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Abstract. A virus dynamics model with two state-dependent delays and logistic growth
term is investigated. A general class of nonlinear incidence rates is considered. The model
describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes)
and antibody immune responses. The wellposedness of the model proposed and Lyapunov
stability properties of interior infection equilibria which describe the cases of a chronic
disease are studied. We choose a space of merely continuous initial functions which is
appropriate for therapy, including drug administration.
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1. Introduction

At the present time, such virus infections as human immunodeficiency virus (HIV),

hepatitis B virus (HBV), hepatitis C virus (HCV) and others are referred to global

health problems. From Global hepatitis report (WHO, April 2017, see [5]) we know

that “a large number of people (about 325 million worldwide in 2015) are carriers of

hepatitis B or C virus infections, which can remain asymptomatic for decades,” and

“viral hepatitis caused 1.34 million deaths in 2015, a number comparable to deaths

caused by tuberculosis and higher than those caused by HIV. However, the number

of deaths due to viral hepatitis is increasing over time, while mortality caused by

tuberculosis and HIV is declining.”

By considering biologically-based mathematical models there is a chance to pre-

dict whether infections disease would disappear or infectious agent would remain.
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The investigation of different mathematical models can be helpful in understand-

ing pathogenesis, the dynamics of the immune responses and effectiveness of drug

treatment. The basic viral infection model was formulated by Perelson and Nelson

(see [16]) as

(1.1)
d

dt
T (t) = λ− dT (t)− βT (t)V (t),

d

dt
T ∗(t) = βT (t)V (t)− aT ∗(t),

d

dt
V (t) = aNT ∗(t)− kV (t),

where T (t), T ∗(t), V (t) represent the concentration (or total number) of non-infected

host cells, infected cells and free virions, respectively. The non-infected cells are

produced at rate λ, die at rate d and become infected at rate β. Infected cells die at

rate a. Free virus is produced by infected cells at rate aN and die at rate k. N is

the general count of new virus particles which each infected cell produces during life

(the average life span is 1/a).

Huang (see [9]) proposed the virus dynamics model with the DeAngelis-Beddington

functional response

(1.2)
d

dt
T (t) = λ− dT (t)− f(T (t), V (t)),

d

dt
T ∗(t) = f(T (t), V (t)) − aT ∗(t),

d

dt
V (t) = aNT ∗(t)− kV (t),

where f(T, V ) = βTV (1 + mT + nV )−1, β,m > 0, n > 0, T, V ∈ R. The next

step towards extension of the system was the consideration of immune response

which works against virus infection. Antibodies, natural killer cells and T cells are

essential components of a normal immune response to virus. Nowak and Bangham

in [15] formulated the following model of virus dynamics

(1.3)
d

dt
T (t) = λ− dT (t)− βT (t)V (t),

d

dt
T ∗(t) = βT (t)V (t)− aT ∗(t)− ̺Y (t)T ∗(t),

d

dt
V (t) = aNT ∗(t)− kV (t),

d

dt
Y (t) = ωT ∗(t)Y (t)− bY (t),
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where Y (t) is the concentration of CTL cells which died at rate b. Wodarz in [29]

summarized this model by adding antibody response,

(1.4)
d

dt
T (t) = λ− dT (t)− βT (t)V (t),

d

dt
T ∗(t) = βT (t)V (t)− aT ∗(t)− ̺Y (t)T ∗(t),

d

dt
V (t) = aNT ∗(t)− kV (t)− qA(t)V (t),

d

dt
Y (t) = ωT ∗(t)Y (t)− bY (t),

d

dt
A(t) = gA(t)V (t)− b′A(t),

where A(t) is the concentration of antibodies which died at rate b′ and produced by

immune cells (proportional to the concentration of viral particles). There are many

viral infection models with and without delays (see, e.g., [11], [6], [35], [33], [32], [27],

[28], [34], [14], [17], [10] and references therein). The ones that include time delays

describe the complicated (non-instant) biological processes more realistically. For

the classical theory of (constant) delay equations, see, e.g., monographs [7], [3], [12].

Wang and Liu in [27] considered the viral infection model with one constant delay,

(1.5)
d

dt
T (t) = λ− dT (t)−

βT (t)V (t)

1 + γV (t)
,

d

dt
T ∗(t) =

βT (t− τ)V (t− τ)e−aτ

1 + γV (t− τ)
− aT ∗(t)− ̺Y (t)T ∗(t),

d

dt
V (t) = aNT ∗(t)− kV (t)− qA(t)V (t),

d

dt
Y (t) = ωT ∗(t)Y (t)− bY (t),

d

dt
A(t) = gA(t)V (t)− b′A(t).

Here τ is the period of time after which the infected cells start to produce new virions.

We mention that there is no biological reason why the delay(s) should be constant.

In such a case, the extension to the state-dependent delay model is quite natural.

In our article, we study a virus infection model with logistic growth term, nonlinear

incidence rate and two state-dependent delays. State-dependent delays in the model

represent a reasonable part of biological models because of more realistic modelling

in the systems whose delays may change in accordance with the internal effects of

the system. It is important to emphasise that a state-dependent delay system is

always nonlinear by its nature. It is well understood that the presence of discrete
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state-dependent delays makes the mathematical analysis of a model quite different

from the constant delay cases (see the review on this subject [8]).

To formulate the main system under consideration, we remind an important stan-

dard notation. As usual in a delay system with (maximal) delay h > 0, for a function

v(t), t ∈ [a, b] ⊂ R, b > a + h, we denote the history segment (the state at time t)

by vt = vt(θ) ≡ v(t + θ), θ ∈ [−h, 0]. We denote the space of continuous func-

tions equipped with the sup-norm by C ≡ C([−h, 0];R5). In the above notation,

we use u(t) = (T (t), T ∗(t), V (t), Y (t), A(t)) and consider two continuous function-

als (state dependent delays) η, α : C → [0, h]. Let us consider the system with two

state-dependent delays,

(1.6)
d

dt
T (t) = rT (t)

(

1−
T (t)

TK

)

− dT (t)− f(T (t), V (t)),

d

dt
T ∗(t) = e−aτ1f(T (t− η(ut)), V (t− η(ut)))− aT ∗(t)− ̺Y (t)T ∗(t),

d

dt
V (t) = aNT ∗(t− α(ut))− kV (t)− qA(t)V (t),

d

dt
Y (t) = ωT ∗(t)Y (t)− bY (t),

d

dt
A(t) = gA(t)V (t)− b′A(t).

The logistic growth term (in the first equation of (1.6)) helps us to describe the situa-

tion when new target cells are not produced at a constant rate, but created by the pro-

liferation of existing cells which is described by a logistic function rT (t)(1−T (t)/TK).

In (1.6), r is the proliferation rate and TK is the maximum capacity of cell prolifer-

ation.

We consider system (1.6) with the initial conditions

(1.7) ϕ ≡ u0 = (T (·), T ∗(·), V (·), Y (·), A(·)) ∈ C ≡ C([−h, 0];R5).

In [34] the authors study the model with one constant delay (η ≡ h, α ≡ 0) and

a particular form of the incidence rate (DeAngelis-Beddington functional response

f(T, V ) = kTV (1 + k1T + k2V )−1, where k, k1, k2 > 0 are constants, see [1], [2]).

The Lyapunov asymptotic stability (see [13]) of points of equilibrium is studied.

For more details on the general theory of ordinary state-dependent delay equa-

tions see, e.g., [4], [8]. To the best of our knowledge the first results on viral infection

models with state-dependent delays are presented in [22], [23]. Our study is a natural

continuation and an extention of the approach proposed in [22], [23]. In the current

study we choose a space of merely continuous initial functions which could be ap-

propriate for therapy, including drug administration (see discussions and references

in [22]).
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The difference between the current study and [22], [23] is not only in the presence of

the second state-dependent delay, but also in the presence of the logistic nonlinearity

in the first equation. This logistic term is more natural in cases of HCV, HBV

infections (cf. [24]). We also notice that the introduction of one more state-dependent

delay in the model is not just a technical extension of the previous results. The

possibility to treat the new state-dependent delay essentially depends not only on

the properties of the delay itself, but also on the term where it appears. To the best

of our knowledge viral infection models with multiple state-dependent delays have

not been considered before.

The structure of the paper is the following. Section 2 includes basic results on the

wellposedness of the corresponding initial-value problem and study of the stationary

solutions. Section 3 contains the main stability results using The Lyapunov stability

theory.

2. Preliminaries and basic properties

Due to biological motivations we consider our system with the non-negative initial

conditions

(2.1) u0 = ϕ ≡ (T0, T
∗

0 , V0, Y0, A0) ∈ C+ ≡ C+[−h; 0],

where R+ ≡ [0;∞], C+ ≡ C+[−h; 0] ≡ C([−h; 0];R5
+).

We introduce the set

(2.2) ΩC ≡
{

ϕ ≡ (T0, T0, V0, A0, Y0) ∈ C+ ≡ C+[−h, 0], 0 6 T0(θ) 6 Tmax,

0 6 T ∗

0 (θ) 6
e−aτ1µTmax

a
, 0 6 V0(θ) 6

e−aτ1µTmaxN

k
,

0 6 T0(θ) +
̺

ω
Y0(θ) 6

e−aτ1µTmax

min{a, b}
,

0 6 V0(θ) +
q

g
A0(θ) 6

e−aτ1µTmaxN

min{k, b′}
, θ ∈ [−h, 0]

}

,

where Tmax ≡ 1
4rTKd

−1.

We assume that the nonlinearity in (1.6) is a function f : R
2 → R, which satisfies

(H1f ) f is a Lipschitz function; f(0, V ) = f(T, 0) = 0; f is strictly increasing in

both coordinates and |f(T, V )| 6 µ|T | for all T ∈ R and all V ∈ R.

Our main assumptions on the state-dependent delays η and α are the following

(see [18]):
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(Hη
ign) exists ηign > 0 such that η “ignores” the values of ϕ(θ) for θ ∈ (−ηign, 0],

i.e. exists ηign > 0: for all ϕ1, ϕ2 ∈ C : for all θ ∈ [−h,−ηign] ⇒ ϕ1(θ) =

ϕ2(θ) ⇒ η(ϕ1) = η(ϕ2).

(Hα
ign) exists αign > 0 such that α “ignores” the values of ϕ(θ) for θ ∈ (−αign, 0],

i.e. exists αign > 0: for all ϕ1, ϕ2 ∈ C : for all θ ∈ [−h,−αign] ⇒ ϕ1(θ) =

ϕ2(θ) ⇒ α(ϕ1) = α(ϕ2).

For more details and discussion on this type of assumptions see [18], [20].

2.1. The wellposedness and the invariance of the set ΩC . We start with

the wellposedness of the initial value problem (1.6), (1.7).

Theorem 2.1. Let η : C → [0, h] and α : C → [0, h] (state-dependent delays)

and f be continuous functionals. Then

(1) for any initial function ϕ ∈ C there exist continuous solutions of the system

(1.6), (1.7);

(2) if additionally η satisfies (Hη
ign) and α satisfies (H

α
ign) and f satisfies (H1f ), then

for any initial function ϕ = (T1, T
∗

1 , V1, Y1, A1) ∈ ΩC , the system has a unique

solution. The solution depends continuously on the initial function and satisfies

ut = (Tt, T
∗

t , Vt, Yt, At) ∈ ΩC , t > 0.

R em a r k 2.2. It is well-known that differential equations with state-dependent

delay may possess multiple solutions starting at a continuous initial function, see

examples in [4]. There are two ways to get a well-posed initial value problem. The

first one (see [26], [8], [19]) is to restrict the space of initial functions to Lipschitz (or

more smooth) in-time ones. The second way (see [18], [20]) is to use assumptions of

the type (Hη
ign) to remain in the space C (merely continuous in-time functions). In

the current study we apply the second approach (see [18]).

P r o o f of Theorem 2.1. (1) The existence of continuous solutions is guaranteed

by the continuity of the right-hand side of the system (1.6) and classical results on

the delay equations (see [7], [3]).

(2) For the well-posedness, we use the corresponding extension to the state-

dependent delay case which relies on the assumptions (Hη
ign) and (Hα

ign) (see [18]).

This approach makes the proof simpler and provides the uniqueness and continuous

dependence on initial data. Discussing the invariance of the set ΩC , we first check

that all coordinates of solution u(t) = (T (t), T ∗(t), V (t), Y (t), A(t)) of our system

are non-negative provided such are the initial values. We use the quasi-positivity

property of the right-hand side of (1.6) (cf. [25], Theorem 2.1, page 81). We empha-

size that in the presence of the state-dependent delay we cannot directly apply [25],

Theorem 2.1, page 81 because it relies on the Lipschitz property of the right-hand
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side of a system, which we do not have in case of (1.6). Instead, we use the corre-

sponding extension to the state-dependent delay case (see [21]) which relies on the

assumptions (Hη
ign) and (Hα

ign).

Now we prove the upper bounds given in (2.2) (see the definition of the set ΩC).

We need the following simple property.

Lemma 2.3 ([23]). Let l ∈ C1[a, b) and satisfies d
dt l(t) 6 c1 − c2l(t), t ∈ [a, b).

Then from the fact that l(a) 6 c1c
−1
2 it follows that l(t) 6 c1c

−1
2 for all t ∈ [a, b). In

the case b = ∞ for all ε > 0 exists tε > a : l(t) 6 c1c
−1
2 + ε for all t > tε.

The proof of Lemma 2.3 is simple and can be found in [23].

Since f is a non-negative function for non-negative arguments, we obtain the

estimate d
dtT (t) 6 rT (t)(1 − T (t)/TK)− dT (t) (see the first equation in (1.6)). The

graph of the function rT (1 − T/TK) is a parabola which reaches its maximum at

the vertex (12TK ,
1
4rTK). So we can use Lemma 2.3 with c1 = 1

4rTK and c2 = d.

From the inequality T (0) 6 1
4rTKd

−1 we obtain that T (t) 6 1
4rTKd

−1 for t > 0.

We use this inequality to estimate the second coordinate T ∗(t). We also note that

|f(T, V )| 6 µ|T | 6 µTmax. Therefore,
d
dtT

∗(t) 6 e−aτ1µTmax−aT
∗(t) and Lemma 2.3

gives the necessary upper bound in (2.2).

From the boundedness of T ∗(t) and the third equation of the system we have

d

dt
V (t) 6 aNT ∗(t− α(ut))− kV (t) 6 e−aτ1µTmaxN − kV (t).

Lemma 2.3 proves the estimate for V in (2.2). Next, we use the second and fourth

equation to obtain

d

dt
T ∗(t) +

̺

ω

d

dt
Y (t) 6 e−aτ1f(T (t− η(ut)), V (t− η(ut))) − aT ∗(t)−

̺b

ω
Y (t)

6 e−aτ1µTmax −min{a, b}
(

T ∗(t) +
̺

ω
Y (t)

)

.

Lemma 2.3 proves the boundedness for T ∗(t) + ̺ω−1Y (t) in (2.2). Similarly, using

the third and fifth equations of the system, we get

d

dt
V (t) +

q

g

d

dt
A(t) 6 aNT ∗(t− α(ut))− kV (t)−

q

g
b′A(t)

6 e−aτ1µTmaxN −min{k, b′}
(

V (t) +
q

g
A(t)

)

.

The last estimate in (2.2) follows from Lemma 2.3. It gives the invariance of the

set ΩC . All the solutions are global (defined for all t > −h) due to the boundedness

(the invariance of ΩC). �
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2.2. Stationary solutions. Now we pay attention to stationary solutions of (1.6).

We denote the coordinates of a stationary solution by u∗ = (T1, T
∗

1 , V1, Y1, A1). Since

the stationary solutions of the system do not depend on the type of delay (state-

dependent or constant), then we have

(2.3) rT1

(

1−
T1
TK

)

− dT1 − f(T1, V1) = 0,

e−aτ1f(T1, V1)− aT ∗

1 − ̺Y1T
∗

1 = 0,

aNT ∗

1 − kV1 − qA1V1 = 0,

ωT ∗

1 Y1 − bY1 = 0,

gA1V1 − b′A1 = 0.

Our interest is in the stationary solutions with all positive coordinates (inner equi-

libria). From the last two equations it follows that T ∗

1 = b/ω, V1 = b′/g. Then from

the third equation we see that A1 = (aNbg − kωb′)/qωb′. Positivity of A1 follows

from the assumption that the constants of the system satisfy the inequality

(H2) aNbg > kωb′.

Substituting V1 = b′/g in the first equation of (2.3), we obtain

rT1

(

1−
T1
TK

)

− dT1 = f
(

T1,
b′

g

)

,(2.4)

−
r

TK
T 2
1 + (r − d)T1 = f

(

T1,
b′

g

)

.(2.5)

Our next assumption is

(H3) f
(r − d

2r
TK ,

b′

g

)

6
TK
4r

(r − d)2.

As a kind of motivation, we mention some important examples of nonlinearities f ,

which satisfy (H3).

Lemma 2.4. The DeAngelis-Beddington functional response f(T, V ) = βTV/

(1+µT+γV ) and the functional response of Crowley-Martin type (see [31]) f(T, V ) =

βTV/(1 + µT )(1 + γV ) both satisfy (H3).

P r o o f of Lemma 2.4. We start with the DeAngelis-Beddington functional re-

sponse. One has

−
r

TK
T 2
1 + (r − d)T1 =

βT1b
′g−1

1 + µT1 + γb′g−1
.
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We assume that the concentration of non-infected cells is positive (for the obvious

biological reason). Hence

−
r

TK
T1

(

1 + µT1 + γ
b′

g

)

+ (r − d)
(

1 + µT1 + γ
b′

g

)

= βT1
b′

g
,

−
rµ

TK
T 2
1 + T1

(

−
r

TK

(

1 + γ
b′

g

)

+ µ(r − d)
)

+ (r − d)
(

1 + γ
b′

g

)

− βT1
b′

g
= 0,

D =
( r

TK

(

1 + γ
b′

g

)

+ µ(r − d)
)2

−
4rµ

TK
β
b′

g
,

T1 =
rT−1

K (1 + γg−1)− µ(r − d)

−2rµT−1
K

±

√

(rT−1
K (1 + γb′g−1) + µ(r − d))2 − 4rµT−1

K βb′g−1

−2rµT−1
K

.

We deal with T1 >
1
2TK(1− d/r) to study the stability of the stationary solution.

For this case the assumption on the parameters is

rT−1
K (1 + γb′g−1)− µ(r − d)

−2rµT−1
K

−

√

(

rT−1
K (1 + γb′g−1) + µ(r − d)

)2
− 4rµT−1

K βb′g−1

−2rµT−1
K

>
TK
2

(

1−
d

r

)

;

TK
r

√

( r

TK

(

1 + γ
b′

g

)

+ µ(r − d)
)2

−
4rµ

TK
β
b′

g
> 1 + γ

b′

g
;

2(r − d)
(

1 + γ
b′

g

)

+
TK
r
µ(r − d)2 − 4β

b′

g
> 0;

2(r − d)
(

1 + γ
b′

g
+
TK
2r
µ(r − d)

)

> 4β
b′

g
⇒

βb′

g + 1
2µg(r − d)r−1TK + γb′

6
r − d

2
.

By substituting the form of the functional response in (H3) we get

1
2β(r − d)r−1TKb

′g−1

1 + µ 1
2 (r − d)r−1TK + γb′g−1

6
TK
4r

(r − d)2,

βb′

g + 1
2µg(r − d)r−1TK + γb′

6
r − d

2
.

Hence the DeAngelis-Beddington functional response satisfies (H3).

Now we continue with the Crowley-Martin functional response. One has

−
r

TK
T 2
1 + (r − d)T1 =

βT1b
′g−1

(1 + µT1)(1 + γb′g−1)
.
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As before, we assume T1 6= 0. Then

−
r

TK
T1(1 + µT1)

(

1 + γ
b′

g

)

+ (r − d)(1 + µT1)
(

1 + γ
b′

g

)

= β
b′

g
;

−
rµ

TK

(

1 + γ
b′

g

)

T 2
1 + T1

(

−
r

TK

(

1 + γ
b′

g

)

+ µ(r − d)
(

1 + γ
b′

g

))

+ (r − d)
(

1 + γ
b′

g

)

− β
b′

g
= 0;

D =
( r

TK

(

1 + γ
b′

g

)

+ µ(r − d)
(

1 + γ
b′

g

))2

−
4rµ

TK

(

1 + γ
b′

g

)

β
b′

g
;

T1 =
rT−1

K (1 + γb′g−1)− µ(r − d)(1 + γb′g−1)TK(1 + γb′g−1)

−2rµT−1
K (1 + γb′g−1)

±

√

(

rT−1
K (1 + γb′g−1) + µ(r − d)(1 + γb′g−1)

)2
− 4rµT−1

K (1 + γb′g−1)βb′g−1

−2rµT−1
K (1 + γb′g−1)

.

Since T1 > 1
2TK(1 − d/r), to satisfy (H3), one needs the following condition on

the parameters of the system

rT−1
K (1 + γb′g−1)− µ(r − d)(1 + γb′g−1)TK(1 + γb′g−1)

−2rµT−1
K (1 + γb′g−1)

±

√

(

rT−1
K (1 + γb′g−1) + µ(r − d)(1 + γb′g−1)

)2
− 4rµT−1

K (1 + γb′g−1)βb′g−1

−2rµT−1
K (1 + γb′g−1)

>
TK
2

(

1−
d

r

)

;

TK

√

(

rT−1
K (1 + γb′g−1) + µ(r − d)(1 + γb′g−1)

)2
− 4rµT−1

K (1 + γb′g−1)βb′g−1

r(1 + γb′g−1)
> 1;

2(r − d)µ
(

1 +
TK
2r

(r − d)µ
)

− 4β
b′µ

g(1 + γb′g−1)
> 0;

2(r − d)
(

1 +
TK
2r

(r − d)µ
)

> 4β
b′

g(1 + γb′g−1)
⇒

βb′g−1

(1 + µ 1
2 (r − d)r−1TK)TK

6
r − d

2
.

We substitute the form of Crowley-Martin functional response into (H3) to get

1
2β(r − d)r−1TKb

′g−1

(1 + 1
2µ(r − d)r−1TK)(1 + γb′g−1)

6
TK
4r

(r − d)2

or a simpler inequality

(2.6)
βb′g−1

(1 + 1
2µ(r − d)r−1TK)(1 + γb′g−1)

6
r − d

2
.
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Hence, we see that the Crowley-Martin functional response satisfies the prop-

erty (H3), provided (2.6) is valid.

The proof of Lemma 2.4 is complete. �

Now we return to the general case. Since f(·, b′g−1) is strictly increasing in the first

coordinate, continuous and f
(

0, b′g−1
)

= 0, by assumption (H3), the equation (2.5)

has the unique positive root satisfying

(2.7) T1 ∈
[TK

2

(

1−
d

r

)

, TK

(

1−
d

r

)]

.

R em a r k 2.5. It is important to mention that, in the general case, there could

be other positive roots (even multiple) of (2.5), satisfying T1 <
1
2TK(1−d/r). In the

current study we are interested in the unique root, satisfying (2.7). This case reflects

the situation when more than half of the target organ constitutes of healthy cells.

We believe that this equilibrium is the most interesting from the biological point of

view.

The first two equations in (2.3) give (recall that T ∗

1 is already known)

Y1 =
ω

̺b

(

eaτ1
(

rT1

(

1−
T1
TK

)

− dT1

)

− a
b

ω

)

.

The positivity of Y1 follows from the assumption

(H4) a
b

ω
< rT1

(

1−
T1
TK

)

− dT1,

where T1 is the positive root of (2.5) (under the assumption (H3)). We summarise

the above estimates in the following

Proposition 2.6. Suppose that the assumptions (H2), (H3), (H4) are satisfied

and f satisfies (H1f ). Then the system (2.3) has a solution (T1, T
∗

1 , V1, Y1, A1) (the

stationary solution of the system) with the unique T1 satisfying (2.7). All the co-

ordinates are positive, T1 is the positive root of (2.5), (2.7) and the coordinates

satisfy

T ∗

1 =
b

ω
, V1 =

b′

g
, A1 =

aNbg − kωb′

qωb′
,(2.8)

Y1 = (̺T ∗

1 e
aτ1)−1

((

rT1(1−
T1
TK

)

− dT1

)

− aT ∗

1 e
aτ1 ,

aNT ∗

1 = (k + qA1)V1, rT1

(

1−
T1
TK

)

− dT1 = f(T1, V1),

eaτ1(a+ ̺Y1)T
∗

1 = f(T1, V1).
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We use these equations connecting the coordinates of the stationary solution in

the study of stability.

3. Stability properties

Consider the following (non-negative) Volterra function v(x) = x − 1 − ln (x) :

(0,∞) → R+, which plays an important role in the construction of the Lyapunov

function for the system. An important property is (see, e.g., [23])

(3.1)
(x − 1)2

2(1 + δ)
6 v(x) 6

(x− 1)2

2(1− δ)
∀ δ ∈ (0, 1), ∀x ∈ (1− δ, 1 + δ).

As before, we denote by u(t) = (T (t), T ∗(t), V (t), Y (t), A(t)) and ϕ∗ = (T1, T
∗

1 , V1,

Y1, A1) the stationary solution of the system, described in Proposition 2.6.

We also assume that f satisfies the inequality

(H2f )
( V

V1
−
f(T, V )

f(T, V1)

)(f(T, V1)

f(T, V )
− 1

)

< 0

in some neighbourhood Uµ(T1, V1) of (T1, V1) for all (T, V ) ∈ Uµ(T1, V1).

The following assumptions (proposed in [22]) on the state-dependent functionals η

and α are based on the properties (Hη
ign) and (H

α
ign). For η we consider an arbitrary

ϕ ∈ C and its arbitrary extension ϕext(s), s ∈ [−h, ηign], with a constant ηign > 0

defined in (Hη
ign). Due to the property (H

η
ign) we could define an auxiliary function

ηϕ(t) ≡ η(ϕext
t ), t ∈ [0, ηign]. Since both η and ϕ are continuous we see that η

ϕ ∈

C[0, ηign]. We are interested in the (right) derivative of η
ϕ at zero and its properties.

Now we are ready to formulate our next local assumption on η, which was proposed

in [22].

(H2η) There is a µ-neighborhood of the stationary point ϕ
st such that (for any ϕ ∈ C

satisfying ‖ϕ− ϕst‖C < µ) the following two properties hold:

(a) exists η′+(ϕ) = lim
τ→0+

τ−1(η(ϕext
τ )− η(ϕ)) = lim

τ→0+
τ−1(ηϕ(τ) − η(ϕ)) ∈ R;

(b) η′+(·) is continuous at ϕ
st.

R em a r k 3.1. Since η′+(ϕ
st) = 0, then (b) means that |η′+(ϕ)| 6 δε with δε → 0

as ε→ 0 for ‖ϕ− ϕst‖C < ε.

We assume that the similar property (H2α) holds for the delay α.

Our main stability result follows.

Theorem 3.2. Suppose that the assumptions (H2), (H3) and (H4) are satisfied.

Assume that the nonlinearity f satisfies (H1f ) and (H2f ). Suppose that the state-

dependent delay η : C → [0, h] satisfies (Hη
ign) and (H2η) and α : C → [0, h] satisfies

(Hα
ign) and (H2α).
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Then the stationary solution ϕ∗ = (T1, T
∗

1 , V1, Y1, A1) of the system is locally

asymptotically stable.

P r o o f of Theorem 3.2. We introduce the following Lyapunov function with two

state-dependent delays along a solution of the system (1.6), (1.7),

U sdd(t) = e−aτ1

(

T (t)− T1 −

∫ T (t)

T1

f(T1, V1)

f(θ, V1)
dθ

)

+ T ∗

1 v
(T ∗(t)

T ∗

1

)

+
a+ ̺Y1
aN

V1v
(V (t)

V1

)

+
̺

ω
Y1g

(Y (t)

Y1

)

+
q

gN

(

1 +
̺Y1
a

)

A1g
(A(t)

A1

)

+ (a+ ̺Y1)T
∗

1

∫ t

t−η(ut)

v
(f(T (θ), V (θ))

f(T1, V1)

)

dθ

+ (a+ ̺Y1)T
∗

1

∫ t

t−α(ut)

v
(T ∗(θ)

T ∗

1

)

dθ.

We calculate the time derivative (along a solution) of the last two integrals

d

dt

∫ t

t−η(ut)

v
(f(T (θ), V (θ))

f(T1, V1)

)

dθ

= v
(f(T (t), V (t))

f(T1, V1)

)

− v
(f(T (t− η(ut)), V (t− η(ut)))

f(T1, V1)

)(

1−
d

dt
η(ut)

)

,

d

dt

∫ t

t−α(ut)

v
(T ∗(θ)

T ∗

1

)

dθ = v
(T ∗(t)

T ∗

1

)

− v
(T ∗(t− α(ut))

T ∗

1

)(

1−
d

dt
α(ut)

)

.

Comparing this to the derivative of the Lyapunov function for the system with no

state-dependent delays, we can see a difference in the appearance of two terms:

Ssdd(t) = −v
(f(T (t− η(ut)), V (t− η(ut)))

f(T1, V1)

) d

dt
η(ut),

Ssddd(t) = −v
(T ∗(t− α(ut))

T ∗

1

) d

dt
α(ut).

For the form of the above terms Ssdd and Ssddd, see Remark 3.3 below.

Note that the class of non-linear functions f is wider than the type of DeAngelis-

Beddington. It is

d

dt
U sdd(t) = e−aτ1

(

1−
f(T1, V1)

f(T (t), V1)

)(

rT (t)
(

1−
T (t)

TK

)

− dT (t)− f(T (t), V (t))
)

+
(

1−
T ∗

1

T ∗(t)

)

(e−aτ1f(T (t− η(ut)), V (t− η(ut)))

− aT ∗(t)− ̺Y (t)T ∗(t))
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+
a+ ̺Y1
aN

(

1−
V1
V (t)

)

(aNT ∗(t− α(ut))− kV (t)− qA(t)V (t))

+
̺

ω

(

1−
Y1
Y (t)

)

(ωT ∗(t)Y (t)− bY (t))

+
q

gN

(

1 +
̺Y1
a

)(

1−
A1

A(t)

)

(gA(t)V (t)− b′A(t))

+ e−aτ1(f(T (t), V (t))− f(T (t− η(ut)), V (t− η(ut))))

+ (a+ ̺Y1)T
∗

1 ln
f(T (t− η(ut)), V (t− η(ut)))

f(T (t), V (t))

+ (a+ ̺Y1)T
∗

1

(T ∗(t)

T ∗

1

−
T ∗(t− α(ut))

T ∗

1

+ ln
T ∗(t− α(ut))

T ∗(t)

)

+ (a+ ̺Y1)T
∗

1 (S
sdd(t) + Ssddd(t)).

Substitute the following terms into the expression above

rT1

(

1−
T1
TK

)

− dT1 = f(T1, V1); aNT ∗

1 = (k + qA1)V1; T ∗

1 =
b

ω
;

V1 =
b′

g
; A1 =

aNbg − ωkb′

qωb′
.

We have

d

dt
U sdd(t) = e−aτ1

(

1−
f(T1, V1)

f(T (t), V1)

)(

rT (t)
(

1−
T (t)

TK

)

− dT (t)− rT1

(

1−
T1
TK

)

+ dT1 + f(T1, V1)− f(T (t), V (t))
)

+
(

1−
T ∗

1

T ∗(t)

)

× (e−aτ1f(T (t− η(ut)), V (t− η(ut)))− aT ∗(t)− ̺Y (t)T ∗(t))

+
a+ ̺Y1
aN

(

1−
V1
V (t)

)

(aNT ∗(t− α(ut))− kV (t)− qA(t)V (t))

+
̺

ω

(

1−
Y1
Y (t)

)

(ωT ∗(t)Y (t)− bY (t))

+
q

gN

(

1 +
̺Y1
a

)(

1−
A1

A(t)

)

(gA(t)V (t)− b′A(t))

+ e−aτ1(f(T (t), V (t))− f(T (t− η(ut)), V (t− η(ut))))

+ (a+ ̺Y1)T
∗

1 ln
f(T (t− η(ut)), V (t− η(ut)))

f(T (t), V (t))

+ (a+ ̺Y1)T
∗

1

(T ∗(t)

T ∗

1

−
α(ut)

T ∗

1

+ ln
T ∗(t− α(ut))

T ∗(t)

)

+ (a+ ̺Y1)T
∗

1 (S
sdd(t) + Ssddd(t)).
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By simplifying, we get

rT (t)
(

1−
T (t)

TK

)

− dT (t)− rT1

(

1−
T1
TK

)

+ dT1 + f(T1, V1)− f(T (t), V (t))

= (r − d)(T (t)− T1)−
r

TK
(T (t)− T1)(T (t) + T1) + f(T1, V1)− f(T (t), V (t))

= (T (t)− T1)
(

r − d−
r

TK
(T (t) + T1)

)

+ f(T1, V1)− f(T (t), V (t)).

Due to the assumption (H3), we have T1 >
1
2TK(1− dr−1). Under the conditions of

Theorem 3.2, we see that the function (T −T1)(r−d− rT
−1
K (T +T1)) vanishes when

T = T1 and changes the sign from positive to negative (when increasing in T ). Also

the function e−aτ1(1−f(T1, V1)/f(T, V1)) changes the sign from positive to negative.

That means that the product of these terms is non-positive, actually equals zero,

when T = T1 only. We denote this non-positive term by D1 6 0. Hence

d

dt
U sdd(t) = D1 + e−aτ1

(

1−
f(T1, V1)

f(T (t), V1)

)

(f(T1, V1)− f(T (t), V (t)))

+ e−aτ1
(

1−
f(T1, V1)

f(T (t), V1)

)

(eaτ1(a+ ̺Y1)T
∗

1 − f(T (t), V (t)))

+ e−aτ1f(T (t− η(ut)), V (t− η(ut)))− aT ∗(t)− ̺Y (t)T ∗(t)

−
T ∗

1

T ∗(t)
(e−aτ1f(T (t− η(ut)), V (t− η(ut)))− aT ∗(t)− ̺Y (t)T ∗(t))

+ (a+ ̺Y1)T
∗(t− α(ut))−

k(a+ ̺Y1)

aN
V (t)−

q(a+ ̺Y1)

aN
A(t)V (t)

−
V1
V (t)

(

(a+ ̺Y1)T
∗(t− α(ut))−

k(a+ ̺Y1)

aN
V (t)

−
q(a+ ̺Y1)

aN
A(t)V (t)

)

+ ̺T ∗(t)Y (t)−
̺b

ω
Y (t)−

Y1
Y (t)

(

̺T ∗(t)Y (t)−
̺b

ω
Y (t)

)

+
q

aN
(a+ ̺Y1)A(t)V (t)−

q

gN

(

1 +
̺Y1
a

)

b′A(t)

−
q

gN

(

1 +
̺Y1
a

)

gV (t)A1 +
q

gN

(

1 +
̺Y1
a

)

b′A1

+ e−aτ1f(T (t), V (t))− e−aτ1f(T (t− η(ut)), V (t− η(ut)))

+ (a+ ̺Y1)T
∗

1 ln
f(T (t− η(ut)), V (t− η(ut)))

f(T (t), V (t))

+ (a+ ̺Y1)T
∗

1

(T ∗(t)

T ∗

1

−
T ∗(t− α(ut))

T ∗

1

+ ln
T ∗(t− α(ut))

T ∗(t)

)

+ (a+ ̺Y1)T
∗

1 (S
sdd(t) + Ssddd(t)).
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So, one has

d

dt
U sdd(t) = D1 + e−aτ1

(

1−
f(T1, V1)

f(T (t), V1)

)

(f(T1, V1)− f(T (t), V (t)))

+ (a+ ̺Y1)T
∗

1 −
f(T1, V1)

f(T (t), V1)
(a+ ̺Y1)T

∗

1 − e−aτ1f(T (t), V (t))

+ e−aτ1 f(T1, V1)

f(T (t), V1)
f(T (t), V (t))− aT ∗(t)

− (a+ ̺Y1)T
∗

1

T ∗

1

T ∗(t)

f(T (t− η(ut)), V (t− η(ut)))

f(T1, V1)

+ aT ∗

1 + ̺Y (t)T ∗

1 + (a+ ̺Y1)T
∗(t− α(ut))−

k(a+ ̺Y1)

aN
V (t)

−
V1
V (t)

(a+ ̺Y1)T
∗(t− α(ut)) +

k(a+ ̺Y1)

aN
V1 +

q(a+ ̺Y1)

aN
A(t)V1

−
̺b

ω
Y (t)− ̺T ∗(t)Y1 +

̺b

ω
Y1 −

q

gN

(

1 +
̺Y1
a

)

b′A(t)

−
q

gN

(

1 +
̺Y1
a

)

gV (t)A1 +
q

gN

(

1 +
̺Y1
a

)

b′A1 + e−aτ1f(T (t), V (t))

+ (a+ ̺Y1)T
∗

1 ln
f(T (t− η(ut)), V (t− η(ut)))

f(T (t), V (t))

+ (a+ ̺Y1)T
∗

1

(T ∗(t)

T ∗

1

−
T ∗(t− α(ut))

T ∗

1

+ ln
T ∗(t− α(ut))

T ∗(t)

)

+ (a+ ̺Y1)T
∗

1 (S
sdd(t) + Ssddd(t)).

We see that

e−aτ1
f(T1, V1)f(T (t), V (t))

f(T (t), V1)
= (a+ ̺Y1)T

∗

1

f(T (t), V (t))

f(T (t), V1)
,

k(a+ ̺Y1)

aN
V1 =

aNT ∗

1 − qA1V1
aN

(a+ ̺Y1) = (a+ ̺Y1)T
∗

1 −
q

aN
(a+ ̺Y1)A1V1,

aT ∗

1 =
k + qA1

N
V1 =

k

N
V1 +

q

N
A1V1.

Hence

d

dt
U sdd(t) = D1 + (a+ ̺Y1)T

∗

1 −
f(T1, V1)

f(T (t), V1)
(a+ ̺Y1)T

∗

1

+ (a+ ̺Y1)T
∗

1

f(T (t), V (t))

f(T (t), V1)

− (a+ ̺Y1)T
∗

1

T ∗

1

T ∗(t)

f(T (t− η(ut)), V (t− η(ut)))

f(T1, V1)

+
k

N
V1 +

q

N
A1V1 −

k(a+ ̺Y1)

aN
V (t)
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− (a+ ̺Y1)T
∗

1

(T ∗(t− α(ut))

T ∗

1

V1
V (t)

)

+ (a+ ̺Y1)T
∗

1

−
q

N
A1V1 −

q̺

aN
Y1A1V1 +

q(a+ ̺Y1)

aN
A(t)V1 +

̺b

ω
Y1

−
qb′

gN
A(t) −

q̺b′

gNa
Y1A(t) −

q

N
V (t)A1 −

q̺

Na
V (t)Y1A1

+
qb′

gN
A1 +

q̺b′

gNa
Y1A1 + (a+ ̺Y1)T

∗

1 ln
f(T (t− η(ut)), V (t− η(ut)))

f(T (t), V (t))

+ (a+ ̺Y1)T
∗(t− α(ut))− aT ∗(t)− ̺T ∗(t)Y1

+ (a+ ̺Y1)T
∗

1

(T ∗(t)

T ∗

1

−
T ∗(t− α(ut))

T ∗

1

+ ln
T ∗(t− α(ut))

T ∗(t)

)

+ (a+ ̺Y1)T
∗

1 (S
sdd(t) + Ssddd(t)).

It is easy to show that

k

N
V1 −

k

aN
(a+ ̺Y1)V (t) +

q

aN
(a+ ̺Y1)A(t)V1 +

̺

ω
Y1b−

qb′

gN
A(t)

−
q̺b′

gNa
Y1A(t) −

q

N
V (t)A1 −

q̺

Na
V (t)Y1A1 +

qb′

gN
A1

= (a+ ̺Y1)T
∗

1

(

1−
V (t)

V1

)

,

d

dt
U sdd(t) = D1 − (a+ ̺Y1)T

∗

1

[ f(T1, V1)

f(T (t), V1)
−
f(T (t), V (t))

f(T (t), V1)

+
T ∗

1

T ∗(t)

f(T (t− η(ut)), V (t− η(ut)))

f(T1, V1)

T ∗(t− α(ut))

T ∗

1

V1
V (t)

+
V (t)

V1
− 3

]

− ln
f(T (t− η(ut)), V (t− η(ut)))T

∗(t− α(ut))

f(T (t), V (t))T ∗(t)

+ (a+ ̺Y1)T
∗

1 (S
sdd(t) + Ssddd(t)).

We add and subtract the expression 1−V (t)f(T (t), V1)/(V1f(T (t), V (t))) into the

square brackets above,

d

dt
U sdd(t) = D1 − (a+ ̺Y1)T

∗

1

( f(T1, V1)

f(T (t), V1)
+
T ∗(t− α(ut))

T ∗

1

V1
V (t)

+
V (t)f(T (t), V1)

V1f(T (t), V (t))
+

T ∗

1

T ∗(t)

f(T (t− η(ut)), V (t− η(ut)))

f(T1, V1)

− 4− ln
f(T (t− η(ut)), V (t− η(ut)))T

∗(t− α(ut))

f(T (t), V (t))T ∗(t)

+
V (t)

V1
−
f(T (t), V (t))

f(T (t), V1)
+ 1−

V (t)f(T (t), V1)

V1f(T (t), V (t))

)

+ (a+ ̺Y1)T
∗

1 (S
sdd(t) + Ssddd(t)).
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By R1(t), we denote the following terms in the equality above,

(3.2) R1(t) ≡
V (t)

V1
−
f(T (t), V (t))

f(T (t), V1)
+ 1−

V (t)f(T (t), V1)

V1f(T (t), V (t))
.

We have

R1(t) =
V (t)

V1
−
f(T (t), V (t))

f(T (t), V1)
+
f(T (t), V (t))f(T (t), V1)

f(T (t), V1)f(T (t), V (t))
−
V (t)f(T (t), V1)

V1f(T (t), V (t))

=
V (t)

V1

(

1−
f(T (t), V1)

f(T (t), V (t))

)

−
f(T (t), V (t))

f(T (t), V1)

(

1−
f(T (t), V1)

f(T (t), V (t))

)

=
(V (t)

V1
−
f(T (t), V (t))

f(T (t), V1)

)(

1−
f(T (t), V1)

f(T (t), V (t))

)

.

The assumption (H2f ) guarantees that R
1(t) > 0 in a neighbourhood of the sta-

tionary solution. We split the logarithm as

ln
f(T (t− η(ut)), V (t− η(ut)))T

∗(t− α(ut))

f(T (t), V (t))T ∗(t)

= ln
f(T1, V1)

f(T (t), V1)
+ ln

T ∗(t− α(ut))V1
T ∗

1 V (t)

+ ln
T ∗

1 f(T (t− η(ut)), V (t− η(ut)))

T ∗(t)f(T1, V1)
+ ln

V (t)f(T (t), V1)

V1f(T (t), V (t))
.

One has

(3.3)
d

dt
U sdd(t)

= D1 − (a+ ̺Y1)T
∗

1R
1(t)

− (a+ ̺Y1)T
∗

1

(

v
( f(T1, V1)

f(T (t), V1)

)

+v
(T ∗(t− α(ut))

T ∗

1

V1
V (t)

)

+ v
(V (t)f(T (t), V1)

V1f(T (t), V (t))

)

+ v
( T ∗

1

T ∗(t)

f(T (t− η(ut)), V (t− η(ut)))

f(T1, V1)

))

+ (a+ ̺Y1)T
∗

1 (S
sdd(t) + Ssddd(t)).

Note that D1 6 0. Then

(3.4)
d

dt
U sdd(t) = −Dsdd(t) + (a+ ̺Y1)T

∗

1 · Ssdd(t) + (a+ ̺Y1)T
∗

1 · Ssddd(t),

where

(3.5) Dsdd(t) = −D1 + (a+ ̺Y1)T
∗

1R
1(t) + (a+ ̺Y1)T

∗

1

(

v
( f(T1, V1)

f(T (t), V1)

)

+ v
(T ∗(t− α(ut))

T ∗

1

V1
V (t)

)

+ v
(V (t)f(T (t), V1)

V1f(T (t), V (t))

)

+ v
( T ∗

1

T ∗(t)

f(T (t− η(ut)), V (t− η(ut)))

f(T1, V1)

))

.
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Our goal is to prove that there exists a neighbourhood of u∗ ∈ C in which
d
dtU

sdd(t) < 0 except for the point u∗. Note that Dsdd(t) > 0 at the same time

when the signs of Ssdd(t) and Ssddd(t) are not defined (may change). We show that

a neighbourhood of the stationary point, where |Ssdd(t)+Ssddd(t)| < Dsdd(t) exists.

We consider the auxiliary functionals D6(x), S61(x) and S62(x), which are defined

on R
6. We simplify the notation, i.e.

x(1) = T, x(2) = T ∗(t− α), x(3) = T ∗, x(4) = V,

x(5) = T (t− η), x(6) = V (t− η),

D6(x) =
( f(T1, V1)

f(x(1), V1)
− 1

)2

+
( x(2)V1
T ∗

1 x
(4)

− 1
)2

(3.6)

+
(x(4)f(x(1), V1)

V1f(x(1), x(4))
− 1

)2

+
(T ∗

1 f(x
(5), x(6))

x(3)f(T1, V1)
− 1

)2

+ c(1)(x(1) − T1)
2 + c(2)(x(4) − V1)

2, c(i) ∈ R,

S61(x) = αv
(f(x(5), x(6))

f(T1, V1)

)

, S62(x) = βv
(x(2)

T ∗

1

)

, α, β > 0.(3.7)

Note that D6(x) = 0 if and only if x = (T1, T
∗

1 , T
∗

1 , V1, T1, V1).

Let us verify that D6(x) gives the factor r2 in front of the sum, i.e.

D6(x) = r2 · Φ(r, ξ1, . . . , ξ5).

We start by considering examples and using spherical coordinates

x(1) = T1 + r cos ξ5 cos ξ4 cos ξ3 cos ξ2 cos ξ1;

x(2) = T ∗

1 + r cos ξ5 cos ξ4 cos ξ3 cos ξ2 sin ξ1;

x(3) = T ∗

1 + r cos ξ5 cos ξ4 cos ξ3 sin ξ2;

x(4) = V1 + r cos ξ5 cos ξ4 sin ξ3;

x(5) = T1 + r cos ξ5 sin ξ4;

x(6) = V1 + r sin ξ5; r > 0, ξ1 ∈ [0; 2π), ξi ∈ [− 1
2π; 12π], i = 2, . . . , 5.

It is interesting to see how the spherical coordinates show an important property

in particular case of the DeAngelis-Beddington functional response f . The corre-

sponding calculations are presented in Remark 3.4 below.

In general case we apply the Taylor formula

(3.8) f̃(x(1), x(2), . . . , x(6)) =
2

∑

k=0

dkf̃(x̂1, x̂2, . . . , x̂6)

k!
+R2(x

(1), x(2), . . . , x(6)),

R2(x) = o(̺2),
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with ̺ =
( 6
∑

i=1

(x(i)−x̂i)
2
)1/2

to the function f̃(x(1), x(2), . . . , x(6)) = D6(x) (see (3.6))

of six variables at the point x̂ = (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) with coordinates

x̂1 = T1, x̂2 = T ∗

1 , x̂3 = T ∗

1 , x̂4 = V1, x̂5 = T1, x̂6 = V1.

Let us put f̃0 = f̃(x̂1, x̂2, . . . , x̂6), so we have (3.8) with

f̃0 = 0,

df̃0 = (x(1) − x̂1)
∂f̃0
∂x(1)

+ (x(2) − x̂2)
∂f̃0
∂x(2)

+ . . .+ (x(6) − x̂6)
∂f̃0
∂x(6)

,

d2f̃0
2

=
1

2
(x(1) − x̂1)

2 ∂2f̃0
∂x(1)2

+
1

2
(x(2) − x̂2)

2 ∂
2f̃0

∂x(2)2
+ . . .+

1

2
(x(6) − x̂6)

2 ∂2f̃0
∂x(6)2

+ (x(1) − x̂1)(x
(2) − x̂2)

∂2f̃0
∂x(1)x(2)

+ . . .+ (x(5) − x̂5)(x
(6) − x̂6)

∂2f̃0
∂x(5)x(6)

.

It is easy to see that df̃0 equals zero at the point x̂ = (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6), so

starting with 1
2d

2f̃0 one has r
2 as a multiplier. More precisely, we substitute

the spherical coordinates in R
6 to show that D6(x) = r2 · Φ(r, ξ1, . . . , ξ5), where

Φ(r, ξ1, . . . , ξ5) is continuous and Φ(r, ξ1, . . . , ξ5) 6= 0 if r 6= 0 (otherwise exists

r0 6= 0: Φ(r0, ξ1, . . . , ξ5) = 0, which contradicts (3.1)). Hence, by the Bolzano-

Weierstrass theorem, the continuous function Φ in a closed neighbourhood of the

stationary point ϕst has a minimum Φmin > 0. Hence, D6(x) > r2 · Φmin.

Now we estimate from above the absolute values of S61(x), S62(x).

For this, we use the inequality v(x) 6 1
2 (x− 1)2/(1− δ) (see (3.1)) to get

|S61(x)| = α
∣

∣

∣
v
(f(x(5), x(6))

f(T1, V1)

)
∣

∣

∣
6 α

∣

∣

∣

1

2(1− δ)

(f(x(5), x(6))

f(T1, V1)
− 1

)2∣
∣

∣

= α
∣

∣

∣

1

2(1− δ)

(βx(5)x(6)(1 + µT1 + γV1)− βT1V1(1 + µx(5) + γx(6))

f(T1, V1)(1 + µT1 + γV1)(1 + µx(5) + γx(6))

)2∣
∣

∣
.

Substituting the spherical coordinates implies |S61(x)| 6 αε · r
2, where αε → 0 for

ε→ 0. Here ε 6 δ. Similarly

|S62(x)| =
∣

∣

∣
βv

(x(2)

T ∗

1

)
∣

∣

∣
6 β

∣

∣

∣

1

2(1− δ)

(x(2)

T ∗

1

− 1
)2∣
∣

∣

= β
∣

∣

∣

(T ∗

1 + r cos ξ5 cos ξ4 cos ξ3 cos ξ2 sin ξ1 − T ∗

1

T ∗

1 2(1− δ)

)2∣
∣

∣
.

We arrive at |S62(x)| 6 ωε · r
2, where ωε → 0 for ε→ 0. As a result, we have

d

dt
U sdd(t) 6 −cr2 · (Φmin − αε − ωε) < 0.

The proof of Theorem 3.2 is complete. �
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R em a r k 3.3 (cf. [22]). Note that for any u ∈ C1([−r; b);R5) we have d
dtη(ut) =

[(Dη)(ut)](u̇t),
d
dtα(ut) = [(Dα)(ut)](u̇t) for t ∈ [0; b), where [(Dη)(ut)](u̇t) is the

Fréchet derivative of η at the point ut, [(Dα)(ut)](u̇t) is the Fréchet derivative of α

at the point ut. Therefore, for a solution in the µ-neighborhood of the stationary

solution ϕ, the estimate | ddtη(ut)| 6 ‖(Dη)(ut)‖L(C;R) · ‖u̇t‖C 6 µ‖(Dη)(ut)‖L(C;R)

guarantees the property | ddtη(ut)| 6 αµ with αµ → 0 for µ → 0 because of the

boundedness of ‖(Dη)(ψ)‖L(C;R) for µ → 0 (from ‖ψ − ϕ‖C < µ). Similarly,

| ddtα(ut)| 6 ‖(Dα)(ut)‖L(C;R) · ‖u̇t‖C 6 µ‖(Dα)(ut)‖L(C;R) guarantees the property

| ddtα(ut)| 6 σµ with σµ → 0 for µ → 0 due to the boundedness of ‖(Dα)(ψ)‖L(C;R)

with µ→ 0 (from ‖ψ − ϕ‖C < µ).

R em a r k 3.4. In Theorem 3.2, in the particular case of the DeAngelis-

Beddington functional response f , we use the following six properties:

( f(T1, V1)

f(x(1), V1)
− 1

)2

=
(βT1V1(1 + µx(1) + γV1)

βx(1)V1(1 + µT1 + γV1)
− 1

)2

(1)

=
(T1(1 + µx(1) + γV1)− x(1)(1 + µT1 + γV1)

x(1)(1 + µT1 + γV1)

)2

=
((1 + γV1)(T1 − T1 − r cos ξ5 cos ξ4 cos ξ3 cos ξ2 cos ξ1)

x(1)(1 + µT1 + γV1)

)2

= r2 · Φ1(r, ξ1, . . . , ξ5).

( x(2)V1
T ∗

1 x
(4)

− 1
)2

=
(x(2)V1 − T ∗

1 x
(4)

T ∗

1 x
(4)

)2

(2)

=
( (T ∗

1 + r cos ξ5 cos ξ4 cos ξ3 cos ξ2 sin ξ1)V1 − T ∗

1 (V1 + r cos ξ5 cos ξ4 sin ξ3)

T ∗

1 x
(4)

)2

= r2 · Φ2(r, ξ1, . . . , ξ5).

(x(4)f(x(1), V1)

V1f(x(1), x(4))
− 1

)2

=
(x(4)f(x(1), V1)− V1f(x

(1), x(4))

V1f(x(1), x(4))

)2

(3)

=
(x(4)βx(1)V1(1 + µx(1) + γV1)

−1 − V1βx
(1)x(4)(1 + µx(1) + γx(4))−1

V1f(x(1), x(4))

)2

=
(x(4)βx(1)V1(1 + µx(1) + γx(4))− V1βx

(1)x(4)(1 + µx(1) + γV1)

V1f(x(1), x(4))(1 + µx(1) + γV1)(1 + µx(1) + γx(4))

)2

=
( x(4)βx(1)V1(1 + µx(1) + γx(4) − 1− µx(1) − γV1)

V1f(x(1), x(4))(1 + µx(1) + γV1)(1 + µx(1) + γx(4))

)2

=
( x(4)βx(1)V1γ(V1 + r cos ξ5 cos ξ4 sin ξ3 − V1)

V1f(x(1), x(4))(1 + µx(1) + γV1)(1 + µx(1) + γx(4))

)2

= r2 · Φ3(r, ξ1, . . . , ξ5).
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(T ∗

1 f(x
(5), x(6))

x(3)f(T1, V1)
− 1

)2

=
(T ∗

1 f(x
(5), x(6))− x(3)f(T1, V1)

x(3)f(T1, V1)

)2

(4)

=
(T ∗

1 βx
(5)x(6)(1 + µx(5) + γx(6))−1 − x(3)βT1V1(1 + µT1 + γV1)

−1

x(3)f(T1, V1)

)2

=
(T ∗

1 β(T1 + r cos ξ5 sin ξ4)(V1 + r sin ξ5)(1 + µT1 + γV1)

x(3)f(T1, V1)(1 + µx(5) + γx(6))(1 + µT1 + γV1)

−
(T ∗

1 + r cos ξ5 cos ξ4 cos ξ3 sin ξ2)βT1V1(1 + µ(T1 + r cos ξ5 sin ξ4))

x(3)f(T1, V1)(1 + µx(5) + γx(6))(1 + µT1 + γV1)

−
(T ∗

1 + r cos ξ5 cos ξ4 cos ξ3 sin ξ2)βT1V1γ(V1 + r sin ξ5)

x(3)f(T1, V1)(1 + µx(5) + γx(6))(1 + µT1 + γV1)

)2

.

We see that all the terms above include the factor r2, so

(T ∗

1 f(x
(5), x(6))

x(3)f(T1, V1)
− 1

)2

= r2 · Φ4(r, ξ2, . . . , ξ5).

Further:

c(1)(x(1) − T1)
2 = c(1)(T1 + r cos ξ5 cos ξ4 cos ξ3 cos ξ2 cos ξ1 − T1)

2(5)

= r2 · Φ5(r, ξ1, . . . , ξ5).

c(2)(x(4) − V1)
2 = c(2)(V1 + r cos ξ5 cos ξ4 sin ξ3 − V1)

2(6)

= r2 · Φ6(r, ξ3, . . . , ξ5).

The estimates above show that the factor r2 is present in D6(x).

A c k n ow l e d g em e n t. The authors are thankful to an anonymous referee for

useful comments which led to better presentation.
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