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Division algebras that generalize Dickson semifields

Daniel Thompson

Abstract. We generalize Knuth’s construction of Case I semifields qua-
dratic over a weak nucleus, also known as generalized Dickson semifields,
by doubling of central simple algebras. We thus obtain division algebras of
dimension 2s2 by doubling central division algebras of degree s. Results on
isomorphisms and automorphisms of these algebras are obtained in certain
cases.

1 Introduction
The commutative division algebras constructed by Dickson [6] yield proper semi-
fields of even dimension over finite fields. They have been subsequently studied
in many papers, for example in [2], [3], [8], [12]. Knuth recognised that Dickson’s
commutative division algebras also appear as a special case of another family of
semifields [10]: A subalgebra L of a division algebra S is called a weak nucleus if
x(yz)− (xy)z = 0, whenever two of x, y, z lie in L. Semifields which are quadratic
over a weak nucleus are split into two cases; Case I semifields contain Dickson’s
construction as the only commutative semifields of this type. Due to this, Case I
semifields are also called generalized Dickson semifields. Their construction is as
follows: given a finite field K = GF (pn) for some odd prime p, define a multipli-
cation on K ⊕K by

(u, v)(x, y) = (uv + cα(v)β(y), σ(u)y + vx),

for some automorphisms α, β, σ of K not all the identity automorphism and
c ∈ K \K2. This construction produces a proper semifield containing p2n elements.
Further work on semifields quadratic over a weak nucleus was done in [7] and [4].

In this paper, we define a doubling process which generalizes Knuth’s construc-
tion in [10]: for a central simple associative algebra D/F or finite field extension
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K/F , we define a multiplication on the F -vector space D ⊕D (resp. K ⊕K) as

(u, v)(x, y) = (ux+ cσ1(v)σ2(y), σ3(u)y + vσ4(x))

for some c ∈ D× and σi ∈ AutF (D) for i = 1, 2, 3, 4 (resp. c ∈ K× and σi ∈
AutF (K)). This yields an algebra of dimension 2 dimF (D) or 2[K : F ] over F .
Over finite fields, we show this construction is the same as the one presented in [10]
and yields examples of some Hughes-Kleinfeld, Knuth and Sandler semifields (for
example, see [5]). Hughes-Kleinfeld, Knuth and Sandler semifield constructions
were studied over arbitrary base fields in [1]. Dickson’s commutative semifield
construction was introduced over finite fields in [6] and considered over any base
field of characteristic not 2 when K is a finite cyclic extension in [2]. This was
generalized to a doubling of any finite field extension and central simple algebras
in [12]. The construction described in [10] has never been considered as a doubling
of central simple algebras.

After preliminary results and definitions, we define a doubling process for both
a central simple algebra D/F and a finite field extension K/F ; we recover the
multiplication used in Knuth’s construction of generalized Dickson semifields when
σ4 = id. Further, we show that it is sufficient to only consider the case where
σ4 = id. We find criteria for them to be division algebras. We then determine
the nucleus and commutator of these algebras and examine both isomorphisms
and automorphisms. The results of this paper are part of the author’s PhD thesis
written under the supervision of Dr S. Pumplün.

2 Definitions and preliminary results
In this paper, let F be a field. We define an F -algebra A as a finite dimensional
F -vector space equipped with a (not necessarily associative) bilinear map
A × A → A which is the multiplication of the algebra. A is a division algebra
if for all nonzero a ∈ A the maps La : A → A, x 7→ ax, and Ra : A → A, x 7→ xa,
are bijective maps. As A is finite dimensional, A is a division algebra if and only
if there are no zero divisors [11].

The associator of x, y, z ∈ A is defined to be [x, y, z] := (xy)z − x(yz). Define
the left, middle and right nuclei of A as

Nucl(A) := {x ∈ A : [x,A,A] = 0} ,
Nucm(A) := {x ∈ A : [A, x,A] = 0} ,

and

Nucr(A) := {x ∈ A : [A,A, x] = 0} .

The left, middle and right nuclei are associative subalgebras of A. Their intersection

Nuc(A) := {x ∈ A : [x,A,A] = [A, x,A] = [A,A, x] = 0}

is the nucleus of A. The commutator of A is the set of elements which commute
with every other element,

Comm(A) := {x ∈ A : xy = yx,∀y ∈ A} .
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The center of A is given by the intersection of Nuc(A) and Comm(A),

Z(A) := {x ∈ Nuc(A) : xy = yx,∀y ∈ A} .

For two algebras A and B, any isomorphism f : A→ B maps Nucl(A) isomorphi-
cally onto Nucl(B) (similarly for the middle and right nuclei).

An algebra A is unital if there exists an element 1A ∈ A such that

x1A = 1Ax = x

for all x ∈ A. A central simple algebra over F is an algebra A such that Z(A) = F
and A has no two-sided ideals except {0} and A. Every central simple F -algebra
A has dimension n2 over F for some n ∈ N; we call n the degree of A.

A form N : A→ F is called multiplicative if

N(xy) = N(x)N(y)

for all x, y ∈ A and nondegenerate if we have N(x) = 0 if and only if x = 0. Note
that if N : A→ F is a nondegenerate multiplicative form and A is a unital algebra,
it follows that N(1A) = 1F . We assume that N is invariant under automorphisms
of A. Every central simple algebra admits a uniquely determined nondegenerate
multiplicative form, called the norm of the algebra [9].

3 A doubling process which generalizes Knuth’s construction
Let D be a central simple associative division algebra of degree n over F with
nondegenerate multiplicative norm form ND/F : D → F . Given σi ∈ AutF (D) for
i = 1, 2, 3, 4 and c ∈ D×, define a multiplication on the F -vector space D ⊕D by

(u, v)(x, y) = (ux+ cσ1(v)σ2(y), σ3(u)y + vσ4(x)).

We denote the F -vector space endowed with this multiplication by

Cay(D, c, σ1, σ2, σ3, σ4) .

We can also define an analogous multiplication on K⊕K for a finite field extension
K/F for some c ∈ K× and σi ∈ AutF (K). We similarly denote these algebras by
Cay(K, c, σ1, σ2, σ3, σ4). This yields unital F -algebras of dimension 2 dimF (D) and
2[K : F ] respectively. When σ4 = id, our multiplication is identical to the one used
in the construction of generalized Dickson semifields. For every subalgebra E ⊆ D
such that c ∈ E× and σi|E = φi ∈ AutF (E) for i = 1, 2, 3, 4, it is clear that
Cay(E, c, φ1, φ2, φ3, φ4) is a subalgebra of Cay(D, c, σ1, σ2, σ3, σ4).

Theorem 1. (i) If ND/F (c) 6= ND/F (a)
2 for all a ∈ D×, then

Cay(D, c, σ1, σ2, σ3, σ4)

is a division algebra.

(ii) If K is separable over F and NK/F (c) 6= NK/F (a)
2 for all a ∈ K×, then

Cay(K, c, σ1, σ2, σ3, σ4) is a division algebra.
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Proof. (i) Suppose (0, 0) = (u, v)(x, y) for some u, v, x, y ∈ D such that

(u, v) 6= (0, 0) 6= (x, y) .

This is equivalent to

ux+ cσ1(v)σ2(y) = 0 , (1)

σ3(u)y + vσ4(x) = 0 . (2)

Assume y = 0. Then by (1), ux = 0, so u = 0 or x = 0 as D is a division algebra.
As (x, y) 6= (0, 0), we must have x 6= 0 so u = 0. Then by (2), vσ4(x) = 0 which
implies v = 0 or x = 0. This is a contradiction, thus it follows that y 6= 0. By (2),
vσ4(x) = −σ3(u)y. Let N = ND/F : D → F . Taking norms of both sides, we have

N(v)N(x) = (−1)nN(u)N(y)

=⇒ N(u) = (−1)nN(v)N(x)N(y)−1, (3)

since y 6= 0. Similarly, taking norms of (1) yields

N(c)N(σ1(v))N(σ2(y)) = N(−1)N(u)N(x) ,

which rearranges to

(−1)nN(u)N(x)−N(c)N(v)N(y) = 0 .

Using this and (3) implies

0 = (−1)nN(u)N(x)−N(c)N(v)N(y)

= ((−1)2nN(v)N(x)N(y)−1)N(x)−N(c)N(v)N(y)

= N(v)N(y)
[
(N(x)N(y)−1)2 −N(c)

]
. (4)

If N(v) = 0, then v = 0 so by (1) ux = 0 implies x = 0 (else (u, v) = (0, 0)). Thus
(4) implies N(c) = 0 6∈ F×, which cannot happen as c 6= 0. Thus we must have
N(v) 6= 0 and (N(x)N(y)−1)2 = N(c). Hence, if N(c) 6= N(a)2 for all a ∈ D there
cannot exist any zero divisors in A, so A is a division algebra.

(ii) The proof follows analogously as in (i); we require K to be separable over
F so that NK/F (σ(x)) = NK/F (x) for all σ ∈ AutF (K) and x ∈ K. �

Remark 1. If F = Fps and K = Fpr is a finite extension of F , then AutF (K) is
cyclic of order r/s and is generated by φs, where φ is defined by the Frobenius
automorphism φ(x) = xp for all x ∈ K. Then A = Cay(K, c, σ1, σ2, σ3, σ4) is a
division algebra if and only if c is not a square in K. The proof of this is analogous
to the one given in [10, p. 53].

Although it appears that we obtain some additional finite semifields from the
doubling process that were not considered in [10], we show that this is not the case:
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Theorem 2. Let D and D′ be two central simple F -algebras (respectively, K and
L finite field extensions of F ) and g, h : D → D′ be two F -algebra isomorphisms.
Let

AD = Cay(D, c, σ1, σ2, σ3, σ4) and BD′ = Cay(D′, g(c)b2, φ1, φ2, φ3, φ4)

for some b ∈ F× (resp.

AK = Cay(K, c, σ1, σ2, σ3, σ4) and BL = Cay(L, g(c)φ1(b)φ2(b), φ1, φ2, φ3, φ4)

for some b ∈ K×). If

φi =

{
g ◦ σi ◦ h−1 for i = 1, 2,

h ◦ σi ◦ g−1 for i = 3, 4,
(5)

then the map G : A → B, G(u, v) = (g(u), h(v)b−1) defines an F -algebra isomor-
phism.

Proof. We show the proof in the central simple algebra case. It follows analo-
gously when we take field extensions K and L. Clearly G is F -linear, additive and
bijective. It only remains to show that G is multiplicative; that is,

G((u, v)(x, y)) = G(u, v)G(x, y)

for all u, v, x, y ∈ D. First we have

G(u, v)G(x, y) = (g(u), h(v)b−1)(g(x), h(y)b−1)

=
(
g(u)g(x) + g(c)b2φ1(h(v)b

−1)φ2(h(y)b
−1), φ3(g(u))h(y)b

−1

+ h(v)b−1φ4(g(x))
)

=
(
g(ux) + g(c)φ1(h(v))φ2(h(y)), [φ3(g(u))h(y) + h(v)φ4(g(x))]b

−1).
It similarly follows that

G((u, v)(x, y)) = G(ux+ cσ1(v)σ2(y), σ3(u)y + vσ4(x))

= (g(ux+ cσ1(v)σ2(y)), h(σ3(u)y + vσ4(x))b
−1)

= (g(ux) + g(c)g(σ1(v))g(σ2(y)), [h(σ3(u))h(y) + h(v)h(σ4(x))]b
−1).

By (5), we obtain equality and thus G is an F -algebra isomorphism. �

Corollary 1. Let g, h ∈ AutF (D) (resp. AutF (K)) and b ∈ F× (resp. b ∈ K×).
Let

BD = Cay(D, g(c)b2, φ1, φ2, φ3, φ4)

(resp. BK = Cay(K, g(c)φ1(b)φ2(b), φ1, φ2, φ3, φ4) for some b ∈ K×). If

φi =

{
g ◦ σi ◦ h−1 for i = 1, 2,

h ◦ σi ◦ g−1 for i = 3, 4,

then the map G : A→ B, G(u, v) = (g(u), h(v)b−1) defines an F -algebra isomor-
phism.
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Corollary 2. Every generalised Dickson algebra AD = Cay(D, c, σ1, σ2, σ3, σ4) is
isomorphic to an algebra of the form Cay(D, c, σ′1, σ

′
2, σ
′
3, id) (analogously for the

algebras AK).

Proof. Consider the map G : D ⊕ D → D ⊕ D defined by G(u, v) = (u, σ−14 (v)).
By Theorem 2, this yields the isomorphism

Cay(D, c, σ1, σ2, σ3, σ4) ∼= Cay(D, c, σ1 ◦ σ4, σ2 ◦ σ4, σ−14 ◦ σ3, id) . �

This confirms that when K is a finite field, every algebra obtained from this
construction is isomorphic to a generalized Dickson semifield. Thus, for finite
fields the results given in [10] can be translated across to this construction via the
isomorphism given in Corollary 2. This motivates the investigation of analogue
results for the construction with both a central simple algebra D/F and a finite
field extension K/F , which have not been considered previously.

3.1 Commutator and nuclei

Unless otherwise stated, we will write

AD = Cay(D, c, σ1, σ2, σ3, id) and AK = Cay(K, c, σ1, σ2, σ3, id)

without loss of generality; if σ4 6= id, we may use Corollary 2 to obtain an isomor-
phic algebra Cay(D, c, σ′1, σ

′
2, σ
′
3, id).

Proposition 1. If σ1 = σ2 and σ3 = id, Comm(AD) = F ⊕F and AK is commuta-
tive. Otherwise, Comm(AD) = F ⊕ S, where

S = {v ∈ D : yv = vσ−11 ◦ σ2(y) and σ3(y)v = vy} ,

and Comm(AK) = Fix(σ3)⊕ 0 ⊆ K.

Proof. We compute this only forAD as the computations forAK follow analogously.
By definition, (u, v) ∈ Comm(AD) if and only if for all x, y ∈ D,

(u, v)(x, y) = (x, y)(u, v) .

This is equivalent to

ux+ cσ1(v)σ2(y) = xu+ cσ1(y)σ2(v), (6)

σ3(u)y + vx = σ3(x)v + yu, (7)

for all x, y ∈ D. If y = 0 and x 6= 0, the first equation implies u ∈ Z(D) = F ; if
x = 0 and y 6= 0, we must have v ∈ D satisfies σ1(v)σ2(y) = σ1(y)σ2(v). If we let
y ∈ F , then we have σ1(v) = σ2(v). If we use this condition in (6), we see that
v ∈ D must satisfy yv = vσ−11 ◦ σ2(y) for all y ∈ D. Under these assumptions on u
and v, (6) is satisfied for all x, y ∈ D. Similar deduction yields that (7) is satisfied
for all x, y ∈ D if and only if σ3(x)v = vx. �
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Remark 2. If Comm(AD) 6= F or Comm(AK) 6⊆ K, then σ1 = σ2 and σ3 = σ4 = id
by Lemma 1. Hence, every such algebra is isomorphic to the generalisation of
commutative Dickson algebras as defined in [12].

Proposition 2. (i) Suppose that at least one of the following holds:

• σ2 6= id,

• σ1 6= σ2 ◦ σ3,

• σ1 6= σ3 ◦ σ2.

Then

Nucl(AD) = {(x, 0) ∈ D ⊕D : σ1 ◦ σ3(x) = c−1xc} ⊆ D ⊕ 0

and
Nucl(AK) = Fix(σ1 ◦ σ3)⊕ 0 ⊆ K ⊕ 0 .

(ii) Suppose that at least one of the following holds:

• there exists some x ∈ D (resp. K) such that σ1 ◦ σ3(x) 6= c−1xc,

• σ2 6= id,

• for all v ∈ D, there exists some x ∈ D (resp. K) such that

σ3(c)σ3(σ1(x))σ3(σ2(v)) 6= xcσ1(v) .

Then Nucm(A) = Fix(σ−13 ◦ σ
−1
2 ◦ σ1)⊕ 0 for both A = AD and A = AK .

(iii) Suppose that at least one of the following holds:

• there exists some x ∈ D (resp. K) such that σ1 ◦ σ3(x) 6= c−1xc,

• σ1 6= σ2 ◦ σ3,

• for all y ∈ D, there exists some x, x′ ∈ D (resp. K) such that

σ3(c)σ3(σ1(x))x
′y 6= xcx′σ2(y) .

Then Nucr(A) = Fix(σ2)⊕ 0 for both A = AD and A = AK .

Proof. (i) First consider all elements of the form (k, 0) for k ∈ D. Then (k, 0) ∈
Nucl(AD) if and only if we have ((k, 0)(u, v))(x, y) = (k, 0)((u, v)(x, y)) for all
u, v, x, y ∈ D. Computing this directly, we obtain the equations

kux+ cσ1(σ3(k)v)σ2(y) = kux+ kcσ1(v)σ2(y) ,

σ3(ku)y + σ3(k)vx = σ3(k)σ3(u)y + σ3(k)vx .

These hold for all u, v, x, y ∈ D if and only if cσ1 ◦ σ3(k) = kc, i.e. we have
σ1 ◦σ3(k) = c−1kc. The same calculations yield that this holds for all u, v, x, y ∈ D
if and only if σ1 ◦ σ3(k) = k.
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The associator is linear in each component, so we have

[(k,m), (u, v), (x, y)] = [(k, 0), (u, v), (x, y)] + [(0,m), (u, v), (x, y)] .

It is clear that is
(k, 0), (0,m) ∈ Nucl(AD) ,

then (k,m) ∈ Nucl(AD). Conversely, suppose

(k,m) ∈ Nucl(AD) .

As [(k,m), (u, v), (x, y)] = 0 is satisfied for all u, v, x, y ∈ D, we consider x = u = 0;
from this, we obtain cσ1(σ3(k)v)σ2(y) = kcσ1(v)σ2(y) must be satisfied for all
v, y ∈ D. Comparing this with the computations for

((k, 0)(u, v))(x, y) = (k, 0)((u, v)(x, y)) ,

we see that these conditions are identical. So (k,m) ∈ Nucl(AD) implies (k, 0) ∈
Nucl(AD). As

[(0,m), (u, v), (x, y)] = [(k,m), (u, v), (x, y)]− [(k, 0), (u, v), (x, y)]

and Nucl(AD) is closed under addition, it is clear that (0,m) ∈ Nucl(AD). Thus it
follows that (k,m) lies in the left nucleus if and only if (k, 0) and (0,m) are both
also in the left nucleus. Thus to show that there are no other elements in the left
nucleus, it suffices to check that there are no elements of the form (0,m), m ∈ D,
in Nucl(AD).

If (0,m) ∈ Nucl(AD), then for all u, v, x, y ∈ D we have

((0,m)(u, v))(x, y) = (0,m)((u, v)(x, y)) .

This holds for all u, v, x, y ∈ D if and only if

cσ1(m)[σ2(v)x+ σ1(u)σ2(y)] = cσ1(m)[σ2(v)σ2(x) + σ2(σ3(u))σ2(y)] ,

σ3(cσ1(m)σ2(v))y = mcσ1(v)σ2(y) .

When m = 0, this is satisfied for all u, v, x, y ∈ D. If m 6= 0, we consider various
elements of D in order to determine some conditions on the σi. For example,
substituting v = x = 0 and y = 1 yields that σ1(u) = σ2(σ3(u)) for all u ∈ D; i.e.
σ1 = σ2 ◦ σ3. Via other similar choices of u, v, x and y, we obtain the additional
conditions that σ1 = σ3 ◦ σ2 and σ2 = id. Under these assumptions, we see that
there may exist some m 6= 0 such that

((0,m)(u, v))(x, y) = (0,m)((u, v)(x, y))

for all u, v, x, y ∈ D.
(ii) and (iii) follow analogously: we first determine all elements of the form

(k, 0) in Nucm(A) and Nucr(A) respectively. As the associator is linear in the each
component, it then suffices to look at the elements of the form (0,m). As in (i),
we determine these conditions by considering various elements of D. �
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Corollary 3. AK is associative if and only if AK = Cay(K, c, σ, id, σ, id) for some
σ ∈ AutF (K) such that σ2 = id and c ∈ Fix(σ). That is, AK is a quaternion
algebra over Fix(σ).

As the center of A is defined as

Z(A) = Comm(A) ∩Nucl(A) ∩Nucm(A) ∩Nucr(A) ,

we see that Z(AK) ⊆ K unless σ1 = σ2 = σ and σ3 = σ4 = σ−1. If

AK = Cay(K, c, σ, σ, σ−1, σ−1)

for some σ ∈ AutF (K), then AK is a commutative, associative algebra.

3.2 Isomorphisms
In certain cases, the maps defined in Theorem 2 and Corollary 1 are the only pos-
sible isomorphisms between two algebras constructed via our generalised Cayley-
-Dickson doubling:

Theorem 3. Let AK = Cay(K, c, σ1, σ2, σ3, id) and BL = Cay(L, c′, φ1, φ2, φ3, id).
Suppose that G : AK → BL is an isomorphism that restricts to an isomorphism
g : K → L. Then G is of the form G(x, y) = (g(x), g(y)b) such that φi ◦ g = g ◦ σi
for i = 1, 2, 3 and some b ∈ L× such that g(c) = c′φ1(b)φ2(b).

Proof. Suppose G is an isomorphism from AK to BL such that G|K = g : K → L
is an isomorphism. Then for all x ∈ K, we have G(x, 0) = (g(x), 0). Let G(0, 1) =
(a, b) for some a, b ∈ L. As G is multiplicative, this yields

G(x, y) = G(x, 0) +G(σ−13 (y), 0)G(0, 1)

= (g(x), 0) + (g(σ−13 (y)), 0)(a, b)

= (g(x) + g(σ−13 (y))a, φ3(g(σ
−1
3 (y)))b),

and

G(x, y) = G(x, 0) +G(0, 1)G(y, 0)

= (g(x), 0) + (a, b)(g(y), 0)

= (g(x) + g(y)a, bg(y)).

It follows that either φ3 ◦ g ◦ σ−13 = g or b = 0. However, if b = 0 this would imply
that G was not surjective, which is a contradiction to the assumption that G is an
isomorphism. Thus it follows that φ3 ◦ g ◦ σ−13 = g. Additionally, we have either
g ◦ σ−13 = g or a = 0.

Consider G((0, 1)2) = G(0, 1)2. This gives

(a2 + c′φ1(b)φ2(b), φ3(a)b+ ba) = (g(c), 0) .

As we have established that b 6= 0, this implies that φ3(a) = −a. If a 6= 0, we
obtain g ◦ σ−13 = g. Substituting this into the condition φ3 ◦ g ◦ σ−13 = g, we
conclude that φ3 = id. This contradicts φ3(a) = −a. Thus we must in fact have
a = 0 and G(x, y) = (g(x), g(y)b) where φ3 ◦ g = g ◦ σ3 and g(c) = c′φ1(b)φ2(b).
Computing G(u, v)G(x, y) = G((u, v)(x, y)) gives the remaining conditions. �
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As the isomorphism defined in Corollary 2 restricts to an automorphism of K,
Corollary 2 can be employed in conjugation with the above result to determine
isomorphisms when σ4 6= id or φ4 6= id. The proof of Theorem 3 does not hold
when we consider the algebras AD, as we rely heavily on the commutativity of K.

Corollary 4. Suppose that G : AK → BK is an isomorphism that restricts to an
automorphism g of K. Then G is of the form G(x, y) = (g(x), g(y)b) such that
φi ◦ g = g ◦ σi for i = 1, 2, 3 and some b ∈ K× such that g(c) = c′φ1(b)φ2(b).

If Nucl(A) = Nucl(B) = K, all isomorphisms from A → B must restrict to an
automorphism of K; similar considerations are true for restrictions to the middle
and right nuclei. It follows that we can determine precisely when two such algebras
are isomorphic by Corollary 4.

Corollary 5. Suppose that G : AK → BK is an isomorphism that restricts to an au-
tomorphism of K. If K is a separable extension of F , we must have NK/F (cc′−1) =
NK/F (b

2) for some b ∈ K×.

Proof. Suppose G : AK → BK is an isomorphism that restricts to an automorphism
of K. By Theorem 4, we have g(c) = c′φ1(b)φ2(b). Applying norms to both side,
we obtain

NK/F (g(c)) = NK/F (c
′φ1(b)φ2(b)).

As K is a separable extension of F , it follows that NK/F (g(x)) = NK/F (x) for all
x ∈ K, g ∈ AutF (K). This yields NK/F (c) = NK/F (c

′b2). As c′ ∈ K× and NK/F
is multiplicative, we conclude that NK/F (cc′−1) = NK/F (b

2). �

Example 1. Let F = Qp (p 6= 2) and K be a separable extension of Qp. It is
well known that (Q×p )2/Qp = {[1], [u], [p], [up]} for some u ∈ Zp \ Z2

p. If NK/F (c)
and NK/F (c

′) do not lie in the same coset of (Q×p )2/Qp, there does not exist an
isomorphism that restricts to K such that

Cay(K, c, σ1, σ2, σ3, σ4) ∼= Cay(K, c′, φ1, φ2, φ3, φ4)

by Corollary 5.

3.3 Automorphisms
Theorem 4. Let g ∈ AutF (D) (resp. AutF (K)) such that g commutes with σ1, σ2,
σ3 and let b ∈ F× (resp. b ∈ K×) such that g(c) = b2c (resp. g(c) = σ1(b)σ2(b)c).
Then the map G : A → A defined by G(u, v) = (g(u), g(v)b) is an automorphism
of AD (resp. AK).

This is easily checked via some long calculations.

Theorem 5. Suppose that at least one of Nucl(AK), Nucm(AK), Nucr(AK) is
equal to K. Then G : AK → AK is an automorphism of AK if and only if G has
the form stated in Theorem 4.
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Proof. Let A = AK . Suppose G ∈ AutF (A) and Nucl(A) = K. As automorphisms
preserve the nuclei of an algebra, G restricted to Nucl(A) must be an automorphism
of K; that is, G|K = g ∈ AutF (K) and so we have G(x, 0) = (g(x), 0) for all x ∈ K.

If Nucl(A) 6= K, by our assumptions one of Nucm(A) or Nucr(A) are equal to
K. In either case, we can use an identical argument by restricting G to Nucm(A)
or Nucr(A) respectively. As automorphisms preserve the nuclei of an algebra, G
restricted to Nucm(A) (respectively Nucr(A)) must be an automorphism of K. Let
G(0, 1) = (a, b) for some a, b ∈ K. Then

G(x, y) = G(x, 0) +G(σ−13 (y), 0)G(0, 1)

= (g(x) + g ◦ σ−13 (y)a, σ3 ◦ g ◦ σ−13 (y)b),

and also

G(x, y) = G(x, 0) +G(0, 1)G(y, 0)

= (g(x) + g(y)a, g(y)b)

for all x, y ∈ K. Hence we must have g ◦ σ−13 (y)a = g(y)a for all y ∈ K, which
implies either σ3 = id or a = 0. Additionally we have σ3 ◦ g ◦ σ−13 (y)b = g(y)b. If
b = 0, this would imply G(x, y) = (g(x) + g(y)a, 0), which is a contradiction as it
implies G is not surjective. Thus we must in fact have σ3 ◦ g ◦ σ−13 (y) = g(y) for
all y ∈ K.

Now we consider G((0, 1)2) = G(0, 1)2. This gives (a, b)(a, b) = (g(c), 0), which
implies

a2 + cσ1(b)σ2(b) = g(c),

σ3(a)b+ ba = 0.

If σ3 6= id, we already know that a = 0. On the other hand if σ3 = id, we obtain
2ab = 0. As K has characteristic not 2 and b 6= 0, this implies a = 0. In either
case, we obtain cσ1(b)σ2(b) = g(c) and G(u, v) = (g(u), g(v)b) with σ3 ◦ g = g ◦ σ3.

Finally we consider G(u, v)G(x, y) = G((u, v)(x, y)) for all u, v, x, y ∈ K. We
obtain

(g(u), g(v)b)(g(x), g(y)b) =
(
g(uv + cσ1(v)σ2(y)), g(σ3(u)y + vx)b

)
which gives the equations

cσ1(g(v)b)σ2(g(y)b) = g(c)g(σ1(v)σ2(y)),

σ3(g(u))g(y)b+ g(y)g(x)b = g(σ3(u)y + vx)b.

As g ◦ σ3 = σ3 ◦ g, the second equation holds for all u, v, x, y ∈ K. Substituting
g(c) = cσ1(b)σ2(b) into the first equation, we obtain

σ1(g(v))σ2(g(y)) = g(σ1(v))g(σ2(y))

for all v, y ∈ K. This implies σ1 ◦ g = g ◦ σ1 and σ2 ◦ g = g ◦ σ2. Hence if G is an
automorphism of A we must have G(u, v) = (g(u), g(v)b) for some g ∈ AutF (K)
such that g ◦ f = f ◦ g for f = σ1, σ2, σ3 and some b ∈ K× such that

g(c) = σ1(b)σ2(b)c . �
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Corollary 6. Suppose that at least one of Nucl(AK), Nucm(AK), Nucr(AK) is equal
to K and AutF (K) = 〈σ〉. Then G : AK → AK is an automorphism of AK if and
only if G(u, v) = (σi(u), σi(v)b) for some i ∈ Z and b ∈ K× satisfying

σi(c) = cσα2(b)σβ2(b) .

In the case when doubling a central simple algebra, we obtain a partial gener-
alisation of Theorem 5. Recall that we assume AD = Cay(D, c, σ1, σ2, σ3, id).

Lemma 1. Let G ∈ Aut(AD) be such that G|D = g ∈ AutF (D). Then there must
exist some a, b ∈ D, b 6= 0, such that for all y ∈ D,

ag(y) = g ◦ σ−13 (y)a ,

bg(y) = σ3 ◦ g ◦ σ−13 (y)b .

Proof. Suppose G|D = g ∈ AutF (D). Then for all x ∈ D, we obtain

G(x, 0) = (g(x), 0) .

Let G(0, 1) = (a, b) for some a, b ∈ D. It now follows that

G(x, y) = G(x, 0) +G(σ−13 (y), 0)G(0, 1)

= (g(x) + g ◦ σ−13 (y)a, σ3 ◦ g ◦ σ−13 (y)b) ,

and also

G(x, y) = G(x, 0) +G(0, 1)G(y, 0)

= (g(x) + ag(y), bg(y)) .

Setting these two equivalent expressions for G(x, y) equal to each other yields the
result. Note that if b = 0, G would no longer be surjective, which would contradict
our assumption that G ∈ Aut(AD). �

Theorem 6. Let G ∈ Aut(AD) be such that G|D = g ∈ AutF (D). If σ3 = id, then
G : AD → AD must have the form as stated in Theorem 4.

Proof. Suppose G|D = g ∈ AutF (D). Substituting σ3 = id into Lemma 1, we see
that G(0, 1) = (a, b) for some a, b ∈ D such that

ag(y) = g(y)a, bg(y) = g(y)b.

This is satisfied for all y ∈ D if and only if a, b ∈ F and so

G(x, y) = (g(x) + g(y)a, g(y)b) .

The remainder of this proof follows almost exactly the same to Theorem 5:
Now we consider G((0, 1)2) = G(0, 1)2. This gives (a, b)(a, b) = (g(c), 0), which

implies

a2 + cσ1(b)σ2(b) = g(c)

ab+ ba = 0 .
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As a, b ∈ F , the second equation is equivalent to 2ab = 0. As F has characteristic
not 2, this implies a = 0 or b = 0. If b = 0, G would not be surjective, which
contradicts our assumption that G is an isomorphism. Thus we must have a = 0
and so we obtain g(c) = cb2 and G(u, v) = (g(u), g(v)b).

Finally we consider G(u, v)G(x, y) = G((u, v)(x, y)) for all u, v, x, y ∈ D. We
obtain

(g(u), g(v)b)(g(x), g(y)b) =
(
g(uv + cσ1(v)σ2(y)), g(uy + vx)b

)
,

which gives the equations

cσ1(g(v)b)σ2(g(y)b) = g(c)g(σ1(v)σ2(y)),

g(u)g(y)b+ g(y)g(x)b = g(uy + vx)b.

After substituting cb2 = g(c), we conclude that this is satisfied for all x, y, u, v ∈ D
if and only if we have σ1 ◦ g = g ◦ σ1 and σ2 ◦ g = g ◦ σ2. �

For σ4 6= id, this is equivalent to assuming that σ3 = σ4.
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