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Abstract. Let d be a square free integer and Ld := Q(ζ8,
√
d). In the present

work we determine all the fields Ld such that the 2-class group, Cl2(Ld), of Ld

is of type (2, 4) or (2, 2, 2).
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1. Introduction

Let k be a number field and Cl2(k) its 2-class group, that is, the 2-Sylow

subgroup of its ideal class group Cl(k). The problem of determining the structure

of Cl2(k) is one of the most interesting problems of algebraic number theory,

accordingly many mathematicians treated this problem for some number fields of

degree 2, 4. For example, in [18] using binary quadratic forms theory, P. Kaplan

determined the 2-class group of some quadratic number fields. The authors of

[11], [12] used genus theory and class field theory to characterize those imaginary

quadratic number fields, k, with 2-class group of type (2, 2m) or (2, 2, 2) and the 2-

rank of the class group of its Hilbert 2-class field equal to 2. In [5], using units and

the 2-part of the class number of subextensions of k, the authors determined the

2-class group of some real biquadratic number fields k = Q(
√
m,

√
d) with d be

an odd square free integer. Using similar techniques, the paper [7] characterizes

all the fields k = Q(i,
√
d) such that Cl2(k) is of type (2, 4) or (2, 2, 2) (here

(a1, . . . , ar) denotes the direct sum of cyclic groups of order ai for i = 1, . . . , r).

Whenever k is an imaginary multiquadratic number field, this problem is strongly

related to the units of k and the class number of the 2-part of the class numbers

of its subextensions as we will see later. This paper is, actually, a continuation

and extension of our earlier work [4], in which we determined the rank of the

2-class group of all fields of the form Ld := Q(ζ8,
√
d) with d being a positive

square free integer and moreover we determined all fields Ld for which the 2-class
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group, Cl2(Ld), is of type (2, 2). In this work, we are interested in determining

all positive square free integers d satisfying Cl2(Ld) is of type (2, 4) or (2, 2, 2).

Notations

The next notations will be used for the rest of this article:

◦ d: a positive odd square free integer;

◦ Ld: Q(ζ8,
√
d);

◦ Cl2(L): the 2-class group of some number field L;

◦ h(L): the class number of the number field L;

◦ h2(L): the 2-class number of the number field L;

◦ h2(m): the 2-class number of the quadratic field Q(
√
m);

◦ EL: the unit group of any number field L;

◦ εm: the fundamental unit of Q(
√
m);

◦ WL: the set of roots of unity contained in a field L;

◦ ωL: the cardinality of WL;

◦ L+: the maximal real subfield of an imaginary number field L;

◦ QL: the Hasse’s index, that is, [EL : WLEL+ ], if L/L+ is CM;

◦ Q(L/k): the unit index of a V4-extension L/k;

◦ q(L) :=
[

EL :
∏

iEki

]

with ki the quadratic subfields of L.

2. Preliminaries

Let us first collect some results and definitions that we will need in the sequel.

Recall that a field K is said to be a CM-field if it is a totally complex quadratic

extension of a totally real number field. Note also that a V4-extension K/k (i.e.,

a normal extension of number fields with Gal(K/k) = V4, where V4 is the Klein

four-group) is called V4-extension of CM-fields if exactly two of its three quadratic

subextensions are CM-fields. Let us next recall the class number formula for a V4-

extension of CM-fields:

Proposition 1 ([20]). Let L/K be a V4-extension of CM-fields, then

h(L) =
QL

QK1
QK2

· ωL

ωK1
ωK2

· h(K1)h(K2)h(L
+)

h(K)2
·

Here K1,K2, L
+ are the three subextensions of L/K, with K1 and K2 are CM -

fields.

The following class number formula for a multiquadratic number field is usually

attributed to S. Kuroda [21], but it goes back to G. Herglotz, see [16] (cf. [13,

page 27]).



On some imaginary triquadratic number fields k with Cl2(k) ≃ (2, 4) or (2, 2, 2) 3

Proposition 2. Let K be a multiquadratic number field of degree 2n, n ∈ N,

and ki the s = 2n − 1 quadratic subfields of K. Then

h(K) =
1

2v

[

EK :

s
∏

i=1

Eki

] s
∏

i=1

h(ki),

with

v =

{

n(2n−1 − 1) if K is real,

(n− 1)(2n−2 − 1) + 2n−1 − 1 if K is imaginary.

Continue with the next formula called Kuroda’s class number formula for a V4-

extension K/k.

Proposition 3 ([22], page 247). Let K/k be a V4-extension. Then we have:

h(K) =























1
4 ·Q(K/k) ·∏3

i=1 h(ki) if k = Q and K is real,

1
2 ·Q(K/k) ·

∏3
i=1 h(ki) if k = Q and K is imaginary,

1
4 ·Q(K/k) ·∏3

i=1 h(ki)/h(k)
2 if k is an imaginary quadratic

extension of Q.

Here ki are the 3 subextensions of K/k.

3. Fields Ld for which Cl2(Ld) is of type (2, 4)

Our goal in this section is to determine all fields Ld for which Cl2(Ld) ≃ (2, 4).

Recall first the definition of the rational biquadratic residue symbol:

For a prime p ≡ 1(mod 4) and a quadratic residue a(mod p),
(a

p

)

4
will de-

note the rational biquadratic residue symbol defined by
(a

p

)

4
= ±1 ≡ a(p−1)/4(mod p).

Moreover, for an integer a ≡ 1(mod 8), the symbol
(a

p

)

4
is defined by

(a

p

)

4
= 1 if ≡ 1(mod 16),

(a

p

)

4
= −1 if a ≡ 9(mod 16).

It turns out that
(a

p

)

4
= (−1)(a−1)/8.

In all this section, let p, pi, q and qi be prime integers such that p ≡ pi ≡
1(mod 4) and q ≡ qi ≡ 3(mod 4) with i ∈ N∗. The following lemma is proved in

our earlier paper [4, Theorem 5.6].

Lemma 1. The rank of the 2-class group Cl2(Ld) of Ld equals 2 if and only if d

takes one of the following forms:
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1. d = q1q2 with q1 ≡ q2 ≡ 3(mod 8).

2. d = p1p2 with p1 ≡ p2 ≡ 5(mod 8).

3. d = q1q2 with q1 ≡ 3(mod 8) and q2 ≡ 7(mod 8).

4. d = pq with p ≡ 5(mod 8) and q ≡ 7(mod 8).

5. d = p with p ≡ 1(mod 8) and
[

p ≡ 9(mod 16) or
(2

p

)

4
6=

(p

2

)

4

]

.

We need also the following result.

Lemma 2. Let d = p1p2, where p1, p2 are two rational primes such that pi ≡
5(mod 8). Then h2(Ld) is divisible by 16.

Proof: We have Ld = Q(
√
p1p2,

√
2, i) is an imaginary multiquadratic number

field of degree 23. So by Proposition 2 we have

h(Ld) =
1

25
q(Ld)h(p1p2)h(−p1p2)h(2p1p2)h(−2p1p2)h(2)h(−2)h(−1).

It is known that h2(2), h2(−2) and h2(−1) are equal to 1, and by [18, page 350]

h2(−2p1p2) = 4. On the other hand, [8, Theorem 2.2] implies that q(Ld) is

a power of 2. So by passing to the 2-part in the above equation, we get

(1) h2(Ld) =
1

23
q(Ld)h2(p1p2)h2(−p1p2)h2(2p1p2).

Note that:

◦ By [15, Corollary 18.4], h2(p1p2) is divisible by 2.

◦ By [18, pages 348–349] (Propositions B′
1 and B′

4), h2(−p1p2) is divisible

by 8.

◦ By [15, Corollaries 18.4, 19.7 and 19.8 ], h2(2p1p2) is divisible by 4.

On one hand, ζ8 = (1 + i)/
√
2 ∈ ELd

. On the other hand, letting ki be the

quadratic subfields of Ld, one gets easily

∏

i

Eki
= 〈i, ε2, ε−2, εp1p2

, ε2p1p2
, ε−p1p2

, ε−2p1p2
〉.

So the 8th root of unity ζ8 /∈ ∏

iEki
. Thus 1 and ζ8 are two distinct cosets in the

quotient ELd
/
∏

iEki
. Thus, q(Ld) is divisible by 2. It follows by the equality (1)

above that h2(Ld) is divisible by (1/23) ·2 ·2 ·8 ·4 = 16 as we wished to prove. �

Example 1. Let d = p1p2 be as in the above lemma. Using PARI/GP calculator

version 2.9.4 (64bit), December 20, 2017, for 5 ≤ pi ≤ 200, i = 1, 2, we could not

find a field Ld such that h2(Ld) = 16. We have the following examples.

1. For p1 = 13 and p2 = 5, we have h2(L13·5) = 32.

2. For p1 = 37 and p2 = 53, we have h2(L37·53) = 64.
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Remark 1. With hypothesis and notations of Lemma 2, we find in [8] a unit

group of Ld.

Lemma 3 ([9], Lemma 2). Let d ≡ 1(mod 4) be a positive square free integer

and εd = x+ y
√
d be the fundamental unit of Q(

√
d). Assume N(εd) = 1, then:

1. x+ 1 and x− 1 are not squares in N, i.e., 2εd is not a square in Q(
√
d).

2. For all prime p dividing d, p(x+ 1) and p(x− 1) are not squares in N.

Lemma 4. Let d = q1q2, with q1 ≡ q2 ≡ 3(mod 8) two primes such that
(q1
q2

)

= 1. Then we have ELd
= 〈ζ8, ε2, εq1q2 ,

√
ε2q1q2〉, and thus q(Ld) = 4.

Proof: As q1q2 ≡ 1(mod 8), we claim that the unit εq1q2 can be written as

εq1q2 = a+ b
√
q1q2, where a and b are two integers. Indeed, suppose that εq1q2 =

(α+ β
√
d)/2 where α, β are two integers. Since N(εq1q2) = 1, one deduces that

α2 − 4 = β2d, hence α2 − 4 ≡ β2(mod 8). On the other hand, if we suppose that

α and β are odd, then α2 ≡ β2 ≡ 1(mod 8), but this implies the contradiction

−3 ≡ 1(mod 8). Thus α and β are even and our claim is established.

It is known that N(εq1q2) = 1, so by the unique factorization in Z and Lemma 3

one gets

(1) :

{

a+ 1 = 2q1b
2
1,

a− 1 = 2q2b
2
2,

or (2) :

{

a− 1 = 2q1b
2
1,

a+ 1 = 2q2b
2
2,

for some integers b1 and b2 such that b = 2b1b2.

If the system (2) holds, then

−1 =
(2q1
q2

)

=
(a− 1

q2

)

=
(a+ 1− 2

q2

)

=
(−2

q2

)

= 1.

This is absurd. Therefore

{

a+ 1 = 2q1b
2
1,

a− 1 = 2q2b
2
2.

Thus,
√
εq1q2 = b1

√
q1 + b2

√
q2. So

εd is not a square in L+
d .

We have ε2d has a positive norm. Put ε2d = x + y
√
2q1q2. We similarly

show that
√
2ε2d = y1 + y2

√
2q1q2 ∈ L+

d for some integers y1 and y2. Therefore,

ε2d is a square in L+
d since

√
2 ∈ L+

d . As ε2 has a negative norm, then using

the algorithm described in [25] (or in [3, page 113]) we have {ε2, εq1q2 ,
√
ε2q1q2}

is a fundamental system of units of L+
d . Hence the result follows easily by [2,

Proposition 2]. �

To continue, consider the following parameters:

◦ For a rational prime p such that p ≡ 1(mod 8), set p = u2 − 2v2 where u

and v are two positive integers such that u ≡ 1(mod 8) (for the existence

of u and v, see [23]).
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◦ For two primes q1 and q2 such that q1 ≡ q2 ≡ 3(mod 8),
(q1
q2

)

= 1, there

exist five integers X,Y, k, l and m such that 2q2 = k2X2 +2lXY +2mY 2

and q1 = l2 − 2k2m (cf. [18, page 356]).

Theorem 1. Let d be an odd positive square free integer. Then Cl2(Ld) ≃ (2, 4)

if and only if d takes one of the two following forms:

1. d = p ≡ 9(mod 16) is a prime such that
(2

p

)

4
6=

(p

2

)

4
and

(u

p

)

4
= −1.

2. d = q1q2, with q1 ≡ q2 ≡ 3(mod 8) primes such that
(q1
q2

)

4
= 1 and

( −2

|k2X + lY |
)

= −1.

Proof: It suffices to determine for which forms of d appearing in Lemma 1, we

have h2(Ld) = 8. Let us firstly eliminate some cases.

◦ By [4, Propositions 5.13 and 5.14], h2(Ld) 6= 8 whenever d takes forms in

the third and the fourth item of Lemma 1.

◦ The form of d in the second item of Lemma 1 is also eliminated by

Lemma 2.

◦ Note that if p ≡ 1(mod 16) and
(2

p

)

4
6=

(p

2

)

4
then by [4, Theorem 5.7],

h2(Lp) 6= 8.

Note that by results in the beginning of Section 3, p ≡ 9(mod 16) implies that
(p

2

)

4
= −1. Hence, by Lemma 1, we have to check the following cases.

(I) d = p is a prime such that
(2

p

)

4
6=

(p

2

)

4
.

(II) d = p is a prime such that p ≡ 9(mod 16) and
(2

p

)

4
6=

(p

2

)

4
.

(III) d = q1q2 for two primes q1 and q2 such that q1 ≡ q2 ≡ 3(mod 8).

Let p ≡ 1(mod 8) be a prime. Set L+
p = Q(

√
2,
√
p), K = Q(

√
2, i) and

K ′ = Q(
√
2,
√−p). By applying Proposition 1 to the extension Lp/Q(

√
2), we

have

h(Lp) =
QLp

QKQK′

ωLp

ωKωK′

h(L+
p )h(K)h(K ′)

h(Q(
√
2))2

·

We have h(Q(
√
2)) = h(K) = 1. By [6, Théorème 3], QLp

= 1 and by [4,

Lemma 2.5] QK = 1. Since ωLp
= ωK = 8 and ωK′ = 2, then by passing to the

2-part in the above equality we get

(2) h2(Lp) =
1

2QK′

h2(L
+
p )h2(K

′)·
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As ε2 has a negative norm, so by the item (2) of Section 3 of [2] we obtain that

EK′ = 〈−1, ε2〉. This in turn implies that q(K ′) = QK′ = 1. From which we infer,

by Proposition 2, that h2(K
′) = 1

2 · 1 · h2(2)h2(−p)h2(−2p) = 1
2h2(−p)h2(−2p).

It follows, by the equality (2), that

(3) h2(Lp) =
1

4
h2(L

+
p )h2(−p)h2(−2p)·

Note that from [14, Theorem 2] and the proof of [14, Theorem 1], one deduces

easily that
(2

p

)

4
6=

(p

2

)

4
.

◦ Suppose that d takes the form (3). So 8 divides h2(−p). Note also that, by

[17, page 596], h2(−2p) is divisible by 4, and by [19, Theorem 2] h2(L
+
p ) is even.

It follows by the equality (3) that 16 divides h2(Lp). So this case is eliminated.

◦ Suppose that d takes the form (3). Thus
(2

p

)

4
and

(p

2

)

4
= −1. So, by [19,

Theorem 2], h2(L
+
p ) = 1. Therefore, by the equality (3) and the note below it,

we have h2(Lp) = h2(−2p).

Keep the notations of [17, page 601] and let p = a2+ b2 = 2e2−d2, with e ≥ 1.

By using notations in the proof of [14, Theorem 1] and [17, page 601] we easily

deduce that
(2

p

)

4
= (−1)b/4, so b ≡ 0(mod 8). Therefore, by [17, Théroème 3],

h2(−2p) ≡ 0(mod 8). It follows, by [23, Theorem 2], h2(−2p) = 8 if and only if
(u

p

)

4
= −1. So the first item of our theorem.

◦ Suppose that d takes the third form (3). Without loss of generality we may

assume that
(q1
q2

)

= 1. By Proposition 2 we have

h(Ld) =
1

25
q(Ld)h(q1q2)h(−q1q2)h(2q1q2)h(−2q1q2)h(2)h(−2)h(−1).

By [15, Corollary 18.4] h2(q1q2) = 1 and by [18, pages 345, 354] we have

h2(2q1q2) = 2 and h2(−q1q2) = 4, respectively. It is known that h(2) = h(−2) =

h(−1) = 1. Since by Lemma 4 q(Ld) = 4, then by passing to the 2-part in the

above equality we get

h2(Ld) =
1

25
· 4 · 1 · 4 · 2 · h2(−2q1q2) = h2(−2q1q2).

Therefore, by [18, page 357] and Lemma 1, Cl2(Ld) = (2, 4) if and only if

h2(−2q1q2) = 8 which is equivalent to
( −2

|k2X + lY |
)

= −1. This achieves the

proof. �

Let l be a positive integer. For a finite abelian group G, its 2 l-rank is defined

as r2l(G) = dimF2
(2 l−1G/2 lG). Or equivalently looking at the decomposition
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of the group G into cyclic groups as G =
∏

i Cni
, the 2 l-rank of G equals the

number of ni’s divisible by 2 l.

Corollary 1. Let p be a rational prime such that p ≡ 1(mod 8) and
(2

p

)

4
=

(p

2

)

4
= −1, then the 8-rank of Cl2(Lp) equals 1.

Proof: By [6, Théorème 10], we deduce that the 4-rank of Cl2(Lp) equals 1, and

by the proof of Theorem 1, h2(Lp) is divisible by 16, so the result follows. �

From the proof of Theorem 1 we get

Corollary 2. Let q1 and q2 be two rational primes such that q1 ≡ q2 ≡
3(mod 8), then h2(Lq1q2) = h2(−2q1q2).

Example 2. For all the examples below, we used PARI/GP calculator version

2.9.4 (64bit), December 20, 2017.

1. For p = 89, u = 17 and v = 10, we have p = u2−2v2,
(2

p

)

4
= −

(u

p

)

4
= 1

and Cl2(L89) ≃ (2, 4).

2. For q1 = 11, q2 = 19, k = 1, l = 3, m = −1, X = 4 and Y = 1, we

have q1 = l2 − 2k2m, 2q2 = k2X2 + 2lXY + 2mY 2,
( −2

|k2X + lY |
)

=

(−2

7

)

= −1 and Cl2(L11·19) ≃ (2, 4).

4. Fields Ld for which Cl2(Ld) is of type (2, 2, 2)

In this section we determine all fields Ld such that Cl2(Ld) ≃ (2, 2, 2). Keep the

above notations: p, pi, q and qi are prime integers satisfying p ≡ pi ≡ 1(mod 4)

and q ≡ qi ≡ 3(mod 4) with i ∈ N∗. From Section 4 of [4], it is easy to deduce

the following result:

Lemma 5. The rank of the 2-class group Cl2(Ld) of Ld equals 3 if and only if d

takes one of the following forms.

1. d = p with p ≡ 1(mod 8) and
(2

p

)

4
=

(p

2

)

4
= 1.

2. d = q1q2 with q1 ≡ q2 ≡ 7(mod 8).

3. d = qp with q ≡ 3(mod 8) and p ≡ 1(mod 8) and
(2

p

)

4
= −1.

4. d = p1p2 with p1 ≡ 5(mod 8), p2 ≡ 1(mod 8) and
(2

p

)

4
6=

(p

2

)

4
.

5. d = q1q2p with q1 ≡ q2 ≡ 3(mod 8) and p ≡ 5(mod 8).

6. d = qp1p2 with q ≡ 3(mod 8) and p1 ≡ p2 ≡ 5(mod 8).
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We will need the following lemmas.

Lemma 6. Let d = q1q2, with q1 ≡ q2 ≡ 7(mod 8) two primes such that
(q1
q2

)

= 1. Then we have ELd
= 〈ζ8, ε2, εq1q2 ,

√
ε2q1q2 or

√
εq1q2ε2q1q2〉, and

thus q(Ld) = 4.

Proof: Similar to the proof of Lemma 4. �

Lemma 7.

1. Let d = p for a prime p ≡ 1(mod 8) such that
(2

p

)

4
=

(p

2

)

4
= 1. Then,

h2(Lp) ≡ 0(mod 16), and thus Cl2(Lp) is not elementary.

2. Let d = q1q2 with q1 and q2 two rational primes such that q1 ≡ q2 ≡
7(mod 8). Then, h2(Lq1q2) ≡ 0(mod 32), and thus Cl2(Lq1q2) is not

elementary.

3. Let d = p1p2 with p1 ≡ 5(mod 8), p2 ≡ 1(mod 8) two primes such that
(p2
p1

)

= 1. Then, h2(Lp1p2
) ≡ 0(mod 32).

Proof: 1. By equality (3) in the proof of Theorem 1 we have

h2(Lp) =
1

4
h2(L

+
p )h2(−p)h2(−2p).

Note that by [17, page 596], h2(−2p) is divisible by 4. Since for a prime p′ ≡
1(mod 8), h2(−p′) = 4 if and only if

( 2

p′

)

4
6=

(p′

2

)

4
(see the proof of Theorem 1),

then h2(−p) is divisible by 8 (in fact
(2

p

)

4
=

(p

2

)

4
and by [15, Corollaries 18.4

and 19.6] h2(−p) is divisible by 4). Thus, h2(Lp) is divisible by 8 · h2(L
+
p ). By

[19, Theorem 2], h2(L
+
p ) is even. From which we infer that h2(Lp) is divisible

by 16. So we have the first item.

2. By Proposition 2 we have

h(Lq1q2) =
1

25
q(Lq1q2)h(q1q2)h(−q1q2)h(2q1q2)h(−2q1q2)h(2)h(−2)h(−1)·

On one hand, by [18, page 345], h2(2q1q2) is divisible by 4, by [18, pages 354, 356],

h2(−q1q2) and h2(−2q1q2) are both divisible by 8, and by [15, Corollary 18.4],

h2(q1q2) = 1. On the other hand, by Lemma 6, q(Lq1q2) = 4. From all these

results, it follows by passing to the 2-part in the above equality that h2(Ld) is

divisible by (1/25) · 4 · 8 · 4 · 8 = 32. And the second item follows.

3. We proceed as in the proof the second item. �

Example 3. Let d = p be as in the first item of the above lemma. Using

PARI/GP calculator version 2.9.4 (64bit), December 20, 2017, for 3 ≤ p ≤ 104,

we could not find a field Ld such that h2(Ld) = 16. We have the following

examples.
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1. For p = 113, we have
(2

p

)

4
=

(p

2

)

4
= 1 and h2(L113) = 64.

2. For p = 337, we have
(2

p

)

4
=

(p

2

)

4
= 1 and h2(L337) = 32.

3. For q1 = 7 and q2 = 31, we have h2(L7·31) = 32.

4. For q1 = 7 and q2 = 23, we have h2(L7·23) = 64.

Lemma 8.

1. If d = q1q2p with q1 ≡ q2 ≡ 3(mod 8) and p ≡ 5(mod 8), then

h2(Lq1q2p) ≡ 0(mod 32). So Cl2(Lq1q2p) is not elementary.

2. If d = qp1p2 with q ≡ 3 (mod 8) and p1 ≡ p2 ≡ 5 (mod 8), then

h2(Lqp1p2
) ≡ 0(mod 32). So Cl2(Lqp1p2

) is not elementary.

Proof: 1. Consider the following diagram (Figure 1 below):

Q(i)

K2 = Q(
√
q1q2p, i) K3 = Q(

√
2q1q2p, i)K1 = Q(

√
2, i)

Ld = Q(
√
q1q2p,

√
2, i)

Figure 1.
Lq1q2p

Q(i)
.

By applying Proposition 3 to the V4-extension Lq1q2p/Q(i) we get:

h(Ld) =
1

4
Q
( Ld

Q(i)

)h(K1)h(K2)h(K3)

h(Q(i))2
.

It is known that h(K1) = h(Q(i)) = 1 (in fact, K1 = Q(ζ8)), so

(4) h(Ld) =
1

4
Q
( Ld

Q(i)

)

h(K2)h(K3).

Note that by [24, Proposition 2], the ranks of the 2-class groups of K2 and K3

equal 2 and 3, respectively. The author of [1] determined all fields Q(
√
d, i) for

which the 2-class group is of type (2, 2). By checking all the results of this last

reference, we deduce that 2-class group of K2 is not of type (2, 2). So 8 divides

the class number of K2.

On the other hand, by [7, Théorème 5.3] the 2-class group of K3 is not of type

(2, 2, 2). So the class number of K2 is divisible by 16. Hence by equality (4)

h(Ld) is divisible by 1
4 · 8 · 16 = 32. So the first item follows.

2. We similarly prove the second item by using [7, Théorème 5.3] and [24,

Proposition 2]. �
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Example 4. Let d = qp1p2 be as in the second item of the above Lemma. Using

PARI/GP calculator version 2.9.4 (64bit), December 20, 2017, for 3 ≤ q, pi ≤ 100,

we could not find a field Ld such that h2(Ld) = 32. We have the following

examples.

1. For q1 = 3, q2 = 11 and p = 5, we have h2(L3·11·5) = 32.

2. For q1 = 3, q2 = 11 and p = 13, we have h2(L3·11·13) = 128.

3. For q = 3, p1 = 5 and p2 = 13, we have h2(L3·5·13) = 64.

4. For q = 3, p1 = 5 and p2 = 29, we have h2(L3·5·29) = 128.

Lemma 9. Let d = qp with q ≡ 3(mod 8), p ≡ 1(mod 8) and
(p

q

)

= −1. Then

ELd
= 〈ζ 8, ε2,

√
εpq,

√
ε2pq 〉, and thus q(Ld) = 8.

Proof: We proceed as in the proof of Lemma 4. �

Now we are able to state the main theorem of this subsection.

Theorem 2. Let d be a square free integer, then Cl2(Ld) ≃ (2, 2, 2) if and only

if d takes one of the two following forms:

1. d = p1p2 with p1 ≡ 5(mod 8), p2 ≡ 1(mod 8),
( 2

p2

)

4
6=

(p2
2

)

4
and

(p2
p1

)

= −1.

2. d = qp with q ≡ 3(mod 8), p ≡ 1(mod 8),
(2

p

)

4
= −1 and

(p

q

)

= −1.

Proof: It suffices to determine for which forms of d appearing in Lemma 5,

we have h2(Ld) = 8. Let us start, as above, by eliminating certain inconvenient

cases.

◦ The forms of d in the first and the second items of Lemma 5 are elimi-

nated by Lemma 7.

◦ The forms of d in the two last items of Lemma 5 are eliminated by

Lemma 8.

It follows that it suffices to check the two following cases:

(I) d = p1p2 with p1 ≡ 5(mod 8), p2 ≡ 1(mod 8) and
( 2

p2

)

4
6=

(p2
2

)

4
.

(II) d = qp with q ≡ 3(mod 8) and p ≡ 1(mod 8) and
(2

p

)

4
= −1.

◦ Suppose that d takes the form I, then [10, Theorem 4.2] and the last assertion

of Lemma 7 give the first item.

◦ Suppose now that d takes the form II. Consider the following diagram (Figure 2

below):
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Q(
√
2)

L+
d = Q(

√
d,
√
2) K1 = Q(

√
2,
√
−d)K2 = Q(

√
2, i)

Ld = Q(
√
2,
√
d, i)

Figure 2.
Ld

Q(
√
2)

.

By Proposition 1 we have

(5) h(Ld) =
QLd

QK1
QK2

ωLd

ωK1
ωK2

h(L+
d )h(K1)h(K2)

h(Q(
√
2))2

·

Note that h(K2) = h(Q(
√
2)) = 1. We have, dε2 is not a square in Q(

√
2).

Otherwise we will get for some α in Q(
√
2), dε2 = α2, then NQ(

√
2)/Q(dε2) =

−d2 = NQ(
√
2)/Q(α)

2, which is false. It follows by [2, Proposition 3], that {ε2}
is a fundamental system of units of K1, i.e., QK1

= 1. Since QK2
= 1 (cf. [4,

Lemma 2.5]), ωLd
= ωK2

= 8 and ωK1
= 2, then by passing to the 2-part in the

equality (5), we get h2(Ld) = 1
2QLd

h2(L
+
d )h2(K1). By Proposition 3, we have

h2(K1) =
1
2h2(−2d)h2(−d)h2(2). So

(6) h2(Ld) =
1

4
QLd

h2(L
+
d )h2(−2d)h2(−d).

Note that, by Lemma 9, if
(p

q

)

= −1, then QLd
= 1. Note also that,

(1) from [5, Théorème 2] and its proof, we deduce that h2(L
+
d ) is divisible

by 4 and h2(L
+
d ) = 4 if and only if

(p

q

)

= −1,

(2) from [15, Corollaries 18.5 and 19.6], we deduce that h2(−d) is even and

h2(−d) = 2 if and only if
(p

q

)

= −1,

(3) from [15, Corollaries 18.5 and 19.6] and [18, page 353], we deduce that

h2(−2d) is divisible by 4 and h2(−2d) = 4 if and only if
(p

q

)

= −1.

Hence plugging all of these results into equality (6), one gets the second item,

which completes the proof. �

Example 5. For all the examples below, we used PARI/GP calculator ver-

sion 2.9.4 (64bit), December 20, 2017.
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1. Let p1 = 29 and p2 = 17. We have p2 ≡ 1(mod 8),
( 2

p2

)

4
6=

(p2
2

)

4
,

(p2
p1

)

= −1 and Cl2(L29·17) ≃ (2, 2, 2).

2. Let q = 11 and p = 17. We have
(2

p

)

4
= −1,

(p

q

)

= −1 and Cl2(L11·17) ≃
(2, 2, 2).
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