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Abstract. In this paper, we obtain lower bounds for the variance of a function of random
variables in terms of measures of reliability and entropy. Also based on the obtained char-
acterization via the lower bounds for the variance of a function of random variable X, we
find a characterization of the weighted function corresponding to density function f(x), in
terms of Chernoff-type inequalities. Subsequently, we obtain monotonic relationships be-
tween variance residual life and dynamic cumulative residual entropy and between variance
past lifetime and dynamic cumulative past entropy. Moreover, we find lower bounds for the
variance of functions of weighted random variables with specific weight functions applicable
in reliability under suitable conditions.
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1. Introduction

During the last four decades, several papers have been prepared regarding upper

bounds for functions of the random variables, based on the Chernoff type inequality.

Let Z be a standard normal random variable and g : R → R any absolutely continu-

ous function with derivative g′ such that E[g′(Z)] < ∞. Chernoff [8], using Hermite
polynomials, proved that

(1.1) Var[g(Z)] 6 E[g′(Z)]2.

Chen [7] proved (1.1) using the integral representation of g and the Cauchy-Schwarz

inequality. The equality in (1.1) holds if and only if g is a linear function. Cacoul-

los [2] and Cacoullos and Papathanasiou [4] obtained lower bounds for the variance of
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functions of arbitrary random variables. The papers [5] and [15] established that if X

is a continuous random variable with support an interval (a, b), −∞ 6 a < b 6 ∞,
mean µ, finite variance σ2, and density function f , then the following general covari-

ance identity holds:

(1.2) Cov(h(X), g(X)) = E(z(X)g′(X)),

where g is an absolutely continuous function with E|z(X)g′(X)| < ∞, h(x) is a given
function and

(1.3) z(x) =
1

f(x)

∫ x

a

(E[h(X)]− h(t))f(t) dt.

(For g(x) = x, (1.2) yields E[z(X)] = Cov(h(X), X).)

They also established that if there are functions h(x) and z(x) such that (1.2) holds

for every differentiable g, then h(x), z(x) and the density f are related through (1.3).

If h(x) = x, then z(x) = σ2w(x) and (1.2) reduces to the following simple covari-

ance identity:

(1.4) Cov(X, g(X)) = σ2E[w(X)g′(X)],

where the w(·)-function is defined by

(1.5) σ2w(x)f(x) =

∫ x

a

(µ− t)f(t) dt.

It is trivial that (1.3) uniquely determines f(x) as

(1.6) f(x) =
1

z(x)
exp

{
∫ x

a

E[h(X)]− h(t)

z(t)
dt

}

,

and thus (1.2) characterizes (1.6).

Furthermore, [14] produced characterization of continuous exponential families

through a representation for a survival function in terms of covariance identities.

Cacoullos and Papathanasiou [6] showed that under the conditions of identity (1.2),

for every absolutely continuous function h(x) with h′(x) > 0,

(1.7) Var[g(X)] >
E2[z(X)g′(X)]

E[z(X)h′(X)]

with equality if and only if g(x) = c1h(x) + c2, where

z(x)f(x) =

∫ x

a

(E[h(X)]− h(t))f(t) dt.
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They also established that if there are functions h and z such that inequality (1.7)

holds for every differentiable g and equality g(x) = c1h(x)+c2 holds, then h, z and f

are related through (1.3).

Now, assume that the failure rate of the distribution is defined as

r(t) = − d

dt
lnF (t) =

f(t)

F (t)

for t < b. The mean residual life function m(t) of X is defined as

m(t) = E(X − t | X > t) =

∫

∞

t
F (x) dx

F (t)
,

for t < b, and variance residual life of X is given by

(1.8) σ2(t) = Var(X − t | X > t) =
2

F (t)

∫

∞

t

F (x)m(x) dx−m2(t).

The MRL function is usually of interest for a non-negative random variable. For

instance, if X is thought of as the lifetime of a device, then for every t > 0, m(t)

expresses the conditional expected residual life of the device at time t given that

the device is still alive at time t. Hence, we assume F (t) = 0 for t = 0 (i.e. a = 0,

b = ∞).
Furthermore, Glaser’s function (also known as eta-function) η(t) for a random

variable X is defined as

η(t) = −f ′(t)

f(t)
,

and the aging intensity function is defined as

L(t) =
tr(t)

∫ t

0
r(x) dx

=
−tf(t)

F (t) lnF (t)
.

Definition 1.1. LetX be a non-negative absolutely continuous random variable:

(a) F is DFR (IFR) [decreasing failure rate (increasing failure rate)] if F (x | t) =

F (x+ t)/F (t) is increasing (decreasing) in 0 6 t < ∞ for each x > 0.

(b) F is NWU [new worse than used] if F (x | t) > F (x) for each x, t > 0.

(c) F is IMRL [increasing mean residual life] if m(t) is increasing in t > 0.

(d) F is IVRL (DVRL) [increasing variance residual life (decreasing variance residual

life)] if σ2(t) is increasing (decreasing) in t > 0.
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Besides, the reversed hazard rate function of X is given by r(t) = f(t)/F (t) for

t > a. Also the mean past lifetime function of X is defined by

k(t) = E(t−X | X < t) =
1

F (t)

∫ t

a

F (x) dx.

In analogy with the variance of the residual life function defined in (1.8), the variance

past lifetime (VPL) can be introduced as

σ2(t) = Var(t−X | X < t) =
2

F (t)

∫ t

a

k(x)F (x) dx− k2(t).

For further details on definitions and also terms used in the text, see [23].

Nair and Sudheesh [17] characterized the class of continuous distributions given

in (1.6) by the relationships the conditional variance has with the truncated expec-

tations and/or failure rate as well as the bound to the conditional variance.

Consider now a random variable X with density function f(x) and distribution

function F (x). Let δ(x) be a non-negative function with finite non-zero expectation.

Define a random variable X∗ with density function

(1.9) fX∗(x) =
δ(x)f(x)

E[δ(X)]
, x ∈ R.

The variable X∗ is called the weighted random variable corresponding to X and its

distribution is called the weighted distribution corresponding to f(x). Though the

concept of weighted distribution is due to [10], but it was Rao [21] who studied the

weighted distributions in a unified way.

In particular, if F is defined on [0,∞), then the weighted distribution with weight

function δ(x) = x is called the size-biased or length-biased distribution. Indeed,

since the distribution of X∗ is weighted by the value or size of X , we say that X∗

has the X-size biased distribution.

2. Main results

In this section, we give a lower bound for the variance of the function of given

random variables in text in terms of measures of reliability. We also study the mono-

tonic behavior of variance residual life with respect to dynamic cumulative residual

entropy and variance past lifetime with respect to dynamic cumulative past entropy.

Besides, we obtain a lower bound for the variance of g(X∗) by using characteristics

of the associated random variable X .
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Proposition 2.1. Let the random variable X belong to the exponential family

(2.1) f(x; θ) = exp[P (x)Q(θ) + T (x) + S(θ)]

with P (x) and T (x) being real valued measurable functions and Q(θ) and S(θ)

being real functions with continuous non-vanishing derivatives. Also, let g be an

absolutely continuous function with derivative g′. Then assuming differentiation

under the integration sign, we have

(2.2) Var[g(X)] >
1

Q′(θ)

( ∂

∂θ
E
[g′(X)

r(X)

])2( ∂

∂θ
E
[P ′(X)

r(X)

])

−1

.

The equality holds if and only if g(x) is a linear function of P (x).

P r o o f. By considering h(x) = P (x) in inequality (1.7), we can obtain inequal-

ity (2.2). We observe from [16] that for the exponential family (2.1),

E(P (X) | X > x) = E(P (X)) +
1

Q′(θ)

∂ logF (x)

∂θ
,

and thus compute z(x)f(x) as follows:

z(x)f(x) =

∫

∞

x

{P (t)− E(P (X))}f(t) dt =
∫

∞

x

P (t)f(t) dt− E(P (X))F (x)

= F (x){E(P (X) | X > x)− E(P (X))}

= F (x)
( 1

Q′(θ)

∂ logF (x)

∂θ

)

.

Now, assuming the differentiation under the integral sign,

(2.3) E[z(X)P ′(X)] =

∫

∞

−∞

F (x)
( 1

Q′(θ)

∂ logF (x)

∂θ

)

P ′(x) dx

=
1

Q′(θ)

∂

∂θ

∫

∞

−∞

F (x)P ′(x) dx

=
1

Q′(θ)

∂

∂θ
E
[P ′(X)

r(X)

]

.

Similarly, we can show that

(2.4) E[z(X)g′(X)] =
1

Q′(θ)

∂

∂θ
E
[g′(X)

r(X)

]

.

Finally, by substituting (2.3) and (2.4) into (1.7), the result is obtained.

The equality is also obvious in view of (1.7). �
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E x am p l e 2.2. Let X have a Pareto distribution with probability density func-

tion f(x) = αβα/xα+1, x > β, where α, β > 0, and β is constant. Hence, we can con-

sider that Q(α) = −α+ 1 and P (x) = ln(x). Now, since r(x) = α/x, by considering

g(x) = − ln f(x) and using (2.2), we can easily obtain that Var[− ln f(X)] > 1/α2.

Notice that if X has an exponential family distribution and d(X) = P (X) be

an unbiased estimator of γ(θ) = Eθ[P (X)], then the variance of d(X) is equal to

Cramer Rao lower bound. On the other hand, since g(x) = P (x), the lower bound

given in (2.2) is equivalent to Cramer Rao lower bound. Thus, we can easily show

that

Var[P (X)] =
1

Q′(θ)

∂

∂θ
E
[P ′(X)

r(X)

]

=
Q′′(θ)S′(θ) − S′′(θ)Q′(θ)

[Q′(θ)]3
.

R em a r k 2.3. Let X be a random variable with the probability density function

given by

(2.5) f(x; θ) = exp

{ k
∑

i=1

Pi(x)Qi(θ) + T (x) + S(θ)

}

,

where θ = (θ1, . . . , θk). The family {f(x; θ)} is called a k-parameter exponential

family. Now if Qi(θ) = θi, h(x) =
k
∑

i=1

αiPi(x), where 0 < αi < 1 such that
k
∑

i=1

αi = 1

and g is an absolutely continuous function with derivative g′, then we can obtain

Var[g(X)] >

( k
∑

i=1

αi
∂

∂θi
E
[g′(X)

r(X)

]

)2( k
∑

j=1

k
∑

i=1

αiαj
∂

∂θi
E
[P ′

j(X)

r(X)

]

)

−1

.

Proposition 2.4. Let X be an absolutely continuous non-negative random vari-

able. If g is an absolutely continuous function with derivative g′, then

(2.6) Var[g(X)] > E2
[Xg′(X)

L(X)

]

.

The equality holds if and only if g(x) is a linear function of − lnF (x).

P r o o f. By using inequality (1.7), let h(x) = − lnF (x), then h′(x) = f(x)/F (x)

and

z(x)f(x) =

∫ x

0

(E[− lnF (X)] + lnF (t))f(t) dt =

∫ x

0

(1 + lnF (t))f(t) dt

= F (x) +

∫ x

0

lnF (t)f(t) dt = −F (x) lnF (x).
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Now since

(2.7) E[z(X)h′(X)] =

∫

∞

0

−F (X) lnF (X)
f(x)

F (x)
dx = 1

and

(2.8) E[z(X)g′(X)] =

∫

∞

0

−F (x) lnF (x)g′(x) dx

=

∫

∞

0

−F (x) lnF (x)

xf(x)
xg′(x)f(x) dx = E

[Xg′(X)

L(X)

]

,

substituting (2.7) and (2.8) into (1.7) yields the desired result.

The equality is trivial by inequality (1.7). �

Corollary 2.5. In inequality (2.6), if g(x) = x, then

Var(X) >

(
∫

∞

0

−F (x) lnF (x) dx

)2

,

and thus we conclude that

(2.9) E[m(X)] 6
√

Var(X).

The equality holds if and only if F has two-parameter exponential distribution.

It is shown by [22] that in general when X is a non-negative random variable,

(2.10) E[m(X)] 6
E(X2)

2E(X)
.

It is easy to see that
√

Var(X) 6 E(X2)/(2E(X)), hence the upper bound given

in (2.9) is sharper than the upper bound in (2.10).

E x am p l e 2.6. Let X be distributed as Gamma(α, β) with probability density

function

f(x) =
1

Γ(α)βα
xα−1e−x/β, x > 0, α > 0, β > 0.

Then the lower bound (2.9) is given by E[m(X)] 6 β
√
α.

Also based on the upper bound given in (2.10), we have E[m(X)] 6 β(1 + α)/2.

We note that always
√
α 6 (1 + α)/2.
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R em a r k 2.7. The survival function of X − t given that X > t, is

(2.11) F t(x) = P (X − t > x | X > t) =
F (t+ x)

F (t)
,

and thus the probability density function of the residual life random variable Xt =

(X − t | X > t) is given by

(2.12) ft(x) =







f(t+ x)

F (t)
, 0 < x < ∞,

0, otherwise.

Now if

h(x) = − ln
F (x+ t)

F (t)
,

then h′(x) = f(x+ t)/F (x) and similarly to Proposition 2.4 we can show that

(2.13) Var[g(Xt)] >

[
∫

∞

t

−F (x)

F (t)
ln

F (x)

F (t)
g′(x− t) dx

]2

.

The equality holds if and only if

g(x) = −c1 ln
F (t+ x)

F (t)
+ c2,

where c1 and c2 are constant. Also if g(x) = x, then

(2.14) σ2(t) = Var[Xt] = Var[X − t | X > t]

>

[
∫

∞

t

−F (x)

F (t)
ln

F (x)

F (t)
dx

]2

= (E (X ; t))2,

where E (X ; t) is dynamic cumulative residual entropy.

In inequality (2.14), the equality holds if and only if

f(t+ x)

F (t)
=

1

c1
e−(x−c2)/c1 , x > c2,

where c1 and c2 are constant. On the other hand, F has a two-parameter exponential

distribution.
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The concept of variability is a basic one in statistics, probability, and many other

related areas. The simplest way of comparing the variability of two distributions

is by comparison of the standard deviations. However, the comparison of numeri-

cal measures is not always sufficiently informative. Shaked and Shanthikumar [23]

presented discussion on excess wealth transform, as a measure of spread. Let X

be a non-negative random variable having distribution function F (x). The quan-

tile function F−1(p) of F (x) is defined by F−1(p) = inf{x | F (x) > p}, p ∈ (0, 1)

and F−1(0) and F−1(1) are defined as the left and right extremes of the support,

respectively. Note that the excess wealth function is defined as

(2.15) W (p;F ) = E[(X−F−1(p))+] =

∫

∞

F−1(p)

F (x) dx =

∫ 1

p

(F−1(q)−F−1(p)) dq,

where (Z)+ = max{Z, 0}. The excess wealth function can be considered as a measure
of spread to the right of every quantile F−1(x). This function is also related to its

mean residual life function by the relationship

E[(X − F−1(p))+] = (1− p)m(F−1(p)).

One can obtain a representation for the dynamic cumulative residual entropy in

terms of the mean residual life function as follows:

(2.16) E (X ; t) = E(m(X) | X > t),

hence

(2.17) E (X ;F−1(p0)) =
1

1− p0

∫

∞

F−1(p0)

m(x)f(x) dx =
1

1− p0

∫ 1

p0

m(F−1(p)) dp

=
1

1− p0

∫ 1

p0

W (p;F )

1− p
dp.

This function is called the dynamic cumulative residual quantile entropy (DCRQE)

of X . To illustrate with real data, it is necessary to introduce the non-parametric

estimator of excess wealth function (see [13] for details).

E x am p l e 2.8. For x > a > 0 and k > 0, let X have the Pareto distribution

with density function and distribution function f(x) = kak/xk+1 and F (x) = 1 −
(a/x)k, respectively. Then by using (2.15) and (2.17), we have respectively

W (p;F ) =
a(1− p)−1/k+1

k − 1
for k > 1,

and

E (X ;F−1(p0)) =
ka

(k − 1)
2
(1− p0)

1/k
for k > 1.

It is obvious that for fixed values of a and k, DCRQE is increasing in p0 ∈ [0, 1).
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R em a r k 2.9. If X is increasing dynamic cumulative residual entropy (IDCRE),

then X is IVRL, that is, IDCRE ⇒ IVRL.
In fact, since σ(t) > E (X ; t),

d

dt
Var[X − t | X > t] = r(t)(σ2(t)−m2(t)) = r(t)(σ(t) −m(t))(σ(t) +m(t))

> r(t)(E (X ; t)−m(t))(σ(t) +m(t)),

and hence, if E (X ; t) > m(t) or in other words, X is increasing dynamic cumulative

residual entropy (IDCRE) (see [1]), then d
dt Var[X − t | X > t] > 0 and thus X is

IVRL.

Moreover, ifX is DVRL, thenX is decreasing dynamic cumulative residual entropy

(DDCRE), that is, DVRL ⇒ DDCRE.
Because in this case, σ(t) 6 m(t) and furthermore σ(t) > E (X ; t),

(2.18)
d

dt
E (X ; t) = r(t)(E (X ; t)−m(t)) 6 r(t)(σ(t) −m(t))) 6 0

and thus X is decreasing dynamic cumulative residual entropy (DDCRE).

E x am p l e 2.10. If X has a Rayleigh distribution with probability density func-

tion f(x) = 2xe−x2

, x > 0, then X is IFR and thus DVRL. Therefore, we conclude

that X is DDCRE (see Figure 1).

0 5 10 15 20
t

0.1

0.2

0.3

0.4

Figure 1. DCRE function of the weibull distribution.
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E x am p l e 2.11. IfX has a Pareto distribution with probability density function

f(x) = kak/xk+1, x > a for a > 0 and k > 2, then after simple calculation, we

obtain E (X ; t) = kt/(k − 1)2 and hence X is IDCRE. So X is IVRL. Moreover, we

can obtain E (X ; t) = km(t)/(k − 1) and therefore X is IMRL.

E x am p l e 2.12. If X has a Burr type XII distribution with parameters c = 1.5

and k = 2, the survival function of X is given by

(2.19) FX(t) = (1 + t3/2)−2 for t > 0.

Navarro et al. [19] showed that X is IDCRE and thus by using Remark 2.9, we

conclude that X is IVRL (see Figure 2).

One of the most widely used measures of uncertainty or information in sciences

is varentropy. If we view the entropy as a measure of the extent a probability

is concentrated or dispersed, the varentropy Var[− ln f(X)] measures the intrinsic

shape of a distribution. If we assume g(x) = − ln f(x) in (2.6), then a straightforward

computation shows

(2.20) Var[− ln f(X)] > E2
[

− lnF (X)
η(X)

r(X)

]

,

where equality holds if and only if F has a two-parameter exponential distribution.

0 20 40 60 80 100
t

1000

2000

3000

4000

5000

6000

7000

Figure 2. IVRL function of the Burr type XII distribution.
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E x am p l e 2.13. Let X have beta distribution with parameters a = 2 and b = 1.

Goodarzi et al. [12] obtained a lower bound for the varentropy of random variable X .

They had shown that Var[− ln f(X)] > 2
9 , whereas by using (2.20), we can obtain

lower bound 0.103985 for varentropy. The new lower bound is not sharper than the

lower bound [12], however its calculation is very straightforward.

Goodarzi et al. [13] defined the variance residual entropy as

Var[− ln ft(Xt)] =

∫

∞

t

f(x)

F (t)

(

log
f(x)

F (t)

)
2

dx−
(
∫

∞

t

f(x)

F (t)
log

f(x)

F (t)
dx

)2

.

Later it is called residual variance entropy by [9]. [13] obtained an upper bound for

variance residual entropy. Now we obtain a lower bound for it. In inequality (2.13),

if we take g(x) = − ln ft(x), then we have

(2.21) Var[− ln ft(Xt)] >

[
∫

∞

t

−F (x)

F (t)
ln

F (x)

F (t)
η(x) dx

]2

.

The equality holds if and only if

ln
f(x+ t)

F (t)
= c1 ln

F (x+ t)

F (t)
+ c2,

where c1 and c2 are constant.

Notice that for the uniform distribution on the interval (0, θ), exponential distri-

bution with mean 1/λ and beta distribution with a = 1 and b = 2, variance residual

entropy is equal to the lower bound (2.21) and equal to 0, 1 and 1
4 , respectively.

R em a r k 2.14. Let X be an absolutely continuous non-negative random vari-

able. If g is an absolutely continuous function with derivative g′ and we have

h(x) = m(x) in inequality (1.7), then by straightforward calculations it can be shown

that

Var[g(X)] >

( ∫

∞

0 F (x)[E (X ;x)− E (X)]g′(x) dx
)2

∫

∞

0 F (x)[E (X ;x)− E (X)]m′(x) dx
.

It is trivial that Var[m(X)] =
∫

∞

0 F (x)[E (X ;x)− E (X)]m′(x) dx.

Psarrakos and Navarro [20] defined the generalized cumulative residual entropy

(GCRE) of X as

En(X) =

∫

∞

0

F (x)
[− lnF (x)]n

n!
dx
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for n = 1, 2, . . . Analogously, they also considered the dynamic version of the GCRE,

that is, the GCRE of the residual lifetime Xt = (X − t | X > t) given by

En(X ; t) = En(Xt) =
1

n!

∫

∞

t

F (x)

F (t)

[

− ln
F (x)

F (t)

]n

dx.

Now with considering

h(x) =
1

n!

[

− ln
F (x+ t)

F (t)

]n

,

we can extend Remark 2.7 as follows:

(2.22) Var[g(Xt)] >
n((n− 1)!)2

2(2n− 1)!− n((n− 1)!)2

×
[n−1
∑

i=0

∫

∞

t

1

(n− i)!

F (x)

F (t)

(

− ln
F (x)

F (t)

)n−i

g′(x− t) dx

]2

.

In particular, for g(x) = x we have

(2.23) Var[Xt] >
n((n− 1)!)2

2(2n− 1)!− n((n− 1)!)2

[n−1
∑

i=0

En−i(Xt)

]2

.

R em a r k 2.15. LetX be a non-negative random variable. The survival function

t−X given that X < t, is

(2.24) F(t)(x) = P (t−X < x | X < t) = 1− F (t− x)

F (t)
, 0 < x < t,

and thus the probability density function of X(t) = (t−X | X < t) is given by

(2.25) f(t)(x) =







f(t− x)

F (t)
, 0 < x < t,

0, otherwise.

In fact, X(t) shows the time elapsed from the failure of a component given that its

lifetime is less than or equal to t. Now if

h(x) = − ln
F (t− x)

F (t)
,

then h′(x) = −f(t− x)/F (x) and therefore, we have

(2.26) z(x)f(x) =

∫ t

x

(

− ln
F (t− y)

F (t)
− E

[

− ln
F (t−X(t))

F (t)

])f(t− y)

F (t)
dy.
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On the other hand,

E
[

− ln
F (t−X(t))

F (t)

]

= −
∫ t

0

f(t− x)

F (t)
ln

F (t− x)

F (t)
dy = −

∫ 1

0

lnu du = 1

and thus

z(x)f(x) =

∫ t

x

(

− ln
F (t− y)

F (t)
− 1

)f(t− y)

F (t)
dy

= −
∫ F (t−x)/F (t)

0

lnu du− F (t− x)

F (t)
= −F (t− x)

F (t)
ln

F (t− x)

F (t)
.

Now since

(2.27) E[z(X(t))h
′(X(t))] = −

∫ t

0

F (t− x)

F (t)

(

ln
F (t− x)

F (t)

) f(t− x)

F (t− x)
dx

= −
∫ 1

0

lnu du = 1

and

E[z(X(t))g
′(X(t))] = −

∫ t

0

F (t− x)

F (t)

(

ln
F (t− x)

F (t)

)

g′(x) dx,

we obtain

Var[g(X(t))] >

[

−
∫ t

0

F (x)

F (t)

(

ln
F (x)

F (x)

)

g′(t− x) dx

]2

.

The equality holds if and only if g(x) = −c1 ln(F (t−x)/F (t))+c2, where c1 and c2
are constant. Also if g(x) = x, then

(2.28) σ2(t) = Var[X(t)] = Var[t−X | X < t]

>

[

−
∫ t

0

F (x)

F (t)
ln

F (x)

F (t)
dx

]2

= (E (X ; t))2,

where E (X ; t) is dynamic cumulative past entropy and it can be shown that E (X ; t) =

E[k(X) | X < t]. In inequality (2.28), for a non-negative random variable X , the

equality does not hold.

R em a r k 2.16. If X is increasing variance past lifetime (IVPL), then X is in-

creasing dynamic cumulative past entropy (IDCPE), that is, IVPL ⇒ IDCPE.
This implication holds, because

d

dt
Var(t−X | X < t) = r(t)(k2(t)− σ2(t)) = r(t)(k(t)− σ(t))(k(t) + σ(t)) > 0

and thus r(t)(k(t) − σ(t)) > 0 and thereby by using (2.28), we have d
dtE (X ; t) =

r(t)(k(t)− E (X ; t)) > 0 and therefore, X is IDCPE.
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E x am p l e 2.17. Let X be a continuous random variable with distribution func-

tion

(2.29) FX(t) =























t2

16
, 0 6 t < 1,

t4 − 2t+ 2

16
, 1 6 t < a,

1, t > a,

where a ≈ 2.06338 is the unique positive root of the equation a4 − 2a − 14 = 0.

Nanda et al. [18] has shown that VPL of X is an increasing function, that is, X is

IVPL and thus we conclude that X is IDCPE.

We must notice that [19] proved that ifX is a non-negative non-degenerate random

variable, then E (X ; t) cannot be a decreasing function of t for all values of t.

R em a r k 2.18. Let the reliability function for the weighted random variable X∗

associated to X and δ be given by

FX∗(t) =
E(δ(X) | X > t)

E(δ(X))
FX(t).

Similarly to Remark 2.7 we can show that

(2.30) Var(X∗

t ) > (E (X∗; t))2.

Now if E(δ(X) | X > t) is increasing in t and X∗ is IMRL, then [19] proved that

E (X∗; t) > E (X ; t) for all t and thus we conclude that

(2.31) Var(X∗

t ) > (E (X ; t))2.

To obtain a lower bound for Var(g(X∗)), we first obtain w(·)-function of random
variable X∗ (i.e. w∗(·)), according to w(·)-function of random variable X .

Theorem 2.19. Let X be a continuous random variable with density function

f(x) and X∗ be a weighted random variable with density function given by (1.9) and

variance σ∗2. Then w∗(·)-function of random variable X∗ satisfies the equation

(2.32) σ∗2w∗(x)δ(x) =
{

z2(x) − z1(x)
E[Xδ(X)]

E[δ(X)]

}

,

where

(2.33) z1(x) =
1

f(x)

∫ x

a

(E[δ(X)]− δ(t))f(t) dt
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and

(2.34) z2(x) =
1

f(x)

∫ x

a

(E[Xδ(X)]− tδ(t))f(t) dt.

P r o o f. For the proof see [11]. �

In the special case that X∗ has the X-size biased distribution, [11] showed that

(2.35) f(x)
(

xσ∗2w∗(x) +
E(X2)

E(X)
w(x)σ2

)

= E(X2)F (x) −
∫ x

a

t2f(t) dt,

where

σ∗2 =
E(X3)

E(X)
−
(E(X2)

E(X)

)2

.

E x am p l e 2.20. In (1.9), let X have an exponential distribution with density

function f(x) = e−x/θ/θ, x > 0 and δ(x) = x. By using (1.5), [3] showed that

w(x) = x/θ. Now since

(2.36)

∫ x

0

1

θ
t2e−t/θ dt = −x2e−x/θ − 2xθe−x/θ − 2θ2e−x/θ + 2θ2,

with substituting the moments of distribution and equation (2.36) into (2.35), we

can compute w∗(x) = x/(2θ). It should be noted that weighted distribution is a

gamma distribution with shape parameter 2 and scale parameter θ. Recursively, we

can also obtain w(·)-function of the Erlang distribution.
R em a r k 2.21. If X is a continuous random variable and X∗ has the weighted

distribution given in (1.9), then

(2.37) Var[g(X∗)] >
1

σ∗2

( 1

E[δ(X)]
E{z2(X)g′(X)} − E[Xδ(X)]

E2[δ(X)]
E{z1(X)g′(X)}

)2

,

where g(·) is an absolutely continuous function, and the equality holds if and only
if g is linear.

If X is a non-negative, integer-valued random variable with probability mass func-

tion P (X = j) and X∗ has the weighted distribution given by

P (X∗ = j) =
δ(j)

E[δ(X)]
P (X = j), j = 0, 1, . . . ,

then replacing integrals by sums and g′(x) by ∆g(x) = g(x+ 1)− g(x), we arrive at

the discrete version of (2.32) and (2.35) and the discrete version of (2.37) is denoted

as

(2.38) Var[g(X∗)] >
1

σ∗2

( 1

E[δ(X)]
E[z2(X)∆g(X)]− E[Xδ(X)]

E2[δ(X)]
E[z1(X)∆g(X)]

)2

,

where the equality holds if and only if g is linear.
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E x am p l e 2.22. Let X have a binomial distribution with parameters p and n.

If the weight function is δ(x) = eax for constant a, then X∗ has a weighted binomial

distribution with E[δ(X)] = (pea + q)n and E[Xδ(X)] = npea(pea + q)n−1, where

q = 1− p. Now by using (2.32), we get

(2.39) σ∗2w∗(x)eax
(

n

x

)

px(1− p)n−x

= npea(pea + q)n−1
x
∑

k=0

(

n

k

)

pkqn−k − npea
x−1
∑

k=0

(

n− 1

k

)

(pea)kqn−1−k

−
(

(pea + q)n
x
∑

k=0

(

n

k

)

pkqn−k −
x
∑

k=0

(

n

k

)

(pea)kqn−k

)

npea

pea + q

=
npea

pea + q

x
∑

k=0

(

n

k

)

(pea)kqn−k − npea
x−1
∑

k=0

(

n− 1

k

)

(pea)
k
qn−1−k,

and consequently,

(2.40) σ∗2w∗(x)
eax

(pea + q)n

(

n

x

)

pxqn−x

=
npea

pea + q

{ x
∑

k=0

(

n

k

)

( pea

pea + q

)k( q

pea + q

)n−k

−
x−1
∑

k=0

(

n− 1

k

)

( pea

pea + q

)k( q

pea + q

)n−k
}

=
npea

pea + q

{

pea

pea + q

x−1
∑

k=0

(

n− 1

k

)

( pea

pea + q

)k( q

pea + q

)n−1−k

+
q

pea + q

x
∑

k=0

(

n− 1

k

)

( pea

pea + q

)k( q

pea + q

)n−1−k

−
x−1
∑

k=0

(

n− 1

k

)

( pea

pea + q

)k( q

pea + q

)n−1−k
}

=
npqea

(pea + q)2

(

n− 1

x

)

( pea

pea + q

)x( q

pea + q

)n−1−x

,

which implies w∗(x) = (1− x/n)(1 + pea/q).

On the other hand, by applying (2.38), we get a lower bound for Var[g(X∗)]. Since

(2.41)
1

E[δ(X)]

{

z2(x)−
E[Xδ(X)]

E[δ(X)]
z1(x)

}

(

n

x

)

pxqn−x

=
npqea

(pea + q)2

(

n− 1

x

)

( pea

pea + q

)x( q

pea + q

)n−1−x

,
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thus

(2.42) Var[g(X∗)] >
npqea

(pea + q)2n
(En−1[e

aX∆g(X)])2,

where En−1 denotes expectation when the parameters are p and n− 1.

In the following proposition, we give a weighted distribution in which probability

density function has the general form f(·).

Proposition 2.23. Let X1, . . . , Xn be a random sample of size n from a contin-

uous distribution with distribution function F , and Yr denote the rth-order statistic

of this random sample. Then

(2.43) Var[g(Yr)] >
1

σ∗2

( n!

(r − 1)!(n− r)!
E{z2(X)g′(X)}

−
[ n!

(r − 1)!(n− r)!

]2

E[Xδ(X)]E{z1(X)g′(X)}
)2

,

where

(2.44) z1(x) =
(r − 1)!(n− r)!

n!

1

f(x)

(

F (x)−
n
∑

k=r

(

n

k

)

[F (x)]
k
[1− F (x)]n−k

)

,

and

(2.45) z2(x) =
1

f(x)

[

F (x)E{X [F (X)]r−1[1− F (X)]n−r}

− (r − 1)!(n− r)!

n!

{

x

n
∑

k=r

(

n

k

)

[F (x)]
k
[1− F (x)]

n−k

−
n
∑

k=r

(

n

k

)
∫ x

a

[F (t)]
k
[1− F (t)]

n−k
dt

}]

.

P r o o f. Goodarzi et al. [11] obtained z1(x) and z2(x). Now, by substituting

(2.44) and (2.45) into (2.37), the lower bound for the variance of g(X∗) is obtained.

�

R em a r k 2.24. In Proposition (2.23), let X1, . . . , Xn be a random sample from

the uniform distribution on (0, 1) and r = n. Then

z1(x) =
1

n
x(1 − xn−1), z2(x) =

1

n+ 1
x(1 − xn).
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Thus, the lower bound for variance of g(Yn) is calculated as

Var[g(Yn)] >
(n+ 1)2(n+ 2)

n

(

n

∫ 1

0

g′(x)
1

n + 1
x(1 − xn) dx

− n2

n+ 1

∫ 1

0

g′(x)
1

n
x(1 − xn−1) dx

)2

= n(n+ 2){E[Xn(1−X)g′(X)]}2,

and in the general case, the lower bound for the variance of g(Yr) will be

Var[g(Yr)] >
r(n− r + 1)

(n+ 1)2(n+ 2)

(

E
[ (n+ 2)!

r!(n− r + 1)!
Xr(1−X)n−r+1g′(X)

])2

.

At the end of this section, we consider two weights applicable in reliability. Reli-

ability is closely related to mathematics, especially to statistics, physics, chemistry,

mechanics, and electronics.

Proposition 2.25. Let X be a non-negative absolutely continuous random vari-

able with density function f(x), survival function F (x) and hazard rate r(x). Sup-

pose that F is DFR.

(a) If δ(x) = f(x+ t)/f(x), then

(2.46) Var[g(X∗)] >
1

σ∗2

{

E
[ X

r(X)
g′(X)

]}2

.

(b) If δ(x) = I(x > t), then

(2.47) Var[g(X∗)] >
1

σ∗2

{

E
[X − t

r(X)
g′(X) | X > t

]}2

,

where σ∗2 = Var(X − t | X > t).

P r o o f. (a) It is well known that X∗ = Xt, E[X
∗] = E[X− t | X > t] = m(t) and

σ∗2 = Var[X − t | X > t]. Now, by applying (1.5) and the fact that E[X − µ] = 0,

we have
∫

∞

x

(y −m(t))
δ(y)

E[δ(X)]
f(y) dy =

∫

∞

x

(y −m(t))
f(y + t)

F (t)
dy

=
1

F (t)

{
∫

∞

x

yf(y + t) dy −m(t)

∫

∞

x

f(y + t) dy

}

=
1

F (t)

{
∫

∞

x+t

(y − t)f(y)dy −m(t)

∫

∞

x+t

f(y) dy

}

= F (x | t){m(x+ t)−m(t) + x}.
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Now, whereas if F is DFR, then F is NWU, and also F is IMRL, that is m(s) 6 m(t)

for 0 6 s 6 t, we have m(x+ t) > m(t) and consequently,

w∗(x)σ∗2 f(x+ t)

E[δ(X)]
=

∫

∞

x

(y −m(t))
δ(y)

E[δ(X)]
f(y) dy > xF (x),

which eventually leads to

Var[g(X∗)] >
1

σ∗2

(
∫

∞

0

xF (x)g′(x) dx

)2

=
1

σ∗2

(
∫

∞

0

x

r(x)
g′(x)f(x) dx

)2

=
1

σ∗2

(

E
[ X

r(X)
g′(X)

])2

.

(b) It is obvious that

fX∗(x) =
I(x > t)

P (X > t)
f(x)

and so E[X∗] = m(t) + t and σ∗2 = Var[X | X > t] = Var[X − t | X > t]. Again by

using (1.5), we have

∫ x

t

(m(t) + t− y)
f(y)

F (t)
dy =

m(t) + t

F (t)
(F (x) − F (t))

− 1

F (t)
(F (t)(m(t) + t)− F (x)(m(x) + x))

=
F (x)

F (t)
(m(x) −m(t) + (x− t)),

and since F is IMRL, then

∫ x

t

(m(t) + t− y)
f(y)

F (t)
dy >

F (x)

F (t)
(x− t),

and therefore

Var[g(X∗)] >
1

σ∗2

(
∫

∞

t

F (x)

F (t)
(x− t)g′(x) dx

)2

=
1

σ∗2

(

E
[X − t

r(X)
g′(X) | X > t

])2

.

�

Corollary 2.26. In Proposition (2.25) part (a), if F is an exponential distribu-

tion, then the lower bound is equal to Chernoff-type lower variance bound given

in [4], because in this distribution F (x+ t) = F (x)F (t) and m(x + t) = m(t).
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E x am p l e 2.27. Let X have two parameter Weibull distribution with probabil-

ity density function

f(x; θ, β) =
β

θ
xβ−1e−xβ/θ, x > 0, θ, β > 0.

Now for θ = 1, since r(x) = βxβ−1, the distribution is DFR for β < 1. By us-

ing (2.46), we have Var[X − t | X > t] > Γ(2/β)/β for all t > 0, however by

using (2.31) and for simplicity in computation for β = 1
3 , Var[X − t | X > t] >

(12t1/3 + 18+ 3t2/3)2. Here, in order to compare the two bounds, for β = 1
3 assume

that t = 3, hence the first bound is 360, whereas the second bound is 1726.1.

3. Conclusion

Cacoullos and Papathanasiou obtained the lower bounds for the variance of func-

tions of random variables. In this article, we obtained the lower bounds for the

variance of functions of random variables used in reliability analysis and entropy

in terms of Chernoff-type inequalities. We also obtained the lower bounds for the

function of weighted random variables, that can be used in reliability analysis.

A c k n ow l e d gm e n t. The authors would like to thank the editor and anony-

mous referees for their valuable comments and suggestions that improved the quality

of the paper.
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