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Abstract. We give some deformations of the Rikitake two-disk dynamo system. Particu-
larly, we consider an integrable deformation of an integrable version of the Rikitake system.
The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-
Poisson structures and also symplectic realizations. Furthermore, we give a prequantization
result of one of the Poisson manifold. We study the stability of the equilibrium states and
we prove the existence of periodic orbits. We analyze some properties of the energy-Casimir
mapping EC associated to our system. In many cases the dynamical behavior of such sys-
tems is related with some geometric properties of the image of the energy-Casimir mapping.
These connections were observed in the cases when the image of EC is a convex proper sub-
set of R2. In order to point out new connections, we choose deformation functions such
that Im(EC) = R

2. Using the images of the equilibrium states through the energy-Casimir
mapping we give parametric equations of some special orbits, namely heteroclinic orbits,
split-heteroclinic orbits, and split-homoclinic orbits. Finally, we implement the mid-point
rule to perform some numerical integrations of the considered system.

Keywords: integrable deformation; Hamilton-Poisson system; stability; energy-Casimir
mapping; periodic orbit; heteroclinic orbit; mid-point rule
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1. Introduction

It is well-known that the shapes of the orbits of a three-dimensional Hamilton-

Poisson system are given by the intersections of the level sets H = h and C = c,

whereH is the Hamiltonian and C is a Casimir of the Poisson structure (see e.g. [16]).

Denote by S the set of all pairs (h, c) for which the above mentioned intersection
is nonempty. Consequently, every pair (h, c) ∈ S gives rise to an orbit. Moreover,
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h and c can be regarded as parameters, which leads to a kind of planar bifurcation

diagram. Some curves of bifurcation that partition S into subsets in which a consid-
ered system has the same dynamics, are expected. Considering the energy-Casimir

mapping EC corresponding to a three-dimensional Hamilton-Poisson system [38], the
set S is the image of EC and the curves of bifurcation are given by the images of
the equilibrium states through the energy-Casimir mapping (see also the curves of

critical energy states [1]). Moreover, some connections between the dynamical prop-

erties of such systems and the image of the corresponding energy-Casimir mapping

were reported (see also [26], [6]). In these works, the images of the energy-Casimir

mappings of the considered systems are convex proper subsets of R2 and they pro-

vide a complete picture of the dynamics of the analyzed systems. Despite the fact

that it was not proven, a general result, the presence of periodic orbits, as well as of

homoclinic and heteroclinic orbits, can be predicted in these cases (see also [23]). On

the other hand, in the case when the image of the energy-Casimir mapping is R2, the

dynamics is more complex [39], [7] and the analysis of many systems is necessary.

In this paper, we analyze a three-dimensional Hamilton-Poisson system whose

energy-Casimir mapping has the image R2. This system is related with the well-

known Rikitake two-disk dynamo system, which is a simple mechanical system used

to model the reversals of the Earth’s magnetic field [14], [9]. The Rikitake system

describes the currents of two coupled dynamo disks [37], [10]. It was widely analyzed.

Among other topics, we mention: chaotic behavior [18], [40], dynamics [32], [44], [45],

synchronization [43], [42], [20], and secure communication [34]. In [30], an integrable

version of the Rikitake system was considered. We recall some topics related to this

version: invariant algebraic surfaces [30], analytic and Darbouxian integrals [41],

symplectic realization and some symmetries [27]. Furthermore, an extensive study

from some standard and nonstandard Poisson geometry points of view was performed

[38]. A fractional version of this system was studied in [19]. In [22], integrable defor-

mations of an integrable version of the Rikitake system were obtained. By choosing

particular deformation functions, one obtains new Hamilton-Poisson systems with

various dynamical behavior.

The integrable deformations of integrable systems of ODEs were the subject of

recent papers. If such a system is endowed with Lie-Poisson symmetries, a gen-

eral method of construction of integrable deformations was proposed by considering

Poisson-Lie groups as deformations of Lie-Poisson (co)algebras [4]. In [12] a fam-

ily of integrable deformations of the Bogoyavlenskij-Itoh systems was constructed

based on the fact that the Casimirs of a family of compatible Poisson structures

for the undeformed systems provide a generating function for the integrals in invo-

lution of the deformed systems. In [13], [24], [28], integrable deformations of some

three-dimensional Hamilton-Poisson systems were constructed. The new systems are
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obtained by alteration of the constants of motion of the initial systems. The deformed

systems are Hamilton-Poisson too, and they generalize initial systems. Furthermore,

in [25] an integrable deformations method for three-dimensional systems of differ-

ential equations was introduced. Using this method, in this paper we give some

deformations of the Rikitake system. Particularly, we consider deformation func-

tions such that the image of the energy-Casimir mapping is R2. Our purpose is to

study the new dynamics. On one hand, we try to establish how the dynamics is

changed. On the other hand, we analyze which connections between the image of

the energy-Casimir mapping and dynamical properties, that were established for the

undeformed system, remain true. Moreover, we try to set out which kind of orbits

can be predicted in such cases.

The paper is organized as follows. In Section 2, using the integrable deformations

method for three-dimensional systems of differential equations [25], we construct

some deformations of the Rikitake two-disk dynamo system. Section 3 deals with the

study of a particular integrable deformation. Firstly, we present Hamilton-Poisson

realizations and symplectic realizations of the considered system. We also give a pre-

quantization result. Secondly, we study the stability of the equilibrium states of the

system. Then we prove the existence of some periodic orbits. Moreover, in connec-

tion with the images of the equilibrium states through the energy-Casimir mapping,

we point out some special orbits of the considered system, such as heteroclinic orbits,

split-heteroclinic orbits, and split-homoclinic orbits. More precisely, for an arbitrary

equilibrium state we consider the level sets of the Hamiltonian and Casimir functions

at this point. Then we reduce the considered system from three degrees of freedom

to one degree of freedom. Integrating the resulted differential equation we obtain

a special solution of our system. In the last section we give a numerical integration

of the considered system. There are several numerical integrators, but a geometric

integrator, which preserves the constants of motion and the Poisson structure, even-

tually, is preferred. We implement the mid-point rule [3]. In our case this integrator

is an almost Poisson integrator which preserves exactly the Hamiltonian and Casimir

functions.

For details on Hamilton-Poisson mechanics, see, for example [29], [35] and refer-

ences therein.

2. Deformations of the two-disk dynamo system

In this section we construct some deformations of the two-disk dynamo system.

These deformations are obtained using the integrable deformations method for

a three-dimensional system of differential equations [25]. We should mention here

that in [17] deformations of the other version of the Rikitake system were considered.
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Using some change of variables [10], [15] (also see [22]), a version of the Rikitake

two-disk dynamo system is given by

(2.1) ẋ = yz − rx + ay, ẏ = xz − ax− ry, ż = g − xy,

where a ∈ R and g, r > 0.

The above-mentioned method requires to identify a Hamilton-Poisson part of the

considered system. More precisely, the system ẋ = g(x) is a Hamilton-Poisson part

of a three-dimensional system ẋ = g(x)+h(x) if it has two functionally independent

constants of motion. We identify more Hamilton-Poisson parts of system (2.1). For

instance, we mention systems ẋ = yz, ẏ = xz, ż = −xy and ẋ = ay, ẏ = −ax,
ż = −xy. In the sequel we consider a widely investigated integrable version of system
(2.1) given by the following equations (see, for example, [30]):

(2.2) ẋ = yz + ay, ẏ = xz − ax, ż = −xy.

Integrable deformations of this system were given in [22], namely

(2.3) ẋ = yz + ay + a
∂α

∂y
+
y

2

∂α

∂z
− z

∂β

∂y
+
y

2

∂β

∂z
+

1

2

(∂α
∂y

∂β

∂z
− ∂α

∂z

∂β

∂y

)
,

ẏ = xz − ax− a
∂α

∂x
+
x

2

∂α

∂z
+ z

∂β

∂x
− x

2

∂β

∂z
− 1

2

(∂α
∂x

∂β

∂z
− ∂α

∂z

∂β

∂x

)
,

ż = −xy − y

2

∂α

∂x
− x

2

∂α

∂y
− y

2

∂β

∂x
+
x

2

∂β

∂y
+

1

2

(∂α
∂x

∂β

∂y
− ∂α

∂y

∂β

∂x

)
,

where α and β are arbitrary differentiable functions on R
3. It is obvious that if α

and β vanish, then (2.3) reduces to (2.2).

We also recall that the functions C1 and C2 given by

(2.4) C1(x, y, z) =
1

2
x2 +

1

2
y2 + z2 + α(x, y, z),

C2(x, y, z) =
1

2
x2 − 1

2
y2 + 2az + β(x, y, z)

are constants of motion of system (2.3). Moreover, system (2.3) is bi-Hamiltonian,

that is, it can be written in the form

(2.5) ẋ = {x,C2}1 = {x,C1}2, ẏ = {y, C2}1 = {y, C1}2, ż = {z, C2}1 = {z, C1}2,

where the compatible Poisson brackets are given by

(2.6) {x, y}1 = −z − 1

2

∂α

∂z
, {x, z}1 =

y

2
+

1

2

∂α

∂y
, {y, z}1 = −x

2
− 1

2

∂α

∂x
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and

(2.7) {x, y}2 = a+
1

2

∂β

∂z
, {x, z}2 =

y

2
− 1

2

∂β

∂y
, {y, z}2 =

x

2
+

1

2

∂β

∂x
,

respectively [22].

Now, via the integrable deformation method [25], we obtain the following theorem.

Theorem 2.1. Let α, β be arbitrary differentiable functions on R
3. Then an

integrable deformation of system (2.1) is given by the following system:

(2.8) ẋ = yz − rx + ay + a
∂α

∂y
+
y

2

∂α

∂z
− z

∂β

∂y
+
y

2

∂β

∂z
+

1

2

(∂α
∂y

∂β

∂z
− ∂α

∂z

∂β

∂y

)
,

ẏ = xz − ax− ry − a
∂α

∂x
+
x

2

∂α

∂z
+ z

∂β

∂x
− x

2

∂β

∂z
− 1

2

(∂α
∂x

∂β

∂z
− ∂α

∂z

∂β

∂x

)
,

ż = g − xy − y

2

∂α

∂x
− x

2

∂α

∂y
− y

2

∂β

∂x
+
x

2

∂β

∂y
+

1

2

(∂α
∂x

∂β

∂y
− ∂α

∂y

∂β

∂x

)
.

Note that the divergence of the flow of system (2.8) is ∇ · f̃ = −2r 6 0, which

is in fact the divergence of the flow of two-disk dynamo system (2.1). Therefore,

systems (2.1) and (2.8) are both dissipative or conservative.

In order to obtain an easier deformation, we consider the deformation functions

α(x, y, z) = (b− 1)z2 and β(x, y, z) = 0, where b ∈ R is a deformation parameter. In

this case system (2.8) becomes

(2.9) ẋ = byz − rx + ay, ẏ = bxz − ax− ry, ż = g − xy.

The main part of this paper, namely the study of an integrable case of the above

system, is given in the next sections.

3. The study of a particular integrable deformation

of the two-disk dynamo system

In this section we analyze a particular integrable deformation of the Rikitake sys-

tem. More precisely, we present two Hamilton-Poisson realizations of the considered

system and also symplectic realizations. Furthermore, we study the stability of the

equilibrium states of the system and the existence of some periodic orbits. Finally,

we give parametric representations of some special orbits, such as heteroclinic orbits

or unbounded orbits, in connection with the image of the energy-Casimir mapping.
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Consider r = g = 0. Then the deformed version of the two-disk dynamo given

by (2.9) becomes the following particular integrable deformation of the Rikitake

system:

(3.1) ẋ = byz + ay, ẏ = bxz − ax, ż = −xy.

We notice that system (3.1) is an integrable version of the Rikitake system with

the parametric control functions u1(x, y, z) = (b − 1)yz and u2(x, y, z) = (b − 1)xz

about Ox and Oy axes, respectively, where b is the tunning parameter.

3.1. Lie-Poisson structures, symplectic realizations and geometric pre-

quantization. The constants of motion of system (3.1) are given by (2.4), namely

(3.2) C1(x, y, z) =
1

2
x2 +

1

2
y2 + bz2, C2(x, y, z) =

1

2
x2 − 1

2
y2 + 2az.

Considering C1 as a Casimir function and C2 the Hamiltonian, the corresponding

Poisson bracket is given by (2.6)

(3.3) {x, y}1 = −bz, {x, z}1 =
y

2
, {y, z}1 = −x

2
.

Following [22], we analogously obtain that this linear Poisson bracket corresponds to

the Lie algebra so(3),

so(3) =




X =




0 −w v

w 0 −u
−v u 0


 ; u, v, w ∈ R




 .

We recall the proof [22]. Let [·, ·]D be the nonstandard commutator on the space
of skew-symmetric matrices so(3) [8] given by [X,Y ]D = XDY − Y DX, where

D = diag(− 1
2 ,− 1

2 ,−b) is a diagonal matrix. A basis of so(3) is given by Bso(3) =

{f1, f2, f3}, where

f1 =




0 0 0

0 0 −1

0 1 0



 , f2 =




0 0 1

0 0 0

−1 0 0



 , f3 =




0 −1 0

1 0 0

0 0 0



 .

We obtain [f1, f2]D = −bf3, [f1, f3]D = 1
2f2, [f2, f3]D = − 1

2f1. Therefore, the Lie-

Poisson structure {·, ·}1 (3.3) is defined on so(3)∗ ≃ R
3. Taking into account (2.5),

we obtain that system (3.1) has the Hamilton-Poisson realization (so(3)∗, {·, ·}1, C2).

Now, considering C1 the Hamiltonian and C2 the Casimir function, the second

Poisson structure is given by (2.7), namely

(3.4) {x, y}2 = a, {x, z}2 =
y

2
, {y, z}2 =

x

2
.
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This linear Poisson Bracket is in fact a modified Lie-Poisson bracket corresponding

to Lie algebra e(1, 1),

e(1, 1) =

{
X =




0 0 0

α 0 γ

β γ 0



 ; α, β, γ ∈ R

}
.

Indeed, considering the basis B
e(1,1) = {e1, e2, e3}, where

e1 =



0 0 0

1 0 0

0 0 0


 , e2 =




0 0 0

0 0 0

−1 0 0


 , e3 =



0 0 0

0 0 1
2

0 1
2 0


 ,

we get [e1, e2] = 0, [e1, e3] =
1
2e2, [e2, e3] =

1
2e1.

Consider the bilinear formΘ: e(1, 1)×e(1, 1)→R given by the matrix (Θij)16i,j63,

Θ12 = −Θ21 = a, and 0 otherwise. Then Θ is a symplectic cocycle of the Lie

algebra e(1, 1). Because Θ(e1, e2) = a 6= 0 = f([e1, e2]), for every linear map

f, f : e(1, 1) → R, Θ is not a coboundary. Following [29], the modified Lie-Poisson

structure {·, ·}2 of the dual space e(1, 1)∗ ≃ R
3 associated with the symplectic co-

cycle Θ is defined. Therefore, system (3.1) has the Hamilton-Poisson realization

(e(1, 1)∗, {·, ·}2, C1). We mention that an interesting study of quadratic Hamilton-

Poisson systems on e(1, 1)∗ was performed in [5].

In the following we give symplectic realizations of the considered system.

Taking into account that the dynamics of a Hamilton-Poisson system is foliated

by the symplectic leaves associated to the corresponding Poisson structure, it results

that the restriction of the dynamics (3.1) to a regular leaf of each of the above Poisson

structures is a Hamiltonian system. More precisely, we have:

Proposition 3.1. Let (e(1, 1)∗ ≃ R
3, {·, ·}2, C1) be a Hamilton-Poisson realiza-

tion of system (3.1), where the Poisson structure {·, ·}2 and the Hamiltonian C1 are

given by (3.4) and (3.2), respectively. For every c ∈ R, let Oc = C−1
2 (c) be the regu-

lar symplectic leaf of the Poisson structure {·, ·}2 with the Casimir function C2 given

by (3.2). Then the restriction of system (3.1) to Oc is a Hamiltonian mechanical

system, namely (T ∗
R ≃ R

2, ω,H), where the symplectic form is ω = adp ∧ dq, and
the Hamiltonian is given by

(3.5) H =
1

2
q2 +

1

2
p2 +

b

4a2

(
c− 1

2
q2 +

1

2
p2
)2
.
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P r o o f. The Poisson bracket induced by ω is

{f, g}ω = a
(∂f
∂q

∂g

∂p
− ∂f

∂p

∂q

∂p

)
.

Hence, the dynamics of (R2, ω,H) is given by the equations

(3.6) q̇ = {q,H}ω = ap+
b

2a

(
c− 1

2
q2 +

1

2
p2
)
p,

ṗ = {p,H}ω = −aq + b

2a

(
c− 1

2
q2 +

1

2
p2
)
q.

Let c ∈ R. Then

C−1
2 (c) =

{
(x, y, z) ; z =

1

2a

(
c− 1

2
x2 +

1

2
y2
)}
.

We define the immersion ψ : R
2 → R

3,

ψ(q, p) = (x, y, z) =
(
q, p,

1

2a

(
c− 1

2
q2 +

1

2
p2
))
.

Then we obtain that equations (3.6) are mapped onto equations (3.1) and the canon-

ical structure {·, ·}ω is mapped onto the Poisson structure {·, ·}2, which finishes the
proof. �

The next result gives us another symplectic realization of the considered system.

Proposition 3.2. The Hamilton-Poisson realization (R3 , {·, ·}2 , C1) of sys-

tem (3.1) has a full symplectic realization (T ∗
R

2 ≃ R
4, ω, H̃), where

ω = a(dp1 ∧ dq1 + dp2 ∧ dq2) and H̃ =
1

2
q21 +

1

2
p21 +

b

4a2

(
p2 −

1

2
q21 +

1

2
p21

)2
.

P r o o f. The Hamilton’s equations corresponding to H̃ are:

(3.7)





q̇1 = ap1 +
b

2a

(
p2 −

1

2
q21 +

1

2
p21

)
p1,

q̇2 =
b

2a

(
p2 −

1

2
q21 +

1

2
p21

)
,

ṗ1 = −aq1 +
b

2a

(
p2 −

1

2
q21 +

1

2
p21

)
q1,

ṗ2 = 0.

We define the application ϕ : R
4 → R

3,

(3.8) ϕ(q1, q2, p1, p2) = (x, y, z), x = q1, y = p1, z =
1

2a

(
p2 −

1

2
q21 +

1

2
p21

)
.
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We obtain that ϕ is a submersion, equations (3.7) are mapped onto equations (3.1)

and the Poisson structure {·, ·}ω induced by ω is mapped onto the Poisson struc-
ture {·, ·}2.
Therefore, (R4, ω, H̃) is a full symplectic realization of the Hamilton-Poisson me-

chanical system (R3, {·, ·}2, C1). �

Now, it is natural to ask whether system (3.7) is completely integrable in the

Liouville’s sense. The answer is affirmative.

Proposition 3.3. The Hamiltonian mechanical system (R4, ω, H̃) considered

above is completely integrable.

P r o o f. System (3.7) has two differentiable first integrals H̃ and I = p2 that are

in involution, {H̃, I}ω = 0. Moreover, dH̃ and dI are linearly independent on the

dense open subset Ω = {(q1, q2, p1, p2) ∈ R
4 ; rankJ = 2} of R4, where J is the

Jacobian matrix of H̃ and I. The conclusion follows. �

In his classical book about quantum mechanics, Dirac has suggested that any clas-

sical Hamiltonian system can be “quantize” [11]. A prequantization of a symplectic

manifold is a mapping that connects smooth functions with self-adjoint operators on

a Hilbert space and satisfies the Dirac conditions. The existence of a prequantization

is usually called the Dirac problem.

Following [21], the symplectic manifold (T ∗
R

2 ≃ R
4, ω = dθ), where θ = a(p1 dq1+

p2 dq2), is quantizable from the geometric quantization point of view. The Hilbert

representation space is H = L2(R4,C), and the prequantum operator is given by δθ,

δθ : f ∈ C∞(T ∗
R

2,R) 7→ δθf : H → H,

where

δθf = −ih̄Xf − θ(Xf ) + f,

h̄ is the Planck constant divided by 2π and

Xf =

2∑

k=1

a
( ∂f
∂pk

∂

∂qk
− ∂f

∂qk

∂

∂pk

)
.

As we have seen, there is a connection between the Poisson manifold (R3, {·, ·}2)
and the symplectic manifold (R4, ω) considered above. In the following, we want to

find out if the answer to Dirac’s problem is affirmative in the case of this Poisson

manifold, from Kostant’s geometric prequantization point of view. This affirmative

answer would mean the existence of a prequantization of the above Poisson manifold.
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We can state the following prequantization result.

Proposition 3.4. Let H = L2(R4,C) and

δ : F ∈ C∞(R3,R) 7→ δF , δF = δθF◦ϕ,

where ϕ is given by (3.8). Then the pair (H, δ) defines a prequantization of the
Poisson manifold (R3, {·, ·}2).

P r o o f. Taking into account that the pair (H, δθf ) given above defines a pre-
quantization of (T ∗

R
2, ω = dθ), and the Poisson structure {·, ·}ω is mapped by

application ϕ (3.8) onto the Poisson structure {·, ·}2, it is easy to see that Dirac’s
conditions (D1)–(D4) are all satisfied, where

(D1) δF+G = δF + δG for all F,G ∈ C∞(R3,R);

(D2) δλF = λδF for all F ∈ C∞(R3,R), λ ∈ R;

(D3) δ1
R3

= IdH;

(D4) [δF , δG] = ih̄δ{F,G}2
for all F,G ∈ C∞(R3,R)

with [δF , δG] = δF ◦ δG − δG ◦ δF . �

3.2. Stability of equilibrium points. Let us continue with a discussion con-

cerning the nonlinear stability of the equilibrium states of our system. As we explain

later, in Subsection 3.4, we consider b ∈ (−∞, 0).

It is obvious that the equilibrium points of system (3.1) are given by

(3.9) eM1 =
(
M, 0,

a

b

)
, eM2 =

(
0,M,−a

b

)
, eM3 = (0, 0,M),

where M ∈ R.

Let A be the matrix of linear part of our system, that is

A =




0 bz + a by

bz − a 0 bx

−y −x 0



 .

The characteristic roots of A(eM1 ) and A(eM2 ) are given by λ1 = 0, λ2,3 = ±
√
−bM2,

hence we have obtained the following result.

Proposition 3.5. For every M ∈ R, M 6= 0, the equilibrium states eM1 and e
M
2

(3.9) of system (3.1) are unstable.
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The next result establishes the stability of the third equilibrium state.

Proposition 3.6. Let eM3 , M ∈ R (3.9) be an equilibrium state of system (3.1).

(a) If |M | > |a/b|, then eM3 is an unstable equilibrium point.
(b) If |M | < |a/b|, then eM3 is a nonlinearly stable equilibrium point.

P r o o f. (a) The characteristic roots of A(eM3 ) are given by λ1 = 0, λ2,3 =

±
√
b2M2 − a2, and consequently, the equilibrium state eM3 is unstable for each

M ∈ R such that M2 > a2/b2.

(b) We shall use Arnold’s technique [2]. Consider the function

Fλ = C1 + λC2 =
1

2
x2 +

1

2
y2 + bz2 + λ

(1
2
x2 − 1

2
y2 + 2az

)
.

We have:

(i) ∇Fλ(e
M
3 ) = 0 if and only if λ = −bM/a;

(ii) Because

W := ker[dC(eM3 )] = Span








1

0

0


 ,



0

1

0







 ,

for all v := (α, β, 0) ∈W , α, β ∈ R we get

v · ∇2F−bM/a(e
M
3 ) · v⊤ =

(
1− bM

a

)
α2 +

(
1 +

bM

a

)
β2,

which is positive definite in our case.

Therefore, via Arnold’s stability test, the equilibrium state eM3 is nonlinearly sta-

ble, as required. �

R em a r k 3.7. We notice that e01 = e
a/b
3 and e02 = e

−a/b
3 . In these cases the

characteristic roots of the matrix A are λ1 = λ2 = λ3 = 0. The stability of these

equilibrium states remains an open problem.

3.3. Periodic orbits. In order to apply Moser’s Theorem [33] regarding the

existence of periodic orbits, we consider the restriction of our system to a regular

coadjoint orbit of e(1, 1)∗, obtained in Proposition 3.1, that contains a nonlinearly

stable equilibrium point.

In the hypothesis of Proposition 3.1, the restriction of the nonlinearly stable equi-

librium state eM3 = (0, 0,M), |M | < |a/b| to C−1
2 (c2), where c2 = 2aM , is the

equilibrium state (0, 0) of system (3.6). For the restricted dynamics, the existence of

periodic orbits around this equilibrium point is proved in the next result.
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Proposition 3.8. Let c2 ∈ R be such that c22 < 4a4/b2. For sufficiently small

ε ∈ R, any integral surface

1

2
q2 +

1

2
p2 +

b

4a2

(
c2 −

1

2
q2 +

1

2
p2
)2

− bc22
4a2

= ε2

contains at least one periodic solution of system (3.6) whose period is close to the

period of the corresponding linear system around (0, 0), namely

2π

√
4a2

4a4 − b2c22
.

P r o o f. The Hamiltonian H (3.5) is a constant of motion of system (3.6) with

the property dH(0, 0) = 0. We have successively:

(i) The matrix of linear part of our system at the point (0, 0) is

A(0, 0) =




0 a+
bc2
2a

−a+ bc2
2a

0


 .

Therefore A(0, 0) is a nonsingular matrix.

(ii) The matrix A(0, 0) has a pair of pure complex eigenvalues

λ1,2 = ±i

√
4a4 − b2c22

4a2
.

(iii)

d2H(0, 0) =
(
1− bc2

2a2

)
dq2 +

(
1 +

bc2
2a2

)
dp2

is positive definite.

Via Moser’s Theorem, the conclusion follows. �

R em a r k 3.9. The periodic orbits of the restricted dynamics (3.6) on the sym-

plectic leaves are also periodic orbits for the unrestricted system (3.1) around the

nonlinearly stable equilibrium states (0, 0,M).

3.4. The energy-Casimir mapping. Consider the Hamilton-Poisson realization

(R3, {·, ·}1, H) of system (3.1), where H = C2 (see (3.2)) is the Hamiltonian and

C = C1 (see (3.2)) is a Casimir function of the Poisson structure {·, ·}1 (see (3.3)).
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Using this geometric frame, the energy-Casimir mapping [38] associated to sys-

tem (3.1) is defined by EC : R
3 → R

2,

EC(x, y, z) = (H(x, y, z), C(x, y, z)) =
(1
2
x2 − 1

2
y2 + 2az,

1

2
x2 +

1

2
y2 + bz2

)
.(3.10)

The image of the energy-Casimir mapping EC is the set

(3.11) Im(EC) =
{
(h, c) ∈ R

2 ; ∃ (x, y, z) ∈ R
3 :

1

2
x2 − 1

2
y2 + 2az = h,

1

2
x2 +

1

2
y2 + bz2 = c

}
.

In papers [38], [26], [6], some connections between the image of the energy-Casimir

mapping and dynamical properties of the corresponding Hamilton-Poisson systems

were reported. We notice that if b ∈ [0,∞), then we can show that for our system

the set Im(EC) is a convex subset of R2, which looks similarly with those obtained

in these works. Consequently, in the following we consider b ∈ (−∞, 0). We study

the above-mentioned connections in this case.

The next result gives the set Im(EC).

Proposition 3.10. Let EC be the energy-Casimir mapping (3.10) associated to
system (3.1). If b ∈ (−∞, 0), then Im(EC) = R

2.

P r o o f. Using algebraic computations, by (3.11) we get the conclusion. �

Taking into account that the equilibrium states of system (3.1) are the critical

points of the energy-Casimir mapping, their images through EC lead to a partition
of Im(EC) (see Figure 1). We have:

(3.12) Σu
1 := EC(eM1 ) =

{
(h, c) ; c = h− a2

b
, h >

2a2

b

}
,

Σu
2 := EC(eM2 ) =

{
(h, c) ; c = −h− a2

b
, h < −2a2

b

}
,

Σs
3 := EC(eM,s

3 ) =
{
(h, c) ; c =

b

4a2
h2, |h| < −2a2

b

}
,

Σu
3 := EC(eM,u

3 ) =
{
(h, c) ; c =

b

4a2
h2, |h| > −2a2

b

}
,

where the superscripts u and s stand for unstable and stable, respectively.
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Figure 1. The images of the equilibrium states through the energy-Casimir mapping (a = 1,
b = −1).

R em a r k 3.11. The intersections of the curves that represent the images of the

equilibrium states through the energy-Casimir mapping (see Figure 1) give three

bifurcation points, namely

Σu
1 ∩ Σu

2 =
{(

0,−a
2

b

)}
, EC

(
0, 0,

a

b

)
=

{(2a2
b
,
a2

b

)}

and

EC
(
0, 0,−a

b

)
=

{(
−2a2

b
,
a2

b

)}
.

We use these points to discuss some special orbits of the considered dynamics.

3.5. Types of special orbits of the considered dynamics. The fiber of the

energy-Casimir mapping EC corresponding to an element (h, c) ∈ Im(EC) is the set

(3.13) F(h,c) = {(x, y, z) ∈ R
3 ; EC(x, y, z) = (h, c)}.

For a pair (h, c), the implicit equation of the corresponding fiber is given by

(3.14) F(h,c) :

{
H(x, y, z) = h,

C(x, y, z) = c.

Because the dynamics of a Hamilton-Poisson system takes place at the intersection

of the level sets H = constant, C = constant, the above fiber gives the implicit

representation of an orbit of the considered system.
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Let (xe, ye, ze) be an arbitrary critical point of EC and let EC(xe, ye, ze) = (he, ce).

Then we say that the fiber F(he,ce) contains a special orbit of the considered sys-

tem. Following [38], using the implicit equation of F(he,ce), it is possible to reduce

the considered system from three degrees of freedom to one degree of freedom. If

the resulted differential equation can be explicitly integrated, then the equations of

a special orbit are obtained. In our case, the pair (he, ce) belongs to the one of the

sets Σu
1 , Σ

u
2 , Σ

u
3 , or Σ

s
3. Particularly, (he, ce) can be

EC
(
0, 0,

a

b

)
=

{(2a2
b
,
a2

b

)}

or

EC
(
0, 0,−a

b

)
=

{(
−2a2

b
,
a2

b

)}
.

We start our discussion with the pair (h, c) ∈ Σu
1∩Σu

2 , that is (0,−a2/b). Imposing
the condition EC(x, y, z) = (0,−a2/b), we get

(3.15) x = ±
√
−b

(
z +

a

b

)
, y = ±

√
−b

(
z − a

b

)
.

Then the last equation of system (3.1) becomes

dz

dt
= ±b

(
z2 − a2

b2

)
.

Integrating this equation we obtain

∣∣∣
z + |a|/b
z − |a|/b

∣∣∣ = e±2|a|t+k, k ∈ R.

Then we consider

(3.16) z1(t) =
a

b

ep(t) − 1

ep(t + 1
, z2(t) =

a

b

ep(t) + 1

ep(t) − 1
,

where

(3.17) p(t) = 2|a|t+ k.

Using (3.15), we denote

x1(t) =
2a√
−b

ep(t)

ep(t) + 1
, x2(t) =

−2a√
−b

ep(t)

ep(t) − 1
,(3.18)

y1(t) =
2a√
−b

1

ep(t) + 1
, y2(t) =

2a√
−b

1

ep(t) − 1
,(3.19)

respectively.
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We recall that a heteroclinic orbit HE : R → R
3 is a solution (x(t), y(t), z(t)) of

the considered system that connects two unstable equilibrium points p1 and p2 of the

system, that is, HE(t) := (x(t), y(t), z(t)) and HE(t) → p1 as t → −∞, HE(t) → p2
as t → ∞. Also, a homoclinic orbit H : R → R

3 is a solution (x(t), y(t), z(t)) of the

considered system which joins an unstable equilibrium point p to itself (p1 = p2 = p),

that is, H(t) := (x(t), y(t), z(t)) and H(t) → p as t→ ±∞.
By analogy, if (x(t), y(t), z(t)), t ∈ (−∞, s1) is a solution of the considered system

such that (x(t), y(t), z(t)) → p1 as t → −∞, and also (x(t), y(t), z(t)), t ∈ (s2,∞) is

a solution of the considered system such that (x(t), y(t), z(t)) → p2 as t→ ∞, where
s1 < s2, we say that SHE : (−∞, s1) ∪ (s2,∞) → R

3, SHE(t) := (x(t), y(t), z(t))

is a “split-heteroclinic” orbit. Furthermore, if p1 = p2, the above split-heteroclinic

orbit becomes a “split-homoclinic” orbit.

Observing that system (3.1) is invariant to the transformation (x, y, z) →
(−x,−y, z), we have proved the following result.

HE

SHE

SHE −5

0

5

x

−5
0

5
y

−5

0

5

z

Figure 2. The fiber F(h,c), (h, c) = (0,−a2/b) (a = 2, b = −1).

Proposition 3.12. Let (h, c) = (0,−a2/b) ∈ Σu
1 ∩ Σu

2 and let us consider the

functions given by (3.16), (3.17), (3.18), (3.19). Then the fiber F(h,c) contains the

following curves (see Figure 2):

(i) a heteroclinic orbitHE1 := (x1, y1, z1) : R → R
3 that connects the unstable equi-

librium points e
2a/

√
−b

1 = (2a/
√
−b, 0, a/b) and e2a/

√
−b

2 = (0, 2a/
√
−b,−a/b);

(ii) a heteroclinic orbit HE2 := (−x1,−y1, z1) : R → R
3 that connects the unstable

equilibrium points e
−2a/

√
−b

1 and e
−2a/

√
−b

2 ;

(iii) a heteroclinic orbit HE3 := (−y1, x1,−z1) : R → R
3 that connects the unstable

equilibrium points e
−2a/

√
−b

1 and e
2a/

√
−b

2 ;
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(iv) a heteroclinic orbit HE4 := (y1,−x1,−z1) : R → R
3 that connects the unstable

equilibrium points e
2a/

√
−b

1 and e
−2a/

√
−b

2 ;

(v) four split-heteroclinic orbits SHE i : R \ {−k/(2|a|)} → R
3, i ∈ {1, 2, 3, 4},

where SHE1 := (x2, y2, z2), SHE2 := (−x2,−y2, z2), SHE3 := (−y2, x2,−z2),
SHE4 := (y2,−x2,−z2).

In the same manner we obtain other special orbits.

a

b

UO

SH

−10

−5

0

5

10

x
−10

−5
0

5
10

y

−10

−5

0

5

10

z

Figure 3. The fiber F(h,c), (h, c) = (2a
2/b, a2/b) (a = 1, b = −1).

Proposition 3.13. Let k ∈ R. Denote

x(t) =
−8a2

√
−b(bt+ k)

4a2b2t2 + 8a2bkt+ 4a2k2 − b2
, y(t) =

4ab
√
−b

4a2b2t2 + 8a2bkt+ 4a2k2 − b2
,

z(t) =
a(4a2b2t2 + 8a2bkt+ 4a2k2 + 3b2)

b(4a2b2t2 + 8a2bkt+ 4a2k2 − b2)
.

(a) Let (h, c) = (2a2/b, a2/b) = EC(0, 0, a/b). Then the fiber F(h,c) contains the

following curves (see Figure 3):

(i) two unbounded orbits

UO± := (±x,±y, z) :
(
−k
b
− 1

2|a| ,−
k

b
+

1

2|a|
)
→ R

3;

(ii) two split-homoclinic orbits

SH± :
(
−∞,−k

b
− 1

2|a|
)
∪
(
−k
b
+

1

2|a| ,∞
)
→ R

3, SH± := (±x,±y, z),

which tend to a/b as t→ ±∞.
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(b) Let (h, c) = (−2a2/b, a2/b) = EC(0, 0,−a/b). Then the fiber F(h,c) contains the

following curves:

(i) two unbounded orbits

UO± := (±y,∓x,−z) :
(
−k
b
− 1

2|a| ,−
k

b
+

1

2|a|
)
→ R

3;

(ii) two split-homoclinic orbits

SH± :
(
−∞,−k

b
− 1

2|a|
)
∪
(
−k
b
+

1

2|a| ,∞
)
→ R

3, SH± := (±y,∓x,−z),

which tends to −a/b as t→ ±∞.

Proposition 3.14. Let a > 0 and (h, c) ∈ Σu
1 . Denote

x1(t) = −
√
−b

√
4a2 − 2bh

e2p(t) − 2bh

b(e2p(t) + 4aep(t) + 2bh)
,

y1(t) = −2
√
−b (4a2 − 2bh)ep(t)

b(e2p(t) + 4aep(t) + 2bh)
,

z1(t) =
ae2p(t) − 4a2ep(t) + 4bep(t)h+ 2abh

b(e2p(t) + 4aep(t) + 2bh)
,

x2(t) =
√
−b

√
4a2 − 2bh

e2p(t) − 2bh

b(e2p(t) − 4aep(t) + 2bh)
,

y2(t) = −2
√
−b (4a2 − 2bh)ep(t)

b(e2p(t) − 4aep(t) + 2bh)
,

z2(t) =
ae2p(t) + 4a2ep(t) − 4bhep(t) + 2abh

b(e2p(t) − 4aep(t) + 2bh)
,

where p(t) =
√
4a2 − 2bh(t+ k) and k ∈ R.

(a) If h ∈ (2a2/b, 0], then the fiber F(h,c) contains the following curves (see Figure 4):

(i) two unbounded orbits UO± := (±x2,±y2, z2) defined on
(
− k +

ln(2a−
√
4a2 − 2bh)√

4a2 − 2bh
,−k + ln(2a+

√
4a2 − 2bh)√

4a2 − 2bh

)
;

(ii) a pair of heteroclinic orbits HE± := (±x1,±y1, z1) : R → R
3 that connects

the unstable equilibrium points eM1 and e
−M
1 , M =

√
2h− 4a2/b;

(iii) two split-heteroclinic orbits

SHE± :
(
−∞,−k+ ln(2a−

√
4a2 − 2bh)√

4a2 − 2bh

)
∪
(
−k+ ln(2a+

√
4a2 − 2bh)√

4a2 − 2bh
,∞

)
→ R

3,

where SHE± := (±x2,±y2, z2).
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(b) If h ∈ (0,∞), then the fiber F(h,c) contains four split-heteroclinic orbits (see Fig-

ure 5), namely

SHE±
1 : R \

{
− k +

ln(−2a+
√
4a2 − 2bh)√

4a2 − 2bh

}
→ R

3, where SHE±
1 := (±x1,±y1, z1),

SHE±
2 : R \

{
−k + ln(2a+

√
4a2 − 2bh)√

4a2 − 2bh

}
→ R

3, where SHE±
2 := (±x2,±y2, z2).

HE

SHE

SHE
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−5

0

5

x
−5

0

5

y

−5

0

5

z

Figure 4. The fiber F(h,c), (h, c) ∈ Σ
u
1 , h ∈ (2a2/b, 0] (a = 1, b = −1).
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SHE

SHE

Figure 5. The fiber F(h,c), (h, c) ∈ Σ
u
1 , h ∈ (0,∞) (a = 1, b = −1).
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R em a r k 3.15. For a < 0 and (h, c) ∈ Σu
1 we have obtained similar curves to

that ones from Proposition 3.14. Moreover, if (h, c) ∈ Σu
2 , then the fiber F(h,c)

contains the same types of special orbits as those obtained in Proposition 3.14.

R em a r k 3.16. Other special orbits correspond to an arbitrary pair (h, c) ∈
Σu

3 ∪Σs
3. In these cases we have obtained the same types of orbits. More precisely, if

(h, c) ∈ Σu
3 , then the special orbits are two unbounded orbits and two split-homoclinic

orbits (see Figure 3). Furthermore, if (h, c) ∈ Σs
3, then the fiber F(h,c) contains eight

unbounded orbits (Figure 6), but the difference to the above unbounded orbits is

given by their parametric representations. We denote

x1(t) =
−
√
−b(2a2 + bh)

√
(4a2 − 2bh)(1 + sin p(t))

b(bh+ 2a2 sin p(t))
,

y1(t) =

√
−b(2a2 − bh)

√
(4a2 + 2bh)(1− sin p(t))

b(bh+ 2a2 sin p(t))
,

z1(t) =
h

2a
+

4a4 − b2h2

ab2h+ 2a3b sin p(t)
,

x2(t) =

√
−b(2a2 + bh)

√
(4a2 − 2bh)(1− sin p(t))

b(bh− 2a2 sin p(t))
,

y2(t) =

√
−b(2a2 − bh)

√
(4a2 + 2bh)(1 + sin p(t))

b(bh− 2a2 sin p(t))
,

z2(t) =
h

2a
+

4a4 − b2h2

ab2h− 2a3b sin p(t)
,

where

p(t) =

√
4a4 − b2h2

|a| (t+ k) and k ∈ R.

Then, for example, in the case a > 0 and h < 0, let

t1 = − |a|√
4a4 − b2h2

arcsin
bh

2a2
− k,

t2 =
|a|√

4a4 − b2h2

(
π + arcsin

bh

2a2

)
− k,

t3 =
|a|√

4a4 − b2h2
arcsin

bh

2a2
− k,

t4 =
|a|√

4a4 − b2h2

(
π − arcsin

bh

2a2

)
− k.

The above-mentioned unbounded orbits are given by

(±x1,±y1, z1) : (t1, t2) → R, (±x1,±y1, z1) : (t2, t1 + 2π) → R,

(±x2,±y2, z2) : (t3, t4) → R, (±x2,±y2, z2) : (t4, t3 + 2π) → R.
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Figure 6. The fiber F(h,c), (h, c) ∈ Σ
s
3 (a = 1, b = −1).

R em a r k 3.17. In the case when Im(EC) is a convex proper subset of R2

and (h, c) belongs to the interior of this set, we expect the following. If (h, c) belongs

to a line, then the fiber F(h,c) contains one or more heteroclinic orbits. Also, if (h, c)

belongs to a parabola, then the fiber F(h,c) contains one or more homoclinic orbits.

Otherwise, the fiber F(h,c) contains periodic orbits (see [6], [26], [38]). In our case, in-

stead of homoclinic orbits, we have obtained split-homoclinic orbits and unbounded

orbits. Also, besides heteroclinic orbits we have obtained split-heteroclinic orbits

and unbounded orbits.

In Subsection 3.3 we have proven the existence of the periodic orbits around the

stable equilibrium states (0, 0,M). Using Proposition 3.1 and Proposition 3.8, we

obtain the next result.

R em a r k 3.18. The fiber F(h,c) contains a periodic orbit if

|h| < −2a2

b
, c >

b

4a2
h2, c < h− a2

b
, c < −h− a2

b
,

or in other words, if (h, c) belongs to the bounded set situated between the curves

Σu
1 , Σ

u
2 , Σ

s
3 (see Figure 1).
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4. Numerical integration

In the previous section we have explicitly obtained parametric equations of some

special orbits of the considered system. This fact was possible because of particular

forms of the fibers F(h,c), given by (h, c) = EC(xe, ye, ze). These orbits and the
others can be obtained by numerical integration. As we already have proven there

are periodic orbits in the dynamics of the considered system, but their equations

are not obtained in the previous section. We point out such orbits by numerical

integration.

Taking into account the geometric frame of the considered system, a numerical

integrator which preserves as much as possible from its Poisson geometry, that is

Poisson structure, symplectic leaves, Casimirs, and even the energy, it would be

interesting. If the Hamiltonian function is separable, an explicit numerical integrator

which preserves the Poisson structure, symplectic leaves, and Casimirs is given by

the so-called Lie-Trotter algorithm (see, for example, [31], [36]). This algorithm does

not preserve the Hamiltonian. Consequently, a numerical solution does not belong

to the intersection of the level sets H(x, y, z) = h, C(x, y, z) = c.

In this section we apply the mid-point rule (see [3] and references therein) to

system (3.1). Under some conditions this integrator has some of the above-mentioned

properties.

We recall that for a Hamilton-Poisson system ẋ = Π(x)∇H(x),x = (x, y, z)⊤,

where Π is a Poisson structure and H the Hamiltonian function, the mid-point rule

is given by the following implicit recursion [3]:

xk+1 − xk

∆t
= Π

(xk + xk+1

2

)
∇H

(xk + xk+1

2

)
,

where ∆t is the time-step. “If Π(x) is linear in x, then the mid-point rule is an

almost Poisson integrator, that is, it preserves the Poisson structure up to the sec-

ond order” [3]. Furthermore, “the mid-point rule preserves exactly any conserved

quantity having only linear and quadratic terms” [3].

In the frame of the Hamilton-Poisson realization considered in 3.4, the integrator

for system (3.1) has the form

(4.1)
xk+1 − xk

∆t
= a

yk + yk+1

2
+ b

(yk + yk+1)(zk + zk+1)

4
,

yk+1 − yk
∆t

= −axk + xk+1

2
+ b

(xk + xk+1)(zk + zk+1)

4
,

zk+1 − zk
∆t

= − (xk + xk+1)(yk + yk+1)

4
.
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R em a r k 4.1. Because the Poisson bracket (3.3) is linear, the mid-point rule of

system (3.1) given by (4.1) is an almost Poisson integrator. Moreover, the Hamilto-

nian function H and the Casimir C (3.10) are preserved by this integrator. There-

fore numerical solutions belong to the intersection of the level sets H(x, y, z) = h,

C(x, y, z) = c.

In the following we explain how the mid-point rule for the considered system works.

Consider a pair (h, c) ∈ Im(EC). If we focus on orbits which are not explicitly
obtained in the previous section, then (h, c) 6= EC(xe, ye, ze) for all equilibrium states
(xe, ye, ze) of system (3.1). Such orbits belong to the intersection of the level sets

H(x, y, z) = h, C(x, y, z) = c. If this intersection contains only one curve, then

we choose initial conditions (x1, y1, z1) ∈ F(h,c). If the intersection contains more

curves, then we compute initial conditions for one of these curves, using the condition

EC(x1, y1, z1) = (h, c). For example, if (h, c) = (0, 0.9) (a = 1, b = −1), there are

five orbits, as it is shown in Figure 8. We apply the mid-point rule (4.1) and at each

step we impose the condition that the implicit solution is near the previous point

(system (4.1) has not a unique solution). We implemented this algorithm in Wolfram

MathematicaTM . The code is given below.

a = 1; b = −1; ∆t = 0.03; k = 1; kmax = 400; x1 = 0.94868; y1 = 0.94868; z1 = 0;

Do[v[k] = {x1, y1, z1};
s = NSolve[

x− x1

∆t
== a

y1 + y

2
+
b

4
(y1 + y)(z1 + z)&&

y − y1

∆t
== −ax1 + x

2
+
b

4
(x1 + x)(z1 + z)&&

z − z1

∆t
== − (x1 + x)(y1 + y)

4
&&

Norm[x− x1] < 2, {x, y, z},Reals];
sx = s[[All, 1, 2]]; sy = s[[All, 2, 2]]; sz = s[[All, 3, 2]];

x1 = sx[[1]], y1 = sy[[1]], z1 = sz[[1]], {k, 1, kmax}];
data = Table[v[k], {k, 1, kmax}];
ListPointPlot3D[data]

The initial conditions given above lead to a periodic orbit (Figure 7). Moreover,

if we choose other initial conditions, namely x1 = 1.9748, y1 = 3.9874, z1 = 3,

x1 = −1.9748, y1 = −3.9874, z1 = 3, x1 = −3.9874, y1 = 1.9748, z1 = −3, and

x1 = 3.9874, y1 = −1.9748, z1 = −3, other four orbits are obtained, respectively

(see Figure 8).
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Figure 7. A periodic orbit (h, c) = (0, 0.9), a = 1, b = −1, initial conditions x1 = 0.9487,
y1 = 0.9487, z1 = 0, the step ∆t = 0.03.
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Figure 8. Numerical integration: 5 orbits at the intersection of the level sets H(x, y, z) = h,
C(x, y, z) = c, (h, c) = (0, 0.9), a = 1, b = −1.

In the same manner one can obtain any orbit. We highlight the pair of hetero-

clinic orbits shown in Figure 4. Consider a = 1, b = −1. Let (h, c) ∈ Σu
1 (3.12). We

choose, for example, h = −1, c = 0. Fix z1 = −0.5. We compute an initial point

(x1, y1, z1) that belongs to the intersection of the level sets H(x, y, z) = −1 and

C(x, y, z) = 0. We obtain more points and we choose (x1, y1, z1) = (0.5, 0.5,−0.5).

We again use the above-mentioned code and after 250 iterations (∆t = 0.05) one

gets (1.41421, 5.33122 · 10−8,−1), which is closer to the unstable equilibrium state

(M, 0, a/b) = (
√
2, 0,−1). Considering the same initial point and the time-step

∆t = −0.05, we simulate the behavior of the orbit as t → −∞. After 250 iterations
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we get (−1.41421, 1.49088 · 10−7,−1), which is approximately the unstable equilib-

rium state (−M, 0, a/b) = (−
√
2, 0,−1). Therefore, we have obtained a heteroclinic

orbit. Analogously, we obtain the second heteroclinic orbit that connects the above

equilibrium states. These orbits are plotted in Figure 9.
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Figure 9. A pair of heteroclinic orbits for (h, c) = (−1, 0), a = 1, b = −1.

5. Conclusion

In this paper we have considered an integrable deformation of an integrable version

of the Rikitake system. The main goal is to analyze the changes in the dynamics

of the initial system that appear by adding some parametric control functions such

that the image of the corresponding energy-Casimir mapping is R2. The integrable

version of the Rikitake system [38] has three families of equilibrium states. Two of

those families contain only nonlinearly stable equilibrium states and around them

there are periodic orbits. Moreover, each unstable equilibrium state that belongs

to the third family is joined to itself by homoclinic orbits. On the other hand, the

above-mentioned families of nonlinearly stable equilibrium states become families of

unstable equilibrium states for the considered integrable deformation. In addition,

heteroclinic orbits appear in its dynamics. Furthermore, we have noticed new types

of orbits such as unbounded orbits, or some orbits that for t → ±∞ behave like

homoclinic or heteroclinic orbits, but they are split on two branches.

It is known that versions of the Rikitake two-disk dynamo system are chaotic for

some values of the parameters (see, for example, [18]). It is natural to ask whether

its particular deformation (2.9) considered in our paper also has chaotic behavior.

Moreover, if deformation parameter b varies, does system (2.8) pass from a chaotic to
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a non-chaotic state, or also can its unstable equilibrium states be stabilized? Taking

into account that the above-mentioned system depends on many parameters, it can

exhibit some types of bifurcations such as Hopf, zero-Hopf, Bogdanov-Takens, and

Bautin bifurcations. These questions and many others can be the object of new

papers.
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[28] C.Lăzureanu, C.Petrişor: Stability and energy-Casimir mapping for integrable defor-
mations of the Kermack-McKendrick system. Adv. Math. Phys. 2018 (2018), Article ID
5398768, 9 pages. zbl MR doi

[29] P.Libermann, C.-M.Marle: Symplectic Geometry and Analytical Mechanics. Mathe-
matics and Its Applications 35. D.Reidel, Dordrecht, 1987. zbl MR doi

[30] J. Llibre, X. Zhang: Invariant algebraic surfaces of the Rikitake system. J. Phys. A,
Math. Gen. 33 (2000), 7613–7635. zbl MR doi

[31] R. I.McLachlan: On the numerical integration of ordinary differential equations by sym-
metric composition methods. SIAM J. Sci. Comput. 16 (1995), 151–168. zbl MR doi

[32] T.McMillen: The shape and dynamics of the Rikitake attractor. Nonlinear J. 1 (1999),
1–10.

[33] J.Moser: Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Com-
mun. Pure Appl. Math. 29 (1976), 727–747. zbl MR doi

[34] I. Pehlivan, Y.Uyaroglu: Rikitake attractor and it’s synchronization application for se-
cure communication systems. J. Appl. Sci. 7 (2007), 232–236. doi

[35] M.Puta: Hamiltonian Mechanical Systems and Geometric Quantization. Mathematics
and Its Applications (Dordrecht) 260. Kluwer Academic, Dordrecht, 1993. zbl MR doi

[36] M.Puta: Lie-Trotter formula and Poisson dynamics. Int. J. Bifurcation Chaos Appl. Sci.
Eng. 9 (1999), 555–559. zbl MR doi

[37] T.Rikitake: Oscillations of a system of disk dynamos. Proc. Camb. Philos. Soc. 54
(1958), 89–105. zbl MR doi
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