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Abstract. Let A be a commutative complex semisimple Banach algebra. Denote by
kh(soc(A)) the kernel of the hull of the socle of A. In this work we give some new charac-
terizations of this ideal in terms of minimal idempotents in A. This allows us to show that
a “result” from Riesz theory in commutative Banach algebras is not true.
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1. Introduction

For a semisimple complex algebra A we let soc(A) be its socle and denote by

Im(A) the set of minimal idempotents in A. An element u ∈ A is said to be a

quasi-Fredholm element of A if u is quasi-invertible modulo soc(A) in A (see [8]).

We denote the set of all quasi-Fredholm elements of A by q-Fr(A). If A is unital

then we define an element u ∈ A to be a Fredholm element of A if u is invertible

modulo soc(A) in A (see [8]). We denote the set of all Fredholm elements of A by

Fr(A). Now, let ΠA denote the set of all primitive ideals of A. Let Φ be a subset

of ΠA and S a subset of A. The kernel of Φ in A is denoted by kA(Φ) and the hull

of S in ΠA is denoted by hA(S) (see [12]). Then the kernel of the hull of soc(A)

in A, which is the intersection of all primitive ideals of A containing soc(A), is simply

denoted by kh(soc(A)) and is referred to as the kh-socle in A for short (see [14]).

Assume now that A is a Banach algebra. By [12], Theorem 2.2.6, it is easy to see that

kh(soc(A)) is the set of all elements u ∈ A such that u + soc(A) ∈ rad(A/soc(A)).

We recall that an element of A is called inessential if its spectrum is either finite

or a sequence converging to zero, and an ideal is inessential if all its elements are
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inessential (see [5]). For example it is well known that kh(soc(A)) is inessential

(see [7], Theorem 3.4). If moreover A is commutative then kh(soc(A)) is constituted

exactly by the elements u ∈ A such that u+ soc(A) is quasi-nilpotent in A/soc(A),

that is to say,

(1.1) kh(soc(A)) =
{
u ∈ A : ∀λ ∈ C

∗,
1

λ
u ∈ q-Fr(A)

}
.

For the fundamental properties of this ideal the reader is referred to [6], [7], [13].

Finally, note that an element a in a semisimple complex Banach algebra A is

compact if the operator aTa defined by aTa(x) = axa for all x ∈ A is compact

on A (see [2]). The set of all compact elements of A is denoted by K(A). In

particular, we say that A is compact if A = K(A). Using [6], Theorem 2.1 we see

that soc(A) ⊆ K(A) ⊆ kh(soc(A)).

In what follows we consider a commutative semisimple complex Banach algebra A.

We will use ΦA to denote the maximal ideal space of A and we let Ac = C0(ΦA) (the

commutative algebra of complex-valued continuous functions which vanish at infinity

on ΦA). Moreover, if S is any subset of A, then we let Ŝ = {x̂ : x ∈ S}, where x̂

is the Gelfand transform of x. In this paper we will study the truth of the equality
¤�kh(soc(A)) = kh(soc(Ac)). To do this we will give some new characterizations of

the kh-socle in terms of minimal idempotents. The motivation for this problem is as

follows: In [10] we encountered the problem of whether a commutative semisimple

complex Banach algebra A has the property that K(A) = soc(A). The following

affirmative answer appears as the main theorem in [3]:

(a) If A is a commutative semisimple unital complex Banach algebra then K(A) =

soc(A).

However, the argument given is not rigorous. To justify this we must, in our

opinion, also examine the veracity of the following statement which appears, without

proof, as Theorem 7.2 (iii) in [13]:

(b) If A is a commutative unital complex Banach algebra and F is an ideal of

algebraic elements of A then “F =÷kh(F).

This statement turns out to be false. We therefore amend the “result” (a) and

a particular case of (b) by proving that they hold under an additional hypothesis

(see Section 4).

With this context in mind let us explain the organization of the paper. In Sec-

tions 2 and 3 we characterize the kh-socle in terms of minimal idempotents. Some

informative results about a commutative complex unital semisimple Banach alge-

bra A which satisfies¤�kh(soc(A)) = kh(soc(Ac)) are given in Section 4. Finally in

Section 5 we will give a counter-example to the statements (a) and (b).
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2. The study of case where A = C0(K)

We now place ourselves in a particular commutative context. We consider a locally

compact Hausdorff space K and set A = Ac = C0(K), the commutative algebra of

complex-valued continuous functions which vanish at infinity on K. Suppose that

the set iso(K) of all isolated points of K is not empty. Let acc(K) be the set of all

accumulation points of K.

The main result of this section is

Proposition 2.1. We have

kh(soc(Ac)) =

{
u ∈ Ac : u =

∞∑

k=1

λkek, (ek)k>1 ⊆ Im(Ac), (λk)k>1 ⊂ C

}
.

To show this result we need the following terminology and lemmas.

Given a subset F of a set X , the complement of F in X is denoted by F c. Also,

we denote by Pf(X) and Pd(X) the set of all finite subsets of X and the set of all

countable subsets of X , respectively.

From [8], page 94 and using Urysohn’s lemma we have the following immediate

result.

Lemma 2.2. If u ∈ Ac then:

(i) u ∈ Im(Ac) ⇔ ∃!x ∈ iso(K) such that u = δx, with δx : K → C, δx(x) = 1 and

δx({x}c) = {0};

(ii) u ∈ soc(Ac) ⇔ ∃F ∈ Pf(iso(K)) such that ZK(u) = F c, where ZK(u) =

{x ∈ K : u(x) = 0}.

From this we deduce the following well-known result:

soc(Ac) =

{
u ∈ Ac : u =

n∑

k=1

λkek, n ∈ N
∗, (ek)n>k>1 ⊆ Im(Ac), (λk)n>k>1 ⊂ C

}
.

We can easily verify the following facts:

R em a r k 2.3.

(i) Im(Ac) is orthogonal;

(ii) iso(K) and Im(Ac) are equipotent;

(iii) Im(Ac) is closed;

(iv) soc(C0(K)) 6= {0} ⇔ iso(K) 6= ∅;

(v) h(soc(Ac)) = acc(ΦAc
).
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Again by [8], page 94 we deduce immediately the following characterization of the

Fredholm elements of Ac in terms of iso(K).

Lemma 2.4. If K is compact and u ∈ Ac then the following conditions are

equivalent:

(i) u ∈ Fr(Ac);

(ii) u(x) 6= 0 for all x ∈ acc(K);

(iii) ZK(u) ∈ Pf(iso(K)).

Now we will generalize this result to the case where K is only a locally compact

Hausdorff space. To do this we will use the following:

If K is a locally compact non-compact Hausdorff space, let the set K̃ = K ∪ {∞}

be its one-point compactification. If u ∈ Ac, set the mapping ũ : K̃ → C, ũ(∞) := 0,

ũ(x) := u(x) for each x ∈ K. Then ũ ∈ C(K̃). Let A be a non unital commutative

semisimple complex Banach algebra and A♯ its unitization. Note that the mapping

u 7→ ũ of Ac into C(K̃) is an isomorphism isometric between two Banach algebras.

Now, we consider the mapping

T : A♯
c → C(K̃), T (λ+ u) := λ+ ũ

for each λ ∈ C and u ∈ Ac; where λ + ũ : x′ 7→ λ + ũ(x′) for each x′ ∈ K̃. Then T

is an isomorphism. Indeed, it suffices to prove that T is surjective. To this end, let

h ∈ C(K̃). We put λ := h(∞) and u(x) := h(x) − λ for each x ∈ K. We can verify

that u ∈ Ac and T (λ+ u) = h.

Lemma 2.5. If K is only a locally compact Hausdorff space and u ∈ Ac then the

following statements are equivalent:

(i) u ∈ q-Fr(Ac);

(ii) ũ(x′) 6= 1 for all x′ ∈ acc(K̃);

(iii) ZK(1− u) ∈ Pf(iso(K)), where ZK(1− u) = {x ∈ K : u(x) = 1}.

P r o o f. First, using [11], Corollary 3.5 and the fact that T is an isomorphism,

we may therefore infer that T preserves the Fredholm elements in the both directions,

that is, for each h ∈ A♯
c, we have:

h ∈ Fr(A
♯
c) ⇔ T (h) ∈ Fr(C(K̃)).

From this remark we have the following equivalences
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(i) ⇔ (ii): By Lemma 2.4 and the fact that, with u ∈ A, u ∈ q-Fr(A) ⇔ 1 − u ∈

Fr(A
♯).

(i) ⇔ (iii): This follows using similar reasoning since iso(K) = iso(K̃). �

Now, we can also characterize the elements of kh(soc(Ac)) in terms of iso(K).

Lemma 2.6. If u ∈ Ac then the following properties are equivalent:

(i) u ∈ kh(soc(Ac));

(ii) ũ = 0 on acc(K̃);

(iii) ZK(u)
c ∈ Pd(iso(K)).

P r o o f. (i) ⇒ (iii): Fix u ∈ kh(soc(Ac)). Then for all λ ∈ sp(u) \ {0}, there

exists a finite subset Fλ of iso(K) such that u(x)/λ 6= 1 for each x ∈ F c
λ by Lemma 2.5.

Let D =
⋃
{Fλ : λ ∈ spAc

(u) \ {0}} which is a countable subset of iso(K) since u is

an inessential element. Moreover, u(x) = 0 for all x ∈ Dc.

(iii) ⇒ (ii): Is trivial.

(ii) ⇒ (i): Suppose that ũ = 0 on acc(K̃). Then for every λ ∈ C
∗, ũ(x′)/λ 6= 1

for every x′ ∈ acc(K̃). Hence, by Lemma 2.5, u/λ ∈ q-Fr(Ac) for every λ ∈ C
∗.

Therefore u ∈ kh(soc(Ac)) by (1.1). �

Finally, we give the proof of Proposition 2.1.

P r o o f. Fix u ∈ kh(soc(Ac)). By Lemma 2.6, ZK(u)
c is a countable subset

of Pd(iso(K)). Set ZK(u)
c = {x1, x2, . . .} and λn = u(xn). It follows that, with

ek = δxk
, u =

∞∑
k=1

λkek since any element u of kh(soc(Ac)) has the property that

spAc
(u) \ {0} is finite or an infinite sequence converging to zero by [7], Theorem 3.4.

�

From this we obtain the following well-known result:

kh(soc(Ac)) = soc(Ac) = K(Ac).

R em a r k 2.7. According to [13], Corollary 7.4, if A is a function algebra, then

soc(A) = K(A). Also this result is true for any C∗-algebra (see [9], C*.2.4). In

Sections 4 and 5 we will discuss the status of this equality in an abstract commutative

context.
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3. The study of “general” case

Throughout this paragraph the letter A denotes a complex semisimple commuta-

tive Banach algebra. Let Ac = C0(ΦA). Suppose that iso(ΦA) is not empty. The

main result of this section is

Proposition 3.1.

kh(soc(A)) =

{
u ∈ A : û =

∞∑

k=1

λk“ek, (ek)k>1 ⊆ Im(A), (λk)k>1 ⊂ C

}
.

To show this result we need the following facts which are very similar to those

obtained in Section 2.

The idea of the next lemma comes from [1], Remark 5.26.

Lemma 3.2. We have the following statements:

(i) If e ∈ Im(A) then there is only one element φ ∈ iso(ΦA) such that ê = δφ;

(ii) If φ ∈ iso(ΦA) then Im(A) contains only one element e such that ê = δφ.

P r o o f. (i) Fix e ∈ Im(A). Suppose that there exists φ 6= ϕ in ΦA such that

φ(e) = 1 = ϕ(e). Let a ∈ A be such that φ(a) 6= ϕ(a). There exists λ ∈ C with

ae = λe since e is a minimal idempotent in A. So φ(a) = λ = ϕ(a), a contradiction.

Thus there is only one element φ ∈ iso(ΦA) which checks φ(e) = 1 and therefore

ê = δφ.

(ii) Fix φ ∈ iso(ΦA). Then, from [12], Theorem 3.6.3 we can find a nonzero

idempotent e in A such that {φ} = {ψ : ψ(e) = 1}. Hence ê = δφ. This implies

that for each a ∈ A, ae = φ(a)e since A is semisimple. From this we may infer that

e ∈ Im(A). �

We can reproduce the following known result concerning the Riesz theory in com-

plex semisimple commutative Banach algebras.

Proposition 3.3. The following equalities are equivalent:

(i) hA(soc(A)) = ∅;

(ii) acc(ΦA) = ∅;

(iii) A = kh(soc(A)).

P r o o f. (i)⇒ (ii): Assume that there exists φ ∈ ΦA such that φ = 0 on soc(A).

Then φ is not in iso(ΦA) by (ii) of Lemma 3.2.

(ii) ⇒ (iii) and (iii) ⇒ (ii) are trivial.

(ii) ⇒ (i): If φ ∈ acc(ΦA) then φ = 0 on soc(A) by (i) of Lemma 3.2. Therefore

φ ∈ hA(soc(A)). �
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The following remark is similar to Remark 2.3.

R em a r k 3.4.

(i) Im(A) is orthogonal and closed by (i) of Lemma 3.2 and (iii) of Remark 2.3;

(ii) The sets Im(A), iso(ΦA), Im(C0(ΦA)) and iso(ΦC0(ΦA)) are in bijection;

(iii) soc(A) 6= {0} ⇔ iso(ΦA) 6= ∅.

By using Remark 3.2 and Lemma 2.2 we can deduce the following information.

R em a r k 3.5.

(i) ÷Im(A) = Im(Ac) and ÷soc(A) = soc(Ac);

(ii) hA(soc(A)) = acc(ΦA);

(iii) s ∈ soc(A) ⇔ ZΦA
(ŝ)c ∈ Pf(iso(ΦA)).

Then, using the semisimplicity of A, we deduce the following well-known result:

soc(A) =

{
u ∈ A : u =

n∑

k=1

λkek, n ∈ N
∗, (ek)n>k>1 ⊆ Im(A), (λk)n>k>1 ⊂ C

}
.

Next we will generalize the results in Lemmas 2.4 and 2.5 to the abstract commu-

tative case. To do this we will use the celebrated identification L that is defined as

follows:

Let A be a non unital commutative semisimple complex Banach algebra and A♯

its unitization. Set

ϕ∞ : A♯ → C; λ+ u 7→ λ.

And for every ϕ ∈ ΦA we put

ϕ̃ : A♯ → C; λ+ u 7→ λ+ ϕ(u),

and

L : ΦA → ΦA♯ \ {ϕ∞}; ϕ 7→ ϕ̃.

Then

ΦA♯ = L(ΦA) ∪ {ϕ∞}.

We can also check that L is a homeomorphism for the Gelfand topologies.

Lemma 3.6. Let u ∈ A.

(a) Suppose that A is unital. Then the following relations are equivalent:

(i) u ∈ Fr(A);

(ii) ϕ(u) 6= 0 for all ϕ ∈ acc(ΦA);

(iii) ZΦA
(û) ∈ Pf(iso(ΦA)).
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(b) Suppose that A is not unital. Then the following relations are equivalent:

(i) u ∈ q-Fr(A);

(ii) ZΦA
(’1− u) ∈ Pf(iso(ΦA));

(iii) ϕ′(u) 6= 1 for each ϕ′ ∈ acc(ΦA♯).

P r o o f. (a) Suppose that A is unital.

(iii) ⇒ (i): We assume that ZΦA
(û) ∈ Pf(iso(ΦA)). If u /∈ Fr(A), then there

exists an element φ0 in ΦA0
such that φ0 ◦ π(u) = 0; where A0 = A/soc(A) and π

is the canonical quotient map of A onto A0. Note that φ0 ◦ π ∈ h(soc(A)). Hence

φ0 ◦π ∈ acc(ΦA) by (ii) of Lemma 3.5, so that û(φ0 ◦π) 6= 0 which is a contradiction.

(i) ⇒ (ii): It suffices to use also (ii) of Lemma 3.5.

(ii) ⇒ (iii): It follows from Lemma 2.4.

(b) Suppose that A is not unital.

(i) ⇒ (ii): Assume that u ∈ q-Fr(A). Then 1− u ∈ Fr(A♯) so that ZΦ
A♯

(’1− u) ∈

Pf(iso(ΦA♯)) by (a). Thus ZΦA
(’1− u) ∈ Pf(iso(ΦA)) by virtue of the continuity of

L : ΦA → Φ
A♯ \ {ϕ∞}.

(ii) ⇒ (i): Suppose that ZΦA
(’1− u) ∈ Pf(iso(ΦA)). Set ZΦA

(’1− u) = {ϕ1, ϕ2,

. . . , ϕn}. Since L is open, we have ϕ̃k ∈ iso(Φ
A

♯ \ {ϕ∞}) for all 1 6 k 6 n.

Hence ZΦ
A♯
(’1− u) = {ϕ̃1, . . . , ϕ̃n} ∈ P(iso(ΦA♯ \ {ϕ∞})). Thus ZΦ

A♯
(’1− u) ∈

Pf(iso(ΦA♯ )). This implies that 1− u ∈ Fr(A♯) which is equivalent to the fact that

u ∈ q-Fr(A).

(i) ⇔ (iii): The forward implication follows from part (i) ⇒ (ii) of (b) and the

reverse implication can be obtained using part (ii)⇒ (i) in (a) together with the fact

that u ∈ q-Fr(A) ⇔ 1− u ∈ Fr(A♯). �

We give some information about the relationship between Fr(A) and Fr(Ac).

Proposition 3.7. If A is unital then the following assertions hold:

(i) u ∈ Fr(A) ⇔ û ∈ Fr(Ac), where u ∈ A;

(ii) ÷Fr(A) ⊆ Fr(Ac);

(iii) ÷Fr(A) = Fr(Ac) ⇔ “A = Ac.

P r o o f. (i) and (ii) follow from part (a) of Lemma 3.6 and Lemma 2.4.

(iii) The reverse implication is trivial by (i). Now, suppose that÷Fr(A) = Fr(Ac).

If f is an element in Ac then there exists λ ∈ C such that λ − f is an invertible

element in Ac. Hence, λ− f ∈ Fr(Ac). Since A is unital, we have f ∈ “A. �

We now conclude a generalization of Lemma 2.6 to the “abstract” commutative

case.
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Lemma 3.8. Fix u ∈ A. Then the following assertions are equivalent:

(i) u ∈ kh(soc(A));

(ii) û(ϕ′) = 0 for each ϕ′ ∈ acc(ΦA♯);

(iii) ZΦA
(û)c ∈ Pd(iso(ΦA)).

P r o o f. We can see the following equivalences by applying (1.1):

(i) ⇔ (ii): We use the equivalence (i) ⇔ (iii) of the part (b) of Lemma 3.6.

(i) ⇔ (iii): Using (i) ⇔ (ii), Lemma 2.6 and the continuity of L. �

In connection with the statement (b) we give the following assertions.

Corollary 3.9.

(i) u ∈ kh(soc(A)) ⇔ û ∈ kh(soc(Ac)), where u ∈ A;

(ii) ¤�kh(soc(A)) ⊆ kh(soc(Ac));

(iii) kh(soc(A)) = k(acc(ΦA)).

Finally, we turn to the proof of the result in Proposition 3.1.

P r o o f. By Proposition 2.1 and using the fact that ÷Im(A) = Im(Ac) we see

that

kh(soc(Ac)) =

{
f ∈ Ac : f =

∞∑

k=1

λk“ek, (ek)k>1 ⊆ Im(A), (λk)k>1 ⊂ C

}
.

Therefore applying (i) and (ii) of Corollary 3.9 we obtain our result. �

R em a r k 3.10. Does Proposition 3.1 stay true if we delete the symbol “̂”? We
show in Section 5 that the answer is negative in general.

4. Special case study with the condition that¤�kh(soc(A)) = kh(soc(Ac))

Now, to examine the veracity of the statement (b) we will study a commutative

complex unital semisimple Banach algebra A with the property that

(TS) ¤�kh(soc(A)) = kh(soc(Ac)).

Then the following two results are a summary of information concerning this algebra.

For every x ∈ A, we put ‖x‖r = rA(x) which is the spectral radius of x. Through-

out this section we always assume that iso(ΦA) is not empty.
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Proposition 4.1. If A is a commutative complex unital semisimple Banach al-

gebra with the property (TS) then

(i) (kh(soc(A)), ‖·‖r) is a Banach algebra.

(ii) kh(soc(A)) = K(A) = soc(A)
‖·‖r

= soc(A)
‖·‖
.

P r o o f. If A satisfies (TS), then the Gelfand transform and its inverse are

isomorphisms between two semisimple commutative Banach algebras. By [5], Corol-

lary 4.1.9 we may therefore infer that the norms on these two algebras are equivalent.

From this one readily obtains (i) and (ii). �

According to the statements (a), (b) and [10], Remark 2.5, this proposition gives us

a sufficient condition on a commutative complex unital semisimple Banach algebra A

in order to have that K(A) = soc(A)
‖·‖
.

From what precedes we can also see the condition (TS) like this.

R em a r k 4.2. For every commutative complex unital semisimple Banach alge-

bra A, the following conditions are equivalent:

(i) ¤�kh(soc(A)) = kh(soc(Ac));

(ii) (kh(soc(A)), ‖·‖r) is a Banach algebra;

(iii) for all f ∈ Ac; f = 0 on acc(ΦA) we have f ∈ Â.

In this case we can conclude the following beautiful characterization of kh(soc(A)).

Corollary 4.3. If A is a commutative complex unital semisimple Banach algebra

with the property (TS) then

kh(soc(A)) =

{
u ∈ A : u =

∞∑

k=1

λkek, (ek)k>1 ⊆ Im(A), (λk)k>1 ⊂ C

}
.

We can easily notice that every function algebra, within the meaning of [5], page 76,

is a commutative complex unital semisimple Banach algebra verifying (TS); conse-

quently we have

Corollary 4.4. If A is a function algebra then

kh(soc(A)) =

{
u ∈ A : u =

∞∑

k=1

λkek, (ek)k>1 ⊆ Im(A), (λk)k>1 ⊂ C

}
.

Qu e s t i o n 4.5. Let A be a commutative complex unital semisimple Banach

algebra verifying (TS). Is it a function algebra?
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5. Counter-example

Finally, in this section we give a counter-example to the statements (a) and (b).

E x am p l e 5.1. There exists a commutative complex unital semisimple Banach

algebra A such that

(i) soc(A) 6= K(A);

(ii) ¤�kh(soc(A)) 6= kh(soc(Ac));

(iii) there exists u ∈ kh(soc(A)) such that there is no family (ek)k>1 ⊆ Im(A) and

(λk)k>1 ⊂ C with u =
∞∑
k=1

λkek.

P r o o f. In [13] the author used the algebra

A = {x = (xn)n>1 : xn ∈ C, ∀n ∈ N
∗, sup{n|xn|, n ∈ N

∗} <∞}

to show the existence of a commutative complex semisimple Banach algebra such

that soc(A) 6= kh(soc(A)); precisely he noticed that u /∈ soc(A) and u ∈ kh(soc(A)),

with u = (1/n)n>1. We will utilize A♯ and the element u to establish the existence of

an algebra satisfying (i), (ii) and (iii). First note that A♯ is a commutative complex

unital semisimple Banach algebra. Then we have the following facts:

(i) We claim that u acts compactly on A♯. It suffices to prove that u is a compact

element of A. To this end, let (zk) be any sequence bounded in norm by 1 in A. If

zk = (zk;n)n>1 for each k ∈ N
∗, then for each k, n ∈ N

∗,

(5.1)
1

n
|zk;n| 6

1

n2
.

Since |zk;1| 6 1 for all k ∈ N
∗, there exists a subsequence (zj1

k
) of (zk) such that

(zj1
k
;1) converges as k → ∞. Say zj1

k
;1 → ω1 ∈ C as k → ∞ and note that |ω1| 6 1.

But from (5.1) we also have, for all k ∈ N
∗,

1

2
|zj1

k
;2| 6

1

22
.

Hence, there exists a subsequence (zj2
k
) of (zj1

k
) such that (12zj2k;2) converges as

k → ∞. Say 1
2zj2k;2 → 2ω2 ∈ C as k → ∞ and note that |2ω2| 6 1/22. We

continue inductively in this way. After m steps we obtain a subsequence (zjm
k
) of

(zjm−1

k
) such that zjm

k
;m/m → mωm as k → ∞ with |mωm| 6 1/m2. From this we

obtain the subsequence (zjk
k
) of (zk) with the following property: For each n ∈ N

∗,

the sequence (zjk
k
;n/n) converges to nωn as k → ∞. To simplify our notation, we

set jkk := jk. Let ω := (ωn) and notice that ω ∈ A since sup{n|ωn| : n ∈ N
∗} 6 1.
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In order to establish the claim we need only to verify that u2zjk → ω as k → ∞.

To get a contradiction, assume that u2zjk 9 ω as k → ∞. Then there exists an

ε > 0 such that for every N ∈ N
∗, there is some m > N satisfying ‖u2zjm −ω‖ > ε .

Consequently, there is a subsequence (zik) of (zjk) such that ‖u
2zik − ω‖ > ε for all

k ∈ N
∗. In particular, this implies that for each k ∈ N

∗ there is some nk ∈ N
∗ such

that

(5.2)
2

n2
k

>

∣∣∣ 1
nk

zik;nk
− nkωnk

∣∣∣ > ε.

From (5.2) it follows that the set {nk : k ∈ N
∗} is finite. Hence, there exists an

l ∈ {nk : k ∈ N
∗} and a subsequence (zqk) of (zik) such that for all k ∈ N

∗

∣∣∣1
l
zqk;l − lωl

∣∣∣ > ε.

But this is absurd since the sequence (zqk/l) converges to lωl as k → ∞. From this

we may infer that u2zjk → ω as k → ∞. This proves our claim.

(ii) By Proposition 4.1 we have ¤�kh(soc(A♯)) 6= kh(soc((A♯)c)).

(iii) Just take the same element u = (1/n)n>1 from (i). �

Qu e s t i o n 5.2. Does kh(soc(A)) = K(A) for every commutative complex uni-

tal semisimple Banach algebra A?

However, it is well known that this equality is false in the non-commutative context

(see [4]).
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