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Abstract. Let Fq [t] denote the polynomial ring over Fq, the finite field of q elements.
Suppose the characteristic of Fq is not 2 or 3. We prove that there exist infinitely many
N ∈ N such that the set {f ∈ Fq[t] : deg f < N} contains a Sidon set which is an additive
basis of order 3.
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1. Introduction

Let N denote the set of positive integers and A ⊆ N. For k > 2 we define

rk(A, n) = #{(a1, . . . , ak) ∈ Ak : a1 + . . .+ ak = n, a1 6 . . . 6 ak}.

We say A is a Sidon set if r2(A, n) 6 1 for all n ∈ N, and say A is an asymptotic basis

of order k if there exists C > 0 such that rk(A, n) > 0 for all n > C. Following [2]

we say A is a Sidon basis of order k if A is a Sidon set and an asymptotic basis of

order k. We refer the reader to [11] for a survey on Sidon sets. Given any ε > 0 and

n > n0(ε), a Sidon set can have at most (1 + ε)
√
n elements less than or equal to n,

see [6]; therefore, it follows that there cannot be a Sidon basis of order 2. Erdős,

Sárközy and Sós asked the following conjecture in [4], [5].

Conjecture 1.1. There exists a Sidon basis of order 3.
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There has been much progress toward this conjecture. Deshoulliers and Plagne

in [3] constructed a Sidon basis of order 7, and Kiss in [7] proved the existence of

a Sidon basis of order 5. Kiss, Rozgonyi and Sándor in [8] proved that there exists

a Sidon basis of order 4.

Studying the analogies between function fields and number fields is an important

aspect of number theory. In the function field setting, Theorem 1.2 below is known

regarding Conjecture 1.1. Let G be an abelian group and A a subset of G. We say A

is a Sidon set if the representation of each element of G as a sum of two elements of A

is unique if it exists. In other words, if for some a, b, c, d ∈ A we have a+ b = c+ d,

then either we have (a, b) = (c, d) or (a, b) = (d, c). Also we say A is an additive basis

of order k if for any g ∈ G there exist a1, . . . , ak ∈ A such that g = a1 + . . . + ak.

Let Fq denote the finite field of q elements.

Theorem 1.2. Let p be a prime, p > 2, h ∈ N, and q = ph. Then there exists

a Sidon set S ⊆ Fq[t] which is an additive basis of order 2.

This result is an immediate consequence of [9]; we can apply [9], Theorem 1

when p 6= 2, because ϕ2 : Fq[t] → Fq[t] defined by ϕ2(f) = 2f is a one-to-one

correspondence, and also Fq[t] is not a direct sum of a group of exponent 3 and

a group of order 2. We note that there does not exist a Sidon set S ⊆ F2h [t] which

is an additive basis of order 2; this is explained in the paragraph after the statement

of [9], Theorem 1.

The focus of this paper is on the following theorem in [2] related to Conjecture 1.1.

Theorem 1.3 ([2], Theorem 2.1). There exist infinitely many N ∈ N for which

there exists a Sidon set S ⊆ Z/NZ such that the following holds. Given any v ∈
Z/NZ, there exist s1, s2, s3 ∈ S with si 6= sj (i 6= j) such that

s1 + s2 + s3 = v.

In [2], this result and its Corollary 2.1 are key ingredients in proving the following

two interesting results toward Conjecture 1.1 via probabilistic methods. In these

applications, the pairwise distinct condition is crucial.

Theorem 1.4 ([2], Theorem 1.2). There exists A ⊆ N which is an asymptotic

basis of order 3 and r2(A, n) 6 2 for all n ∈ N.

For any ε > 0, we say A ⊆ N is an asymptotic basis of order k + ε if there exists

C > 0 such that

#
{

(a1, . . . , ak+1) ∈ Ak+1 : n = a1 + . . .+ ak+1, min
16i6k+1

ai 6 nε
}

> 1

for all n > C.
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Theorem 1.5 ([2], Theorem 1.3). For any ε > 0, there exists a Sidon basis of

order 3 + ε.

In this paper, we prove an Fq[t]-analogue of Theorem 1.3 when the characteristic

is not 2 or 3. For each N ∈ N, let PN = {f ∈ Fq[t] : deg f < N}. Clearly, PN is

a group under addition.

Theorem 1.6. Let p be a prime, p > 3, h ∈ N, and q = ph. Then for M ∈ N

sufficiently large, there exists a Sidon set S = S(q,M) ⊆ P4M such that the following

holds. Given any v ∈ P4M , there exist s1, s2, s3 ∈ S with si 6= sj (i 6= j) such that

s1 + s2 + s3 = v.

In this paper, we also prove Theorem 2.1, where we have a simpler proof under less

restricting assumptions at the cost of relaxing the pairwise distinct condition1, and

Corollary 2.3, which is an analogue of [2], Corollary 2.1. Though we do not explore

it here, the results of this paper can be used to obtain analogues of Theorems 1.4

and 1.5 by following the approach in [2] (with similar quantitative estimates as in

their proof). We choose not to prove these results here, because the proofs are quite

long and technical.

2. Proof of the results

Let G be an abelian group. For any subset A ⊆ G and x ∈ G, we let

rA−A(x) = #{(a, a′) ∈ A2 : x = a− a′}.

It can be verified easily that the statement “A ⊆ G satisfies rA−A(x) 6 1 whenever

x 6= 0” is equivalent to A being a Sidon set. We begin with the proof of the following

theorem.

Theorem 2.1. Let p be a prime, p > 3, h ∈ N, and q = ph. Then for anyM ∈ N,

there exists a Sidon set S = S(q,M) ⊆ P2M such that the following holds. Given

any v ∈ P2M , there exist s1, s2, s3 ∈ S such that

s1 + s2 + s3 = v.

1We would like to thank the anonymous referee for pointing this out to us, and also for
providing the argument.
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We remark that in comparison to the statement of Theorem 1.6, we do not re-

quire M to be sufficiently large, and we have P2M instead of P4M , but we no longer

have that s1, s2 and s3 are pairwise distinct.

P r o o f. We have the following group isomorphisms when we only consider the

additive properties

P2M
∼= (Fq)

2M ∼= (Z/pZ)2hM ∼= Fq′ × Fq′ ,

where q′ = phM . Therefore, if we can find a Sidon set with the desired properties

in Fq′ × Fq′ , then we are done.

Let S = {(x, x2) : x ∈ Fq′}. Then, by [1] we know that S is a Sidon set in Fq′×Fq′ .

For the sake of completeness, we present the proof from [1] here. We have to check

that given (0, 0) 6= (e1, e2) ∈ Fq′ × Fq′ , the equation (x1, x
2
1) − (x2, x

2
2) = (e1, e2)

uniquely determines x1 and x2 in Fq′ , or that it has no solution. If e1 = 0, then it is

clear that there do not exist x1 and x2 in Fq′ satisfying the equation. On the other

hand, suppose e1 6= 0. Since x1 = e1 + x2, we have that e2 = (x2 + e1)
2 − x2

2 =

2e1x2 + e21, which uniquely determines x2 if p 6= 2. Once x2 is determined, there

is only one choice for x1. Therefore, we have shown that rS−S((e1, e2)) 6 1, and

hence S is a Sidon set.

Now we show that S is an additive basis of order 3; this is equivalent to showing

that for any (a, b) ∈ Fq′ × Fq′ , the system

(2.1) x+ y + t = a and x2 + y2 + t2 = b

has a solution in Fq′ × Fq′ × Fq′ . Let us fix a choice of (a, b) ∈ Fq′ × Fq′ .

Since p > 2, it can be verified easily that given any c, d ∈ Fq′ , the system

x+ y = c and x2 + y2 = d

has a solution in Fq′ × Fq′ if and only if there exists z ∈ Fq′ such that z
2 = 2d− c2.

Therefore, it follows that the system (2.1) has a solution in Fq′ × Fq′ × Fq′ if and

only if there exist t, z ∈ Fq′ such that

(2.2) 2(b− t2)− (a− t)2 = −3t2 + 2at+ (2b− a2) = z2.

Since p 6= 3, every value represented by −3t2 + 2at+ (2b − a2) is represented by at

most two values of t ∈ Fq′ . Consequently, we have

#{−3t2 + 2at+ (2b− a2) : t ∈ Fq′} > 1

2
(q′ − 1) + 1.
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There are precisely 1

2
(q′ − 1) elements in Fq′ that are non-squares. Therefore, it

follows that there exists at least one t ∈ Fq′ such that −3t2 + 2at + (2b − a2) is

a square; there exist t, z ∈ Fq′ satisfying (2.2). As a result, we obtain that there

exists a triple (x, y, t) ∈ Fq′ ×Fq′ ×Fq′ satisfying (2.1). Since the argument holds for

an arbitrary choice of (a, b) ∈ Fq′ × Fq′ , this completes the proof. �

We can in fact replace P2M in the statement of Theorem 2.1 with PM when h is

even.

Corollary 2.2. Let p be a prime, p > 3, h ∈ {2n : n ∈ N}, and q = ph. Then

for any M ∈ N, there exists a Sidon set S = S(q,M) ⊆ PM such that the following

holds. Given any v ∈ PM , there exist s1, s2, s3 ∈ S such that

s1 + s2 + s3 = v.

P r o o f. We have the following group isomorphisms when we only consider the

additive properties

PM
∼= (Fq)

M ∼= (Z/pZ)hM ∼= Fq′ × Fq′ ,

where q′ = phM/2. Then we can find a Sidon set with the desired properties in

Fq′ × Fq′ as in the proof of Theorem 2.1. �

Next, we present the proof of Theorem 1.6.

P r o o f of Theorem 1.6. We have the following group isomorphisms when we

only consider the additive properties

P4M
∼= (Fq)

4M ∼= (Z/pZ)4hM ∼= Fq′ × Fq′ ,

where q′ = p2hM . Therefore, if we can find a Sidon set with the desired properties

in Fq′ × Fq′ , then we are done.

Recall that we have explained in the beginning of the proof of Theorem 2.1 that

S = {(x, x2) : x ∈ Fq′} is a Sidon set in Fq′ ×Fq′ . Now we show that S is an additive

basis of order 3. Again, this is equivalent to showing that for any (a, b) ∈ Fq′ × Fq′ ,

the system

(2.3) x+ y + t = a and x2 + y2 + t2 = b

has a solution in Fq′ × Fq′ × Fq′ .

We consider the polynomial

f(x, y) = x2 + y2 + (x + y − a)2 − b = 2(x2 + y2 + xy − ax− ay) + a2 − b
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constructed from (2.3), and its homogenization

F (x, y, z) = 2(x2 + y2 + xy − axz − ayz) + (a2 − b)z2.

Suppose F is reducible over F̄q′ , where F̄q′ is the algebraic closure of Fq′ , in which

case F decomposes into two lines L1 and L2 with coefficients in F̄q′ . Without loss of

generality, let

F (x, y, z) = 2(x+ α1y + β1z)(x+ α2y + β2z),

where α1, β1, α2, β2 ∈ F̄q′ . By multiplying out the factors, we see from the coefficients

of y2, xy, xz, and yz that α1α2 = 1, α1+α2 = 1, β1+β2 = −a, and α1β2+α2β1 = −a,

respectively. Since q′ = p2hM and 2|(2hM), we have Fp2 ⊆ Fq′ . From the first and

the second equation, we obtain that α1 and α2 are nonzero, and

α1, α2 ∈ Fp2 ⊆ Fq′ .

Since the characteristic of Fq′ is not 3, we also obtain α1 6= α2. Then from the third

and the fourth equation, we can deduce that

β1, β2 ∈ Fq′ .

(Here if the characteristic of Fq′ was 3, then we obtain α1 = α2, from which it follows

that a = 0 and also that the third and the fourth equation are scalar multiples of

one another. Consequently, we cannot conclude that β1, β2 ∈ Fq′ in this case.)

Therefore, F is in fact reducible over Fq′ , and hence f decomposes into two linear

factors over Fq′ as follows

f(x, y) = F (x, y, 1) = 2(x+ α1y + β1)(x+ α2y + β2).

Thus we see that (2.3) has at least q′ solutions in Fq′ × Fq′ × Fq′ in this case.

On the other hand, suppose F is irreducible over F̄q′ . Let V (F ) be the hypersurface

in P
2
Fq′
defined by F . In this case, we may invoke a theorem by Lang and Weil,

see [10], and obtain that V (F ) has q′ +O(1) rational points over Fq′ . We know that

F (x, y, 0) = 2(x2 + y2 + xy) decomposes into two linear factors over F̄q′ , because

it is a quadratic form in two variables. Then we can verify that F (x, y, 0) has at

most O(1) solutions in P
1
Fq′
. Therefore, it follows that V (F ) contains q′ + O(1)

points of the form [x0 : y0 : 1] from which we deduce (2.3) has q′ + O(1) solutions

in Fq′ × Fq′ × Fq′ .

In both cases, we have that (2.3) has at least q′+O(1) solutions. Suppose (x, y, t) =

(x1, x2, x3) is a solution to (2.3) such that xi = xj for some i 6= j; without loss of
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generality, let i = 1 and j = 2. Then, the number of such solutions is equal to the

number of solutions to

(2.4) x+ x+ y = a and x2 + x2 + y2 = b.

Since the equation 2x2+(a−2x)2 = b has at most 2 solutions in Fq′ , we have that (2.4)

has at most 2 solutions. Hence, the number of solutions (x1, x2, x3) to (2.3) such

that xi = xj for some i 6= j is O(1). Therefore, for each (a, b) ∈ Fq′ ×Fq′ we can find

a solution (x1, x2, x3) to (2.3) satisfying xi 6= xj (i 6= j), provided q′ is sufficiently

large. �

Let us remark that the above argument does not work when p = 3. For if a = 0,

then the equations (2.3) reduce to solving

x2 + y2 + (x + y)2 = b,

which further reduces to

(x− y)2 = 1

2
b.

However, not all elements of Fq′ are squares. (Consider the group homomorphism

from Fq′ \ {0} to Fq′ \ {0} which sends x to x2, and notice that the kernel of this

map is {±1}.) Hence, there exists b ∈ Fq′ for which the above equation does not

have a solution.

We now prove the following corollary which holds when p = 3 as well.

Corollary 2.3. Let p be a prime, p > 2, h ∈ N, and q = ph. Then for M ∈ N

sufficiently large, there exists a Sidon set S = S(q,M) ⊆ P4M such that the following

holds. Given any v ∈ P4M , there exist s1, s2, s3, s4 ∈ S with si 6= sj (i 6= j) such

that

s1 + s2 + s3 + s4 = v.

P r o o f. Let Fq′ and S ⊆ Fq′ × Fq′ be as in the proof of Theorem 1.6. We show

that S satisfies the required conditions. From the proof of Theorem 1.6, we know

that for any (a, b) ∈ Fq′ × Fq′ , the system

(2.5) x+ y + t+ (a− 1) = a and x2 + y2 + t2 + (a− 1)2 = b

has at least q′ + O(1) solutions of the form (x, y, t) = (x1, x2, x3) ∈ Fq′ × Fq′ × Fq′ ,

where xi 6= xj (i 6= j). Note that since the equations (2.5) reduce to

x+ y + t = 1 6= 0 and x2 + y2 + t2 = b− (a− 1)2,

we see that in fact we may assume the characteristic of Fq′ to be 3 as well.
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We observe that all of these solutions except those with at least one of x1, x2, x3

being a − 1 satisfy the conditions. Without loss of generality, suppose x3 = a − 1.

Then, (2.5) reduces to solving

(2.6) x+ y = −a+ 2 and x2 + y2 = b− 2(a− 1)2,

which further reduces to solving a quadratic equation. Thus it follows that the num-

ber of solutions (x1, x2, x3) to (2.5) with at least one of x1, x2, x3 being a−1 is O(1).

Therefore, it follows that there exist at least q′ + O(1) solutions in Fq′ × Fq′ × Fq′

which satisfy the desired conditions. �
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