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FIXED-TIME TRACKING CONTROL FOR NONHOLONOMIC
MOBILE ROBOT

Meiying Ou, Haibin Sun, Zhenxing Zhang Lingchun Li and Xiang-ao Wang

This paper investigates the fixed-time trajectory tracking control problem for a nonholo-
nomic mobile robot. Firstly, the tracking error system is derived for the mobile robot by the
aid of a global invertible transformation. Then, based on the unified error dynamics and by
using the fixed-time control method, continuous fixed-time tracking controllers are developed
for the mobile robot such that the robot can track the desired trajectory in a fixed time. More-
over, the settling time is independent of the system initial conditions and only determined
by the controller parameters. Finally, numerical simulations are provided to demonstrate the
effectiveness of the theoretical results.
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1. INTRODUCTION

In recent years, the tracking control of nonholonomic mobile robot system has been
highly valued and favored by scholars and researchers all over the world, and has become
a research hotspot. Although according to Brocket theory, a nonholonomic system is
not able to be asymptotically stable using the smooth and time invariant control laws
[3]. With the development of mathematical theory and control theory, many advanced
theories have been deeply discussed and widely used in the field of trajectory tracking
control for mobile robot system [1, 5, 7, 11, 17, 28]

It is worth noting that, for these above works, the tracking control can only be
achieved in an asymptotic manner, namely, the settling time is infinite. In reality, it is
of particular interest to realise the control system in a finite time to meet specifc system
requirement. Therefore, finite-time control problems draw some researchers’ attention
[2, 6, 12, 18, 26]. At present, many meaningful finite-time tracking control results for
nonholonomic mobile robot systems have been reported in the literature [14, 20, 24, 27]
and the references therein. In [14], two continuous finite-time tracking control laws
were developed for two different cases of a nonholonomic mobile robot in a kinematic
model, and the global finite time stability was guaranteed by using the cascaded system
results. The authors of [27] proposed finite-time tracking controller for the nonholonomic

DOI: 10.14736/kyb-2021-2-0220

http://doi.org/10.14736/kyb-2021-2-0220


Fixed-time trajectory tracking control for nonholonomic mobile robot 221

systems with extended chained form. The authors of [20] studied finite-time tracking
control problem of a nonholonomic wheeled mobile robot in dynamic model with external
disturbances, finite-time disturbance observers and finite-time tracking control laws were
designed for the mobile robot. In [24], an adaptive finite-time neural control was designed
for robotic manipulators.

Although the previously listed finite-time control algorithms can guarantee that the
closed-loop system convergence in a finite time, the settling time is difficult to estimate
or is dependent on the initial condition. So it would be useful if the settling time could
be predetermined no matter whether the initial conditions are known or not. Recently,
a new concept, called fixed-time stability, has been proposed in [21]. Fixed-time control
is more preferable than finite-time control in practical applications since the fixed-time
approach can generate a control law prescribing a transition time which is independent of
the operation domain [13]. Based on the fixed-time stability notion, some new results are
reported. For example, the fixed-time control problem for second-order and high-order
systems has been investigated in [15, 16, 25, 30]. The fixed-time stabilisation for a kind
of uncertain nonholonomic systems subject to perturbations was considered in paper
[29], and a globally fixed-time stabilisation strategy was proposed by taking advantage
of adding a power integrator technique and switching ideal. The authors of paper [9]
discussed fixed-time tracking control problem for nonholonomic mobile robot, and fixed
time control algorithm was designed by proposing a new integral terminal sliding mode
surface. In [23], the fixed-time attitude tracking control problem for rigid spacecraft with
input quantization and external disturbances was investigated, fixed-time disturbance
observer was designed to estimate unknown disturbances and fixed-time controller was
constructed for the rigid spacecraft system.

Motivated by the above works, the main purpose of this paper is to tackle the fixed-
time tracking control problem of a nonholonomic mobile robot, which is more challenging
because of mobile robots’ nonlinear dynamics and nonholonomic constraints. We first
introduce the unified tracking error system for the mobile robot, which consists of two
subsystems, i. e., a first-order subsystem and a second-order subsystem. Then, based on
fixed-time control theory and adding a power integrator technique, the two subsystems
are discussed respectively, and fixed-time control laws are proposed such that the states
of the mobile robot converge to the desired reference trajectory in a fixed time. Since the
resulting error system consists of two subsystems, we will give two stages to design the
fixed-time control laws for the mobile robot. In the first stage, the first-order subsystem
is discussed, fixed-time angular controller is design for the mobile robot based on fixed-
time stability theory. In the second stage, the second-order subsystem is investigated
and the translational velocity is given based on fixed-time control theory and adding a
power integrator technique.

The rest of this paper is organized as follows. In the next Section, some preliminaries
are first introduced. Then the model description and problem formulation are presented.
The main results are given in Section 3. Numerical simulations are shown in Section 4.
Conclusions are given in Section 5.
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2. PRELIMINARIES

2.1. Problem formulation

As we known, Campion et al [4] have divided nonholonomic wheeled mobile robots
into four types: (2, 0), (2, 1), (1, 1) and (1, 2). In this paper, we will consider fixed-
time tracking control problem for the type (2,0) nonholonomic mobile robot system, as
shown in Figure 1, which consists of a front castor wheel and two rear wheels. The

Fig. 1. Type (2,0) wheeled mobile robot.

two rear wheels of the robot are controlled independently by motors, and a front castor
wheel prevents the robot from tipping over as it moves on a plane. Assume that the
geometric center point and the mass center point of the robot are the same. Then, the
nonholonomic constraint can be written as

ẋ sin θ − ẏ cos θ = 0, (1)

where (x, y) denotes the position P of the center of mass, θ is the angle between X axis
and X1 axis with a positive anticlockwise direction. By this formula, the kinematics of
the mobile robot can be described by the following equation in global coordinates:

ẋ = v cos θ, (2a)

ẏ = v sin θ, (2b)

θ̇ = ω, (2c)

where v and ω are the linear velocity and the angular velocity of the mobile robot,
respectively.

The dynamics of the reference trajectory is described by

ẋr = vr cos θr, (3a)

ẏr = vr sin θr, (3b)

θ̇r = ωr, (3c)
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where (xr, yr) is the desired path of the mass center (x, y) in the image frame, θr is
the desired direction, vr and ωr are the linear velocity and the angular velocity of the
reference mobile robot, respectively.

2.2. Related lemmas

In this subsection, some important lemmas in obtaining the fixed-time controller are
presented.

Lemma 2.1. (Polyakov [21]) Considering the following system

ẋ = f(x), f(0) = 0, x ∈ Rn, (4)

suppose that there exists a continuous, positive definite function V (x) : Rn → R such
that

V̇ (x) ≤ −αV p(x)− βV q(x), x ∈ U0, (5)

where α > 0, β > 0, 0 < p < 1, q > 1, then the origin is a fixed-time stable equilibrium
of system (4) and the finite settling time T satisfies T ≤ 1

α(1−p) + 1
β(q−1) .

Lemma 2.2. (Hardy et al. [8]) For x1, x2 ∈ R, 0 < p ≤ 1 is a real number, then the
following inequality holds:

(|x1|+ |x2|)p ≤ |x1|p + |x2|p. (6)

Lemma 2.3. (Zuo and Tie [31]) For xi ∈ R, i = 1, 2, · · · , n and p > 1, then

n1−p(

n∑
i=1

|xi|)p ≤
n∑
i=1

|xi|p. (7)

Lemma 2.4. (Hardy et al. [8]) For any real numbers a and b, if 0 < p = p1
p2
≤ 1, and

p1 > 0, p2 > 0 are positive odd integers, then

|ap − bp| ≤ 21−p|a− b|p. (8)

Lemma 2.5. (Qian and Lin [22]) Let c, d > 0, for any γ > 0, the following inequality
holds for any x, y ∈ R

|x|c|y|d ≤ c

c+ d
γ|x|c+d +

d

c+ d
γ−

c
d |y|c+d. (9)

3. MAIN RESULT

In order to deduce the main result, we first convert the global coordinates representation
to Cartesian coordinates by the following global transformation [10]: xe

ye
θe

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xr − x
yr − y
θr − θ

 , (10)
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i. e.,

xe = (xr − x) cos θ + (yr − y) sin θ,
ye = −(xr − x) sin θ + (yr − y) cos θ,
θe = θr − θ.

(11)

Taking the time derivative of xe, ye, θe along system (2) and (3), the error dynamics
equations can be obtained as

ẋe = (ẋr − ẋ) cos θ − (xr − x)θ̇ sin θ + (ẏr − ẏ) sin θ + (yr − y)θ̇ cos θ

= (vr cos θr − v cos θ) cos θ − ω(xr − x) sin θ

+(vr sin θr − v sin θ) sin θ + ω(yr − y) cos θ

= ω
(
(yr − y) cos θ − (xr − x) sin θ

)
− v(cos2 θ + sin2 θ)

+vr(cos θr cos θ + sin θr sin θ)

= ωye − v + vrcosθe, (12a)

ẏe = −(ẋr − ẋ) sin θ − (xr − x)θ̇ cos θ + (ẏr − ẏ) cos θ − (yr − y)θ̇ sin θ

= −(vr cos θr − v cos θ) sin θ − ω(xr − x) cos θ

+(vr sin θr − v sin θ) cos θ − ω(yr − y) sin θ

= −ω
(
(xr − x) cos θ + (yr − y) sin θ

)
+ v(cos θ sin θ − sin θ cos θ)

+vr(sin θr cos θ − cos θr sin θ)

= −ωxe + vrsinθe, (12b)

θ̇e = θ̇r − θ̇ = ωr − ω. (12c)

The objective of this paper is to design appropriate control laws v and ω such that
system (2) can track the reference system (3) in a fixed time, i. e., the error system (12)
is fixed-time stable.

Based on the structure of error dynamics equations (12), we will give two steps to
design the controllers. In the first step, we design ω such that θe is forced to converge
to zero in a fixed time. In the second step, we design v such that xe, ye can converge to
zero in a fixed time.

3.1. Angular velocity design

Theorem 3.1. Consider system (2), if the angular controller is chosen as follows

ω = ωr + k1sig
β1θe + k2sig

β2θe, (13)

where k1, k2 > 0, 0 < β1 < 1, β2 > 1, then the desired angular velocity trajectory can
be tracked in a fixed time.

P r o o f . Choose a Lyapunov function as

V (θ) =
1

2
θ2e . (14)
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Computing the derivative of V (θ) along system (13), we obtain

V̇ (θ) = θeθ̇e = −k1θesigβ1θe − k2θesigβ2θe
= −k1|θe|1+β1 − k2|θe|1+β2

= −k12
1+β1

2 ( 1
2θ

2
e)

1+β1
2 − k22

1+β2
2 ( 1

2θ
2
e)

1+β2
2

≤ −k12
1+β1

2 (V (θ))
1+β1

2 − k22
1+β2

2 (V (θ))
1+β2

2 .

(15)

Noticing that 0 < β1 < 1, β2 > 1, it can calculate that 0 < 1+β1

2 < 1, 1+β2

2 > 1. By
virtue of Lemma 2.1, we can obtain that V (θ) reaches zero in a fixed time

Tθ ≤
1

T1
+

1

T2
, (16)

where T1 = k12
1+β1

2
1−β1

2 , T2 = k22
1+β2

2
1−β2

2 . On the other hand, if V (θ) = 0, then
θe = 0. Therefore system (12c) is fixed-time stable, i. e., the desired angular velocity
trajectory can be tracked in a fixed time. This completes the proof. �

3.2. Velocity control law design

In this subsection, systems (12a) – (12b) will be discussed and fixed-time controller v for
the mobile robot will be developed via adding a power integrator technique.

Theorem 3.2. Consider system (2), if the controller v is chosen as

v = vr − 1
ωr

(
η3σ̄

1+m1(ye) + σ̄3(xe, ye) + 1
)
ξr1+m1−1

− 1
ωr

(
21−r1 σ̄(ye) + η2σ̄

1+r1(ye) + η1 + σ̄4(xe, ye) + σ̄1(ye) + 1
)
ξ2r1−1,

(17)

where

η1 =
r12

3
r1

−r1

(1 + r1)1+
1
r1

, η2 =
rr11 22+3r1−r21

(1 + r1)1+r1
, η3 =

mm1
1 22−r1−r1m1+4m1

(1 +m1)1+m1
,

σ̄(ye) = 2
1
r1 (2− r1)(1 + ym1−r1

e )
1
r1 + 2

1
r1 (2− r1)

m1 − r1
r1

(1 + ym1−r1
e )

1
r1

−1ym1−r1
e ,

σ̄1(ye) =
2− r1
1 + r1

(
8r1 − 4

1 + r1
)

2r1−1
2−r1 ωr

2(1+r1)
2−r1 |ye|

2(1−r21)

2−r1 ,

σ̄2(xe, ye) =
21+r1

1 + r1
(

4r1
1 + r1

)r1 | ω̇r
ωr
|1+r1 |ξ|1−r

2
1 ,

σ̄3(xe, ye) =
21+m1

1 +m1
(

2m1

1 +m1
)m1 | ω̇r

ωr
|1+m1 |ξ|1+m1−r1−r1m1 ,

σ̄4(xe, ye) = | ω̇r
ωr
|ξ1−r1 + σ̄2(xe, ye), ξ = (−ωrxe)

1
r1 − (−2yr1e − 2ym1

e )
1
r1 ,

in addition, r1 = 1 + τ1, m1 = 1 + τ2 and − 1
2 < τ1 < 0, τ2 > 0 which are the ratio

of positive even integer and positive odd integer, then the state xe and ye of systems
(12a) – (12b) will be stabilized to zero in a fixed time.
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P r o o f . Define the following transformation

e1 = ye, e2 = −ωrxe, θe = θe. (18)

Differentiating (18) and substituting (12) and control law (17) into it, one obtains

ė1 =
ω

ωr
e2 + vr sin θe, (19a)

ė2 =
ω̇r
ωr
e2 − ωrωe1 + ωrv − ωrvr cos θe

=
ω̇r
ωr
e2 − ωrωe1 − ωrvr cos θe + ωrvr

−
(
η3σ

1+m1(e1) + σ3(e1, e2) + 1
)
ξr1+m1−1

−
(
21−r1σ(e1) + η2σ

1+r1(e1) + η1 + σ4(e1, e2) + σ1(e1) + 1
)
ξ2r1−1, (19b)

θ̇e = −k1sigβ1θe − k2sigβ2θe, (19c)

where η1, η2, η3,m1, r1 are defined as above and

σ(e1) = 2
1
r1 (2− r1)(1 + em1−r1

1 )
1
r1 + 2

1
r1 (2− r1)

m1 − r1
r1

(1 + em1−r1
1 )

1
r1

−1em1−r1
1 ,

σ1(e1) =
2− r1
1 + r1

(
8r1 − 4

1 + r1
)

2r1−1
2−r1 ωr

2(1+r1)
2−r1 |e1|

2(1−r21)

2−r1 ,

σ2(e1, e2) =
21+r1

1 + r1
(

4r1
1 + r1

)r1 | ω̇r
ωr
|1+r1 |ξ|1−r

2
1 ,

σ3(e1, e2) =
21+m1

1 +m1
(

2m1

1 +m1
)m1 | ω̇r

ωr
|1+m1 |ξ|1+m1−r1−r1m1 ,

σ4(e1, e2) = | ω̇r
ωr
|ξ1−r1 + σ2(e1, e2), ξ = e

1
r1
2 − (−2er11 − 2em1

1 )
1
r1 .

According to transformation (18), we only need to prove that ej = 0(j = 1, 2) in a fixed
time. Based on Theorem 3.1, we can obtain that θe(t) = 0 in a fixed time Tθ. Thus, for
any t > Tθ, ωr = ω and the closed-loop system (19) can be rewritten as follows

ė1 = e2, (20a)

ė2 =
ω̇r
ωr
e2 − ωrωe1 + ωrv − ωrvr

=
ω̇r
ωr
e2 − ω2

re1 −
(
η3σ

1+m1(e1) + σ3(e1) + 1
)
ξr1+m1−1

−
(
21−r1σ(e1) + η2σ

1+r1(e1) + η1 + σ4(e1, e2) + σ1(e1) + 1
)
ξ2r1−1. (20b)

Two steps will be given in this part and adding a power integrator technique is employed.
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Step 1 Choose the following Lyapunov function candidate

V1(e1) =
1

2
e21, (21)

whose derivative along system (20) is

V̇1(e1) = e1e2 = e1e
∗
2 + e1(e2 − e∗2). (22)

With the help of the backstepping design idea, a virtual control law is designed as

e∗2 = −2er11 − 2em1
1 , (23)

which leads to
V̇1(e1) ≤ −2e1+r11 − 2e1+m1

1 + e1(e2 − e∗2). (24)

Step 2 The Lyapunov function is constructed as

V2(e1, e2) = V1(e1) +

∫ e2

e∗2

(s
1
r1 − e

∗ 1
r1

2 )2−r1 ds. (25)

According to the results in paper [22], we can obtain that
∫ e2
e∗2

(s
1
r1 − e

∗ 1
r1

2 )2−r1 ds is

differentiable, positive definite and proper. For brevity, denote ξ = e
1
r1
2 − e

∗ 1
r1

2 . The
derivative of V2(e1, e2) along systems (20) and (24) is

V̇2(e1, e2) ≤ −2e1+r11 − 2e1+m1
1 + e1(e2 − e∗2) + ξ2−r1 ė2

+(2− r1)
d(−e

∗ 1
r1

2 )
dt

∫ e2
e∗2

(s
1
r1 − e

∗ 1
r1

2 )1−r1 ds.
(26)

Using Lemmas 2.4 and 2.5, one obtains

e1(e2 − e∗2) ≤ |e1||(e
1
r1
2 )r1 − (e

∗ 1
r1

2 )r1 | ≤ 21−r1 |e1||ξ|r1 ≤ 1
4 |e1|

1+r1 + η1|ξ|1+r1 . (27)

Noticing that

− e
∗ 1
r1

2 =
(
2er11 (1 + em1−r1

1 )
) 1
r1 = 2

1
r1 e1(1 + em1−r1

1 )
1
r1 , (28)

which leads to

(2− r1)
d(−e

∗ 1
r1

2 )
de1

= 2
1
r1 (2− r1)(1 + em1−r1

1 )
1
r1

+2
1
r1 (2− r1)m1−r1

r1
(1 + em1−r1

1 )
1
r1

−1em1−r1
1

, σ(e1).

(29)

In addition, based on Lemma 2.2, from (23) and the definition of ξ, we have

|e2| = |ξ + e
∗ 1
r1

2 |r1 ≤ |ξ|r1 + |e∗2| ≤ |ξ|r1 + 2|e1|r1 + 2|e1|m1 . (30)
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By Lemma 2.4, we can also obtain that∫ e2

e∗2

(s
1
r1 − e

∗ 1
r1

2 )1−r1 ds ≤ |ξ|1−r1 |e2− e∗2| = |ξ|1−r1 |(e
1
r1
2 )r1 − (e

∗ 1
r1

2 )r1 | ≤ 21−r1 |ξ|. (31)

From (29), (30), (31) and Lemma 2.5, one obtains

(2− r1)
d(−e

∗ 1
r1

2 )
dt

∫ e2
e∗2

(s
1
r1 − e

∗ 1
r1

2 )1−r1 ds

= (2− r1)
d(−e

∗ 1
r1

2 )
de1

de1
dt

∫ e2
e∗2

(s
1
r1 − e

∗ 1
r1

2 )1−r1 ds

≤ σ(e1)(|ξ|r1 + 2|e1|r1 + 2|e1|m1)21−r1 |ξ|
≤ 1

4 |e1|
1+r1 + 1

2 |e1|
1+m1 +

(
21−r1σ(e1)

+η2σ
1+r1(e1)

)
|ξ|1+r1 + η3σ

1+m1(e1)|ξ|1+m1 .

(32)

Substituting (27) and (32) into (26), we have

V̇2(e1, e2) ≤ − 3
2 |e1|

1+r1 − 3
2 |e1|

1+m1 + η3σ
1+m1(e1)|ξ|1+m1

+
(
21−r1σ(e1) + η2σ

1+r1(e1) + η1
)
|ξ|1+r1 + ξ2−r1 ė2

≤ − 3
2 |e1|

1+r1 − 3
2 |e1|

1+m1 + η3σ
1+m1(e1)|ξ|1+m1

+
(
21−r1σ(e1) + η2σ

1+r1(e1) + η1
)
|ξ|1+r1 + ξ2−r1 ė2.

(33)

Combining (20b) with (33), yields

V̇2(e1, e2) ≤ − 3
2 |e1|

1+r1 − 3
2 |e1|

1+m1 − |ξ|1+m1 − |ξ|1+r1 + |ξ|2−r1 | ω̇rωr ||e2|

+|ξ|2−r1ω2
r |e1| − σ3(e1, e2)|ξ|1+m1 − σ4(e1, e2)|ξ|1+r1

−σ1(e1)|ξ|1+r1 .

(34)

By Lemma 2.5, we obtain

|ξ|2−r1 |ω2
r ||e1| ≤ |ω

2
2−r1
r e

2−2r1
2−r1
1 ξ|2−r1 |e1|2r1−1 ≤ σ1(e1)|ξ|1+r1 +

1

4
|e1|1+r1 . (35)

Note that ξ = e
1
r1
2 − e

∗ 1
r1

2 , e∗2 = −2er11 − 2em1
1 , using Lemmas 2.2 and 2.5, we have

| ω̇rωr ||ξ|
2−r1 |e2| ≤ | ω̇rωr ||ξ|

2−r1 |ξ + e
∗ 1
r1

2 |r1 ≤ | ω̇rωr ||ξ|
2−r1(|ξ|r1 + |e∗2|)

= | ω̇rωr ||ξ|
2−r1 |ξ|r1 + | ω̇rωr ||ξ|

2−r1 |2er11 + 2em1
1 |

≤ | ω̇rωr ||ξ|
2−r1 |ξ|r1 + 2| ω̇rωr ||ξ|

2−r1 |e1|r1 + 2| ω̇rωr ||ξ|
2−r1 |e1|m1

≤ | ω̇rωr ||ξ|
1−r1 |ξ|1+r1 + 1

4 |e1|
1+r1 + σ2(e1, e2)|ξ|1+r1

+ 1
2 |e1|

1+m1 + σ3(e1, e2)|ξ|1+m1

= σ4(e1, e2)|ξ|1+r1 + 1
4 |e1|

1+r1 + 1
2 |e1|

1+m1 + σ3(e1, e2)|ξ|1+m1 .
(36)

Substituting (35) and (36) into (34), one obtains

V̇2(e1, e2) ≤ −|e1|1+r1 − |e1|1+m1 − |ξ|1+m1 − |ξ|1+r1 . (37)
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On the other hand, with the definition of V2(e1, e2) in (25), it follows from Lemma 2.4
that

V2(e1, e2) ≤ 1

2
e21 + 21−r1ξ2 ≤ λ(e21 + ξ2), (38)

where λ = max{ 12 , 2
1−r1}. By Lemmas 2.2-2.3, it can be concluded that

(e21 + ξ2)
1+r1

2 ≤ |e1|1+r1 + |ξ|1+r1 , (39)

and
(e21 + ξ2)

1+m1
2 ≤ 2

m1−1
2 (|e1|1+m1 + |ξ|1+m1). (40)

With the help of these two inequalities, it follows from (37) and (38) that

V̇2(e1, e2) ≤ −λ−
1+r1

2 V
1+r1

2
2 (e1, e2)− 2−

m1−1
2 λ−

1+m1
2 V

1+m1
2

2 (e1, e2). (41)

Based on Lemma 2.1, we conclude that V2(e1, e2) reaches zero in a fixed time. In other

words, there exists a time constant T0 = λ
1+m1

2
2

1−r1 +2
m1−1

2 λ
1+m1

2
2

m1−1 <∞, such that
V2(e1, e2) = 0, ∀t ≥ T0. It means that e1 = 0 and e2 = 0 in fixed time. Therefore, one
can concludes that system (19a) and (19b) with the controller (17) is globally fixed-time
stable. �

Remark 1. It is worth mentioning that we do not prove that the control law (17) can
guarantee the boundedness of states ej = 0(j = 1, 2) in the interval [0, Tθ], it is mainly
because the analysis of the dynamics of the closed-loop system is a difficult task due
to the complex nonlinear items. In simulation section, we have done a great number of
simulations for the nonholonomic mobile robot systems (2) and (3) under the control
laws (13) and (17). We do not observe any divergence phenomenon. Actually, in prac-
tice, to guarantee the boundedness of system states, we can employ a bounded control
law in the interval [0, Tθ].

By virtue of Theorems 3.1–3.2 and Remark 1, we have the following main result.

Theorem 3.3. For the nonholonomic mobile robot systems (2), if the control laws
ω and v are designed as (13) and (17), then system (2) can globally track the desired
reference trajectory (3) in a fixed time, where the control parameters used in (13) and
(17) are chosen as those in above Theorems 3.1 and 3.2.

P r o o f . Firstly, based on Theorems 3.1 and 3.2, we get that states θe, e1 and e2 in
system (19) can reach zero in fixed time under control laws (13) and (17). Secondly,
combining the state transformation equations (10) and (18), it is shown that θe, e1 and
e2 reach zero implies that xr = x , yr = y, θr = θ. Thus, nonholonomic mobile robot
system (2) can globally track the desired reference trajectory (3) in a fixed time. �

Remark 2. The authors of paper [19] has discussed finite-time tracking control prob-
lem for systems (2) and (3), and distributed finite-time tracking control laws have been
given as follows

ω = ωr +K1sig
βθe, (42a)

v = vr −
1

ωr

(
K3 + ρ1(ye) + ρ2(xe, ye)

)
(Kp2ye − ωprxpe)

2
p−1 (42b)
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where 0 < β < 1, K1,K2,K3 > 0 are appropriate constants, 1 < p = p1
p2
< 2, p1, p2 are

positive odd integers, ρ1(ye) = 2p−1
1+p ω

2(p+1)
2p−1
r y

2(p2−1)
p(2p−1)
e , ρ2(xe, ye) = | ω̇rωr |(K

p
2ye−ωprxpe)

1− 1
p +

2p−1
1+p ( ω̇rωrK2)

1+p
2p−1 y

p2−1
p(2p−1)
e . Compared with the finite-time control laws (42), the main

advantage of the proposed fixed-time control result lies in the convergence time can be
pre-determined without considering the initial condition. The simulations will illustrate
this statement in the next section.

4. SIMULATION RESULTS

In this section, a numerical example is provided to illustrate our theoretical results
derived in the previous section, and two cases will be considered. In the first case,
simulation results will be given to show the effectiveness of the proposed fixed-time
control laws (13) and (17). In the second case, under different initial condition, we will
compare the convergent performance of two kinds of control laws, i. e. fixed-time control
laws (13) and (17), and finite-time control law (42).

Case 1: For system (3), the desired reference velocities are chosen as vr = 1.5 −
1.5t
t+10m/s, ωr = 1 + 2t

t+10rad/s. Let the initial value [xr(0), yr(0), θr(0)] = (2, 1.5, 0) ,
[x(0), y(0), θ(0)] = (−0.4, 1, 0.1). The control gains of fixed-time control laws (13) and
(17) are selected k1 = k2 = 2, the value of the fraction power are taken as τ1 = − 2

87 ,
τ2 = 2

87 , β2 = 9
7 and β1 = 7

9 . The simulation results are shown in Figures 2 – 5.
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Fig. 2. Response state curves for xr, yr, θr and x, y, θ.

Figure 2 shows response state curves for xr, yr, θr and x, y, θ. Figure 3 shows the
tracking errors xe, ye and θe respect to time for the robot. Figure 4 shows response
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desired trajectory and tracking curves. Figure 5 shows the control outputs of v and ω,
respectively. According to Figures 2 – 4, it is easy to observe that fixed-time control laws
(13) and (17) can make the system states converge to the desired trajectory in the fixed
time.
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Case 2: In this case, based on remark 2, under different initial conditions for fixed-
time control laws (13) and (17), and finite-time control law (42), we will compare the
convergent performance of these two kinds of control laws. Simulation result is shown
in Figure 6, where δ(0) =

√
(xr(0)− x(0))2 + (yr(0)− y(0))2, it can be seen that the

statement that the convergence time is independent of initial state for fixed-time control
laws.
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Fig. 6. The convergence time for the different initial conditions.

5. CONCLUSIONS

In this paper, we have investigated the problem of fixed-time tracking control for a
nonholonomic mobile robot system. Rigorous theoretic analysis shows that the proposed
fixed-time controllers can make the mobile robot track the desired reference trajectory
in a fixed time. Simulation results been presented to support the theoretical results.
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