth-order slant Toeplitz operator. In order to attain our results
in an n-dimensional structure, we adopt the methodology provided in [2], [5]. We
shall show that the spectral radius of V  , is same as that of A, for analytic
or co-analytic ¢ € L*(T™). Prior to the main theorem, initially we investigate
a few prerequisites for the accomplishment of the main results and certain other
consequences.

Lemma 3.1. The operator (I — P)MY converges to 0 strongly as ¢ — oo,

Z122...2n

where M., .,.. .. is the multiplication operator induced by z1z3...z, € L=(T")

n

and P is the orthogonal projection from the space L*(T") onto H*(T").

Proof. Let f be a function of the space L*(T"), given by

f(z1,22,...,2n) = Z Frntima,mn 21 2 2 p

(m1,ma,...;mp)€L™
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Then, we observe that

2
0= P s D = |- 8 a2
(my,...,mpn)EL™
—1 —q—1
- Z |fm1*q,m2*q,m,mn*q|2 = Z | frns e ?
m;j=—o00,1<j<n m;=—00,1<j<n
Being f in L?(T"),
0 00
Z |fm17m27---7mn 2 g Z |fm17m27---7mn ? < 0.
mj=—00,1<j<n m;=—00,1<j<n
Therefore, by the definition of convergence of series, we can conclude that
(I =P)MZ., . (f)l =0 asq—ooforall fe LA(T™).
Hence, the result follows. ([

The next outcome utilizes a theorem proved in [3], which states that a bounded
operator A is the kth-order slant Toeplitz operator if and only if A = Mz*plzp2 on
P12P2 R
Aszp1z§p2...szp" for all (pl;p% .. apn) er".

Lemma 3.2. The operator M2

q
21207, Voo k, nPMF ., converges to Ay, ., as

Z1%22..

q — oo in the strong operator topo]ogy.

Proof. Initially, from the Lemma 3.1, we know that (I — P)MZ _ converges
to 0 as ¢ — oo in the strong operator topology. Therefore, MY - - (I— P)M2122
also converges to 0 strongly as ¢ — oco. Consequently, we obtalned that M 3122
PM{ ., . — I strongly as ¢ — oco. Now, we see that
M§132 Zn V‘P k "PM2122 = Mglzz PA‘P k "Plezz

k k k
(Mglzz PMglzz L)(Mglzz A‘kavanlqzz...zn)(leqzz Pleqzz zn)'

By the use of above observations and the characterization of the kth-order slant
Toeplitz operator given in [3], the desired result follows. ([

The following theorem derives the norm of V,, 1, in term of inducing function.
Moreover, it shows that the norms of Vi, 1., and A, 1, are equal. In order to prove

this, we require Lemma 3.12 of [3], which proves that ||AT'; .|| = ||wm||(1><427 where
P is given by
(3.1) Y = B (10 Brn (16° Bk (- - Brn(l9l) - )

m-times
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Theorem 3.3. Let V,, 1, be a compression of the kth-order slant Toeplitz oper-
1/2
ator Ay jon. Then, | Vo ull = [ Agnll = [ Brn(|pf?)][ 2%

Proof. Foreach g€ Z\{0}, wehave |M{ -, = Voo PMFL || < ||Vioinll
On the basis of Lemma 3.2 and the above expression, we conclude that ||A, x| <

. Zn

IV kenll- Since Vi k. is a compression of kth-order slant Toeplitz operator A, k. n,

we get that |V, k.n|| < ||Ag,k,n|. Finally, in the view of Lemma 3.12 of the paper [3],
o 2

this implies that ||V knll = [|4g k0l = [ Ern (0?5 O

The next theorem shows that the spectral radius r(V, i n) of Vi, i is same as
that of Ay i, for co-analytic inducing function. But, subsequently, we shall prove
that the following result is also true for analytic ¢ € L>(T").

Theorem 3.4. If p € L>°(T") is co-analytic then r(Vy kn) = (A kn)-

Proof. Let ¢ € L°°(T™) be a co-analytic function. Primarily, with the help
of the principle of mathematical induction on “m”, we prove that the relation
V. enVolkin = Tp,n, where ¢, is same as defined in (3.1). For m = 1, we have
already proved the desired relation in part (2) of the Theorem 2.10. Now, assume
that the relation is true for all j < m — 1. Again, in the view of assumption and
Theorem 2.10, we have

(m=1),#(m—1)
V«ﬁTkm ;%n: ‘kav”V%YZ,n Vw,l:,qn V;km :V<kav"Twm—1v"V;7km
= Ein g1 mErin = Bk Vipzg, . = Typn

The above expression gives that |V, || = [[V2%  Var, V2 = [t ||5L%. With the

help of Gelfand’s formula and the Lemma 3.12 of the paper [3], the result follows. O
The following example illustrates the preceding theorem.

Example 3.5. For the function ¢(z1, 22,...,2,) = 2ZyZ5...ZF 4+ 1, the opera-

tor Vi, 1 n satisfies the conclusion of Theorem 3.4. Also, for this function ¢, Vi, ,n is
not a normaloid.

Proof. The given function ¢ is of the form (21, 22, ...,2,) = 2825 ... ZF + 1,

for a fixed integer k > 2. Clearly, ¢ € L>(T™) and ¢ is co-analytic. Now, consider
lo(21, 22,y 2n) |2 = 2525 .28 + 2528 .0 2F + 2] which gives that

Ern(o)®) =Z1%2.. . Zn + 2122 .. 20 + 2.
Again, consider the following expression:

other terms which cannot be
lol?Ern(lp?) = 2(2525 ... 28 + 2728 ... 25 +2) + { generated by terms having
exponent in the multiple of k.
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Subsequently, the above expression provides that

Ekn(|g0| Ekn(|g0| ) =2(Z1Z2...Zn + 2122 .. 2n + 2).

Similarly, one can obtain that

Ym = Bin(|0]Ern (10 B (... Bun(le) - .)))

m-times

=2m" 1(2122 Zn 21200020 + 2),

which yields that ||t = 2™

By the use of Gelfand’s formula for spectral radius, we get that
(3.2) (Vo) =1(Apn) = n%gnoo [t || /2™ = n}gnoo g(m+1)/2m _ |\ f5
Now, the norm of V,, 1, is given by
Vol = 101l 22 = 2172 .. 20 + 2122 .20 + 2|12 =2,

which implies that 7(Vy kn) # ||Voknll. Thus, we can conclude that the opera-
tor Vi, k,» may not be a normaloid in general. g

Theorem 3.6. If ¢ € L>°(T") is analytic then r(Vy k.n) = 7(Ap kn)-

Proof. We know that [|A7, [ = sup ||A<p k. (f)l; so for every € > 0, we have
lI£1l1=
€
(33) 4Gkl = 5 <IAZA (P for some f € L*(T") and | f]| = 1.

Also, the operator A, i, satisfies the operator equation

k
M? ...znAcp,k,n = A«p,k,nM !

Z122 Z122...2n "
Using it repeatedly, we get the following:
AEma
Mglzz Ang n Ang n-"*zizo..

From the Lemma 3.1, we know that (I — P)MF" 4 ., converges to 0 strongly as

2122

(I—P)MF 4 . converges to 0 as ¢ — oo in the strong

2122

q — oo. Consequently, Ag kn
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operator topology. Using the invertibility of M , the above observation brings

2122
out that
“|A<pkn )” ||A<pkn Mfle ||‘
_||| 2122 Zn <pkn(f)|| ||A<pkn Mflzg )|||
_|||A<panzkl.22 z,,(f)H_HAgakn Mjlzg )|||

HAcp k nMjlzz zn(f) Ang n Mflzz zn( )H — 0’

as ¢ — oco. With the help of the € — § definition of the limit, the above expression
yields that

m m €
”Acpkn( )”_”Acpkn Mz]?lzz z,L “'A'(pkn )” ”A(pkn Mz]?lzz z,L(f)”‘ < 5
for sufficiently large value of ¢q. Equivalently, for sufficiently larger value of ¢, we
have

m €
(34) 1AZ gD < NAZ g PMELE L (D] + 5

Let g = PMF"4 . (f), clearly g € H?(T™) and ||g|| < 1. In the view of (3.4) and ¢

Z1Z22..
being analytic, relatlon (3.3) reduces to

1AZ k| < AD K PMEZL . (Dl +e = IVEn(@)ll +e < NIV all +e.

Since ¢ > 0 is arbitrary, so ||A | for each integer m > 0. Also, the

<pkn|| ” <pkn|

reverse inequality is trivial. Therefore, we get that [|A7, [ = [V .| and hence

(Vi kn) = r(Ag k,n). This completes the proof. O
The subsequent example is to illustrate the preceding theorem.

Example 3.7. For the function ¢(z1,29,...,2,) = 1+ zk ! k Lo 2E for

a fixed integer kK > 2, the corresponding V,, ., verifies the conclusmn of the Theo-
rem 3.6. Moreover, for the given ¢, V,, 1 » is a normaloid.

Proof. Given that p(z1,22,...,2,) = 14+ 28712571 251 for a fixed integer

k > 2. Now, we get |p|> = 24281 k Lo 2k 1+_(k Vz (k Do
that Ej ,(Jp|?) = 2. Similarly, one can have

, which gives

Ym = Ben(|0]” Exn(19*Ern (.- Brn(|0f) . ))) = 2™

m-times

Then, the spectral radius r(V, k,n) of Vi, 1 n is given by
r(Veson) = 1 ([l = V2 = ||V knl
This shows that Vi, i, is normaloid for the function ¢ defined above. O
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The next result establishes the relationship between the point spectrums of com-
pression of kth-order slant Toeplitz operators.

Lemma 3.8. Let ¢ be a function in the space L>°(T™). If T, ,, is invertible, then

op(Vo k) = 0p(Vip(ak 2k . 28y kn)- In fact, in this case 0 € 0p(Vip k,n)-

Proof. Suppose that A is a nonzero element in o, (V, k), the point spectrum
of Vi, j.n- Then, there exists a nonzero vector f in H*(T™) such that V,, s f = \f,
ie, ExnTyn(f) = Af. Since T, . is invertible and f # 0, therefore we have
Ty nf # 0. Again, consider Ty, , Ex T n(f) = ANy n(f), which can be rewritten as

Vap(z’f,z.’z“,...,zﬁ),k,n(Twm(f)) = /\T%"(f)

Thus, the above expression provides that A € (Vi ok 2k | 2x) kn)-

Conversely, assume that 0 # A € op(Vi(ok 2k, ok) k) Then, there exists
a nonzero element g € H*(T") such that Vi,.x .x .54 n(9) = Ag. Equivalently,
TynErn(g) = Ag. Since Ty, ,, is invertible, this implies that Ej ,,g # 0. Further, we
get that

Ek,nTgo,n(Ek,n (g)) = AEk,nga

which yields that X € 0,(V,,, k,n). Ultimately, we observe that
V<p(z;f’272cw’zﬁ)’k’n(zlzg coo2p) = PEg (2122 .. zngo(zf, 25, ey zp)) =0

and

V<p,k,n[T;$L(Z122 coozn)] = Ek,n[T%nT;}L(zlzg ...zn)] =0.

From the preceding expressions, we can deduce that 0 € Up(V<p(z’f,z§,...,z,{j),k,n) and
0 € 0p(Vi,k,n). This completes the proof. O

Now we investigate the spectrum of the compression of kth-order slant Toeplitz
operator. More precisely, we show that a closed disc lies inside the spectrum of V., . 1,
whenever T, ,, is invertible.

Theorem 3.9. Let the Toeplitz operator T, ,,, ¢ € L>(T"), be invertible. Then
a closed disc is contained in the spectrum of V., the compression of kth-order
slant Toeplitz operator and the interior of the disc consists of eigenvalues with infinite
multiplicity.

Proof. Let A be a nonzero complex number and the operator (E,:anj}l —Al)
is onto. Then, for any h € H?(T"), we get

(B n Ty — M)h = (E; T, 5 = AP)(h) = M = Py)(h),
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where Py, is the projection of the space H? ('[F”) onto the closed subspace generated by
the set {zF™1z5me | kma.ni e 7,1 <i<n}. Let Py express I — Py. By the as-
sumption, for 0 # g € P, (H2(T™)), there exists a nonzero function f € H2(T") such
that (Ej , ;n )\I)(f) = g Again, employing the fact that 0 # g € ]Bk(H2('[F”)),
one can see that (£ T, — AP;)(f) = 0. Equivalently, we obtain that

(3.5) AE;mTq;}L(x1 — TpnErkn)(f) = 0.

Given that T, , is invertible and A # 0. Also, we know that E  is an isometry and

’ﬂ

TonErkmn = Vip(ak 2k, .. 2k) k- From (3.5), we conclude that
()‘_ cp(z1 25 zﬁ),k,n)(f) =0,
which gives that A=t € Op(Vip(ab 2k oo 28) )
Now, let A € o(E;,,T;}), the resolvent of the operator (Ej, T, ). Then, the
operator (Ej T, L — XI) is invertible and hence onto. Therefore, in the view of the

above discussion, we get that

D = {)‘71: A€ Q(Elj,nTcpiiL)} c UP(Vap(zl 2k, z2k) K, n)

With the help of preceding Lemma 3.8, we obtain that D C 0,(V, k). The resol-
vent and the spectrum of a bounded operator are respectively open and compact
subsets of the complex plane. Therefore, D is open and contains a open disc. By
the compactness of spectrum, one can conclude that the spectrum of V,,  , con-
tains a closed disc. From the above discussion, it follows that for a fixed A € D,
ie, (A" € o(E},T,,)) and for nonzero g € P H2(T™), there exists nonzero
f € H?(T") such that (A\—V, o(zk 2k .26y k) (f) = 0. It means that f is an eigenvec-
tor of Vi, ,k ok .k k., cOrresponding to eigenvalue A. Hence, taking the invertibility
of Ty, ,, into consideration, the observation made in Lemma 3.8 yields that Ej, ,,(f) is
an eigenvector of V,, 1 , corresponding to eigenvalue A. Since dim[P, (H2(T™))] = oo
and oy (Vi kn) = 0p(Vip(ak 2k, 2k) k.n)> We can conclude that each A € D is an eigen-
value of Vi, 1, with infinite multiplicity. O

Remark 3.10. The radius of the closed disc contained in the spectrum o(V, x.1)

is equal to [r(E}; T, )" if T, ., is invertible.

Proof. Let
Do ={0}U{A"": A€ o(B T, 2 {0} U{A™": [N > r(Bf T, )}

Let ro = [r(E}, , ;n)] 1. Then, clearly Dy 2 B(0,70), where B(0,r¢) is the open ball

in C. Also, we know that Dy C 0p(Vi,k,n) C 0(Vi k). Therefore, the radius of the

closed disc which is contained in the spectrum o(V,, ), is equal to [r(E} T, )] ™"

Moreover, 7(Vy, in) = [1(E} nTJn)]_l- H
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Corollary 3.11. If ¢ is unimodular, then r(Vy xn) = 7(V,-1 k) = 1. In partic-
ular, if ¢ is an inner function, then r(Vy p.pn) = 7(Vp-1 1.n) = 1.
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