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Abstract. Of concern in this paper is the laminated beam system with frictional damping
and an internal constant delay term in the transverse displacement. Under suitable assump-
tions on the weight of the delay, we establish that the system’s energy decays exponentially
in the case of equal wave speeds of propagation, and polynomially in the case of non-equal
wave speeds.
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1. INTRODUCTION

The laminated beam model describes a vibrating structure of an interfacial slip. It
consists of two-layered beams of uniform thickness which are attached by an adhesive
layer of small thickness in such a way that small amount of slip is possible while they
are continuously in contact with each other. The model which consists of three
coupled hyperbolic equations was derived by Hansen et al. [15] using the assumption
of Timoshenko beam theory and is given as follows:

(1.1) owy + G( — wy), =0,

I,(3s10 — it) — D(3820 — Yuz) — G( — wy) = 0,

31pstt — 3D5sze + 3G(¢Y — wy) + 4ys + 485, = 0,
with € (0,1) and ¢ > 0. The subscripted ¢ and = denote differentiation with re-
spect to time and to the longitudinal spatial variable, respectively. The function w =
w(x,t) is the traverse displacement, ¢ = ¢(z,t) is the rotation angle, s = s(z,t) is

proportional to the amount of slip along the interface and 3s—1 denotes the effective
rotation angle. The positive parameters g, I,, G, D, v, and § are the density, mass
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moment of inertia, shear stiffness, flexural rigidity, adhesive stiffness, and adhesive
damping parameter, respectively. Laminated beams are considered to be very impor-
tant especially in the field of engineering because of their applicability in building and
construction of different structures. In recent years, researchers have focused on the
study of the well-posedness and asymptotic stability properties of these structures by
adding some damping mechanisms to the system. Let us mention some of the results.

Wang et al. [33] considered (1.1) with some boundary feedback controls and es-
tablished an exponential decay result provided \/Q/—G # \/m. Tatar [32] and
Mustafa [23] improved the result in [33] when they established the exponential sta-
bility for the system under weak assumptions on o, G, I,, and D. Similar results
were also established by Cao et al. [10] with different boundary controls. Apart from
boundary control feedback, researchers also considered some other damping mech-
anisms like introducing additional damping terms in order to achieve the desired
stability results. For instance, Raposo [30] proved exponential stability by introduc-
ing additional frictional damping in the form of aw; and 5(3s—1); on the transverse
displacement and rotation angle, respectively. Similarly, classical heat effect and sec-
ond sound were also considered in the literature by Apalara [7] and [6], respectively.
For other damping mechanisms, we refer the reader to [24], [11], [20], [21].

Often, delay effects appear in various physical problems. Thus, to exhaustively
analyse such problems, delay differential equations are developed. Over the years,
the control of PDEs with time delay effects has become a center of attraction to
researchers. Generally, time delay is observed to have a significant effect on the sta-
bility of most of the systems. This effect may take different directions. For example,
it was established that delayed positive feedback can stabilize purely oscillatory sys-
tems, see [1]. On the other hand, Zhang et al. [35] numerically illustrated a direct
proportionality between time delay and diffusion in their study of a semi-linear frac-
tional partial differential equation with time delay. This implied a negative effect
of time delay on stability. Furthermore, it was established that the presence of an
arbitrarily small delay may destabilize a system which is uniformly or asymptotically
stable in the absence of delay. For instance, consider the system

uge(x,t) — Au(z, t) =0, e, t>0,
(1.2) u(zx,t) =0, x €Ty, t>0,

0
8—Z(x,t) = —pug(z,t) — pour(x,t —7), 2 €Ty, t>0.

It is known that in the absence of delay (ua = 0, u1 > 0), the system is exponentially
stable, see [17], [18], [36]. Whereas, in the presence of delay (2 > 0), Nicaise and
Pignotti [25] proved, under the assumption ps < p1, that the energy is exponen-
tially stable. However, for the opposite case (u2 > u1), they were able to construct
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a sequence of delays for which the corresponding solution is unstable. Similar con-
clusions were reached by [12], [34]. In some instances, the system’s stability may not
be affected by the delay, because the delay effect is insignificantly small to have any
repercussions or the damping is strong enough to neutralize the delay effect. For
instance, Mustafa [22] studied a thermoelastic system with boundary time-varying
delay in one-dimensional space and showed that the damping effect through heat
conduction is still strong enough to uniformly stabilize the system even in the pres-
ence of boundary time-varying delay. For more works regarding time delay, we refer
the reader to [2], [16], [27], [29], [3], [5], [8], [14], [28], [26] and references therein.

Regarding the laminated beam with delay, very little has been done. We found
the work of Feng [13] where he considered a laminated system with three internal
constant time delays. Using boundary feedbacks coupled with some assumptions on
internal parameters, he proved the well-posedness of the system and the exponential
stability.

It is important to note that when s(z,t) in (1.1) is identically zero, the standard
Timoshenko system is obtained. Consequently, in this work, we extend the result
in [4], which is on the Timoshenko system, to a laminated beam system and estab-
lish an exponential stability result. Precisely, we consider the following system of
laminated beams with frictional damping and an internal constant delay term in the
transverse displacement:

(l'gl)utt + G — wy)y + prw + pow(z,t —7) =0 in (0,1) x (0, 00),
Iy(3stt — Y1) — D(383g — Yzz) — G(Yp —wy) =0 in (0,1) x (0, 00),
31,81 — 3DSze + 3G (Y —wy) +4ys+48s, =0 in (0,1) x (0, 00),
we(z,t — 1) = folz,t —7) in (0,1) x (0,7),
w(z,0) = wo, we(z,0) =wi, ¥(x,0) =1, ¥(x,0) =11 in (0,1),

s(z,0) = sg, s¢(x,0) =s1 in (0,1),
w(0,t) = wy(1,t) = 5,(0,8) = s(1,t) = ¥, (0,t) = (1,t) =0 in (0, c0).

Here, wg, w1, 19, Y1, So, and s; are initial data with fy being the history function in
an appropriate space, and 7 is time delay, p; is a positive constant and ps is a real
number. Under suitable assumptions on the delay term and coefficients of wave
propagation speed, we establish the exponential decay as well as the polynomial
decay results of the energy of system (1.3).

The rest of the paper is organized as follows. We give some preliminaries which
include the well-posedness result in Section 2. In Section 3, we state and prove some
technical lemmas. In Sections 4 and 5, we establish exponential and polynomial
decay results, respectively. Throughout this article u, = du/0x.
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2. PRELIMINARIES
In this section, we introduce some necessary transformations. Moreover, we give
the proof of the well-posedness result.
As in [25], we introduce a new variable
(2.1) z(x,0,t) = we(x,t — 7o) in (0,1) x (0,1) x (0, c0).
It easy to show that z satisfies

(2.2) Tze(z,0,t) + z2o(x,0,t) =0 in (0,1) x (0,1) x (0, 00).

As a result, system (1.3) is equivalent to

owy + G — W)y + prwy + poz(z, 1,t) =0 in (0,1) x (0,00),

Iy(3stt — Yut) — D(3830 — Ypw) — G( —wy) =0 in (0,1) x (0, 00),

3Ip81 — 3DSzq +3G(¢Y —wy) +4ys+48s, =0 in (0,1) x (0, 00),

Tze(x,0,t) + zo(x,0,t) =0 in (0,1) x (0,1) x (0, 00),

z(z,1,t) = fo(z,t — ) in (0,1) x (0,7),
(2.3) ¢ 2(z,0,t) = wi(x,t) in (0,1) x (0,00),

z(x,0,0) = folz,—0T) in (0,1) x (0,1),

w(z,0) = wg, s(z,0) = sg, ¥(x,0) =1y in (0,1),

wi(r,0) = wy, s¢(x,0) =s1, Y(z,0) =Y in (0,1),

w(0,7) = 55(0,1) = ¥ (0, 1)

=w,(1,t) = s(1,t) =(1,t) =0 in (0, 00).

Thus, we consider (2.3) instead of (1.3). With respect to the weight of delay, we
assume that

(2.4) lp2| <

and prove that this condition is sufficient to establish the well-posedness and the
stability of the system (2.3) with the energy FE, defined by

1 1
(2.5) E(t) = 5 / [ow? 4+ I,(3s; — Y1) + D (355 — ¥5)* + 31,57 + 3Ds2 + 4ys*] da
0
+ 5/ {G(w —wy)? + T|,u2|/ 22(x,0,1) da} dz.
0 0
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Regarding the existence, uniqueness, and smoothness of the solution of problem (2.3),
let £ = 3s — ¢ and then write (2.3) in the form of a system of first-order equations:

ow
ot
ou
ot
3
ot
ov
ot
Jds
o Y,
gy 1
a1,
0z
ot

= U7
1
= —E(G(?»s — & = Wy)e + v+ poz(x,1,t)),
= U7
(2.6)

e

(Dsm —G(3s—&—wy) — 4%8 - ?y)

1
= ——2z,(z,0,t).
pu

We set ® = (w,u,&,v,8,y,2) ", so that (2.6) becomes

do
— =Ad, t>0,
(2.7) dt

®(0) = ¢ = (wo, w1, 350 — o, 351 — V1, 50, 51, fo) |,

where
) U
—E(G(?)S - 5 - wl’)z + piu + MQZ(xa 17t))
v
1
AP — I_Q(Dgxx"‘G(?’s_f_wx))
Yy
1 Ay 48
I—Q(Dsm —GBs —&—wy) — 35~ ?y)
—;za(m,o, t)

Remark 2.1. System (1.3) is the main problem. The transformation to sys-
tem (2.3) is well known in the literature; it is necessary (not compulsory) because of
the delay term. System (2.6) is the semigroup setting necessary for the proof of the
well-posedness result. See [6], [4], [31] for a similar approach.
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We proceed by introducing a one-dimensional Sobolev space [9], pp. 202-203,

whr(0,1) = {u € LP(0,1); 3g € LP(0,1) such that

1 1
/ ugoxdarz—/ g dx V@EC&(O,l)}
0 0

with ¢ being a test function. The space WP is equipped with the norm

el 0,1y = (ullf oo 1y + Nl oo )

If p = 2, we have
Wt2(0,1) = HY(0,1).

The space H'(0, 1) is equipped with the inner product
1

(W V) 10,1y = (W, V) 20,1y + (Uas V) p2(0,1) = /0 (uv + ugvy,) do

and with the associated norm
s 0.1y = (lulZago ) + ltall3agon)
Furthermore, the space H? (see [9], p. 216) is defined as
H?(0,1) = {u € WH%(0,1); u, € WH2(0,1)}
and is equipped with an inner product
(u, V) 20,1y = (4, 0) 20,1y + (s V) 20,1y + (U, Vea) 20,1y
Concerning our problem, we consider the spaces
Hy ={v: ve H'(0,1), v(0) =0}, H} ={v: ve H'(0,1), v(l) =0}

and let
H = H}(0,1) x L*(0,1) x H}(0,1) x L*(0,1) x H}(0,1) x L*(0,1) x L*((0,1) x (0, 1))

be the Hilbert space equipped with the inner product

1 1 1
(2.8) (@,CT))H:Q/O uﬂdx—f—G/O (38—£—wx)(3§—£—@x)dx+fg/o voda

1 1
+3Ig/ ygda:—i—D/ fxfxda:—i—él'y/
0 0 0

1
—|—T|u2|/ / z(z,0,t)2(x,0,t) do da.
o Jo

1 1
ss§dx + 3D/ S8, dx
0
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Instead of dealing with (2.3), we will consider (2.7) with the domain of the operator A
given by

D(A) = {® = (w,u,&,v,5,9,2)" € H; we H*0,1) N Hy(0,1),
& s € H*(0,1) N Hy(0,1), uwe Hy(0,1), v,y € Hy(0,1),
2,20 € L*((0,1) x (0,1)), wa(1) = &(0) = s4(0) = 0}.

Note that D(.A) is independent of time ¢ > 0. Furthermore, it is obvious that D(A)
is dense in H.

Proposition 2.1. A is a dissipative operator.

Proof. Using the inner product defined by (2.8) and integration by parts, we
have

(2.9) (AD, D)y = —(m W')/ u?dz |”2|/ (z,1,¢)d

—4/3/ y dx—ug/ uz(z,1,t) da.

0

Using Young’s inequality, the last term in (2.9) gives

1 1
(2.10) —Mg/ uz(z,1,t)d |u2|/ @/ 22(x,1,t)dx
0 0

Combining (2.9) and (2.10), we end up with

1 1
(AQ, @)y < —(11 — |M2|)/ u? dz — 45/ y? da.
0 0
Moreover, by (2.4), it follows that (AP, @)y, < 0. Thus, A is dissipative. O

Proposition 2.2. [ — A is surjective.

Proof. Since A dissipative and D(A) is dense in H, it is sufficient to show
that A is maximal. Given H = (f1,..., f7) € H, we must show that there exists
® = (w,u,&,v,s,2) € D(A) satisfying

(2.11) (I—A)d=H,
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which implies

(2.12) w—u=f; €Hy0,1),

(2.13) gu+ G(3s — € —wy)s + pu + paz(x,1) = ofz € L2(0,1),
(2.14) ¢ —v=fz€Hy(0,1),

(2.15) I,v — D&y — G(3s — € —wy) = I,f4 € L*(0,1),

(2.16) s—y=fs € Hy(0,1),

(2.17) 31,y — 3Ds4s + 3G(3s — & — w,) + 4ys + 48y = 31, fs € L*(0,1),
( ) T2(x,0,t) + 25 (x,0,t) = 7fr € L*((0,1) x (0,1)).

We observe that (2.18) with z(z,0) = u has a unique solution given by

(2.19) z(x,o,t) = e Tu+ Te_T"/ e™fr(x,q)dg € L*((0,1) x (0,1)).
0

Using (2.12), (2.14), and (2.16), we end up with

(2.20) G(3s — € —wy), + 0w =hy € L*(0,1),
—Dé&yp — G(3s — & —wy) + 1,6 = hy € L*(0,1),
—3Dszp +3G(3s — € —wy) + As = hy € L?(0,1),

where

1
(2.21) m:%+m—m”/&%mm@,ngw+m,
0
hy = (48 +31,)f5s +31pfe, 0=0+p +p2e” ", A=4dy+4B8+ 31,

To solve (2.20) we consider

(2.22) B((w, &, 5), (w,€,3)) = F(w,£, ),

where B: [H}(0,1) x H}(0,1) x H}(0,1)]*> = R is the bilinear form given by
B((w,f,s), (a7§a §)) = G/ (38 - E - w:c)(3§ - § - wx)dx + D/ fxf:c dz
0 0
1 1 1 1
—|—3D/ sx§mdx—|—§/ wiﬁdx—i—)\/ s§dx+Ig/ & da
0 0 0 0
and F: [H}(0,1) x H}(0,1) x H}(0,1)] — R is the linear form defined by
~ 1 T 1
F(w,&,3) :/ hlzﬂdx—i-/ hgfdx—i—/ h3§dx.
0 0 0
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Now, for V.= H}(0,1) x H}(0,1) x H}(0,1) equipped with the norm
2 2 2 2
[(w, & 5, @)} = 1135 = € = wall5 + [lwll; + 1€l + lls21l3,

one can easily see that B and F' are bounded. Furthermore, using integration by
parts, we obtain

1 1 1
B((w,g,s),(w,g,s)):a/ (35—§—wm)2dx+D/ gﬁdx+3D/ s2dx
0 0 0
1 1 1
—l—@/ w2dx+/\/ stx—l—Ig/ ¢ da
0 0 0
> cf|(w, &, 5)|3-

Thus B is coercive. Consequently, by Lax-Milgram lemma, system (2.20) has
a unique solution
we Hy(0,1), &s€Hy0,1).

Substituting w, &, and s into (2.12), (2.14), and (2.16), respectively, we obtain
uwe HN0,1), wv,y€ HL0,1).
Similarly, inserting u into (2.19), bearing in mind (2.18), we end up with
2,25 € L2((0,1) x (0,1)).
Now, if (€,5) = (0,0) € H:(0,1) x H}(0,1), then (2.22) reduces to
1 1 1
(2.23) —G/O (3s — & — wy )W, dx + @/0 wwdr = /0 hywdr Yw e H(0,1),
which implies
(2.24) —Gwey = —3Gs, + GE, — ow + hy € L2(0,1).
Consequently, by the regularity theory for the linear elliptic equations, it follows that
we H*(0,1)NHL0,1).

Moreover, (2.23) is also true for any ¢ € C1([0,1]), ¢(0) = 0, which is in H}(0,1).
Hence, we have

1 1
G/ Wy ¢y A +/ (3Gs, — G& + ow — hy)opdz =0 VYo € C([0,1]), ¢(0) =0.
0 0
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Thus, using integration by parts and bearing in mind (2.24), we obtain

w,(1)g(1) =0 V¢ e C'([0,1]), $(0) = 0.
Therefore, w, (1) = 0. Similarly, we obtain

—Dé,p = G(3s — &€ —wy) — I,E + hy € L?(0,1),
—3Dsgp = — 3G (35 — € —w,) — As + hs € L?(0,1).

Consequently, we have
&5 € H*(0,1)NHE0,1), £(0) =s,(0) =0.

Finally, the application of the regularity theory for the linear elliptic equations guar-
antees the existence of a unique ® € D(A) such that (2.11) is satisfied. Thus the
operator I — A is surjective. ([

As a consequence of the Hille-Yosida theorem [19], Theorem 1.2.2, p. 3, we have

tA on H. From the semi-

that A generates a Cp-semigroup of contractions S(t) = e
group theory, ®(t) = e*A® is the unique solution of (2.7) satisfying the conditions

of the following theorem.

Theorem 2.1 (well-posedness result). Let &y € H. Then there exists a unique
weak solution ® € C(RT,H) of problem (2.7). Moreover, if ®, € D(A), then
® e C(RT,D(A))NCHRT,H).

Remark 2.2. Theorem 2.1 guarantees the existence of system (2.3) in a weak

sense.

3. TECHNICAL LEMMAS

In this section, we state and prove the necessary lemmas required to construct
a suitable Lyapunov functional, which is used to establish some stability results for
the energy of the solution of system (2.3). Throughout this section, ¢ is a generic
positive constant, precisely,

o 0° 90* G* 9G 3Lt 31,3 3G2}

Lemma 3.1. Let (w,,s, z) be a solution of (2.3). Then the energy functional E,
defined by (2.5), satisfies

1

1
(3.1) E'(t) < —mo/ w?dx—élﬂ/ stde, t>0,
0

0

for some positive constant my.
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Proof. We begin with multiplying the first three equations in system (2.3)
by w, (3s: — ;) and s, respectively, then integrate by parts over (0, 1) using the
boundary conditions. This leads to

1d

1
62 5 [ lowt+ L(3s =) + D35, — v)”

+ 31,57 + 3Ds> + 4vs* + G(¢ — w,)’] dz
1 1 1
= —,ul/ wfdm—ug/ z(x,l,t)wtda:—élﬁ/ s dx.
0 0 0

Next, we multiply (2.3)4 by |p2|z, and then integrate the product over (0,1) x (0, 1).
Using the fact that z(z,0,t) = w¢, we obtain

T|M2|d// |M2|/ M/l 2
(3.3 T (xz,0,t)dodx = — x + 5 owtd

Putting together (3.2) and (3.3) leads to

1 1
(3.4) E'(t)= — (ul - %) / w? dx — ug/ 2(z, 1, t)wy dz
0 0

1 1
—%/ 22(m,1,t)dx—46/ 52 dax.
0 0

Applying Young’s inequality on the second term of (3.4) gives

1
(3.5) —ug/ wz(x,1,t)d |M2|/ (z,1,t)dx + |ﬂ2|/ w? dz
0

and lastly, substituting (3.5) in (3.4), and using (2.5) completes the proof of (3.1).
(]

Lemma 3.2. If (w,, s, z) is a solution of (2.3), then the functional F}, defined by

1 1 T
Fi(t) :== g/ ww; dr — g/ wt/ Y(y)dydzr, ¢>0,
0 0 0

satisfies, for any €1,e9 > 0, the estimate

d G 1 1
36) —Fi(t)< — = —wg)*d 35y —P)*d
60 FhO< -5 [ @-wrdere [(Gn-v)tar

1 1 1 1 1
+c<1+—+—)/ w?dx—i—ag/ sfdx—i—c/ 22(z,1,t) da.
€1 €27 Jo 0 0
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Proof. Differentiating F; and using (2.3)1, i.e., —owy = G(¢ — wz), + prw; +
MQZ(xv ]-a t)a

1 1
gFl():—G (Y —wg), wdx—ul/ wtwdx—i—g/ w? dz

dt
—Hu/ wt/ Py dydm—ug/ z(z, 1, t)wdz

+G/O (w—wmx/() w<y>dydx—g/olwt/;wt(wdydx
+u2/olz(x,1,t)/omw(y)dydx.

Integrating by parts the terms involving G and using w, = —(¢¥ — w;) + ¢ leads to

1 1
iFl()Z—G (¢ — wy)” da:—i—@/ wtdx—ul/ wyw dx
0

dt
+u1/ wt/ Py dydx—ug/ z(z, 1, H)wdz

+u2/ x,u/w dydw—g/ wt/ ily) dy da.
0

Using ¢y = —(3s¢ — 1)) + 3s¢, we have

1 1
(3.7) Yrw=—-af @-w)? da:—l—g/ w? da
0 0

o ffa([ o)
+M2/01</:¢<y)dy_w)z(x,l,t)dx
vo [ u [[Bs - v ayas

By Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we have the right-hand
side of (3.7) as follows:

(38) ul/olwt</0mw(y>dy—w>dx
(5[ ([ oom-ofu e
—/ (¢ — ws)? dx+c/0 w? dr,

dt
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69w ( [ vy - w)ste 1.0 a0
G/ (/ bly) dy — w> dx—i—G 2(2,1,1) dz

G/ (Y — wy) dx—i—c/ (x,l,t)dx,
0

and for e; > 0 and &3 > 0,

(3.10) /wt/ (3s¢ — ) (y) dy dz

<€1/0 (/0 (350 — )y )dy) da:—i——/ w? dz

1 1
< 51/ (38 — wt)Q dz + —/ wf dz,
0 €1 .Jo

and

1 x 1 T 992 1
(3.11) —39/ wy </ st(y) dy) dz < 52/ (/ st(y) dy> dz + — wt2 dx
0 0 o \Jo deo

1 e [l
<€2/ stdr+— [ wida,
0 €2 Jo

respectively. Consequently, the estimate (3.6) follows by substituting (3.8)—(3.10)
into (3.7). O

Lemma 3.3. If (w,, s, z) is a solution of (2.3), then the functional Fs, defined by

1
Fo(t) = _IQ/O (350 — ) (35 — ) dw, £ 30,

satisfies

d

(3.12) S h(t) < —1/0 (35, — ) da

3p [t 1
—1—7/0 (SSI—wI)2dx+c/0 (w—wx)2dx.

Proof. First we differentiate F» and use (2.3)2 to obtain

d

1 1
(3.13) S Ra(t) = —1,_)/0 (35t—wt)2dx+D/O (35, — 102)%

- G/o (¥ —wz)(3s — ¢) da.
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Exploiting Young’s and Poincaré’s inequality, we have

G2
2D

1
<c/0 (w—wm)de—i—g/o (354 — 1p)* da

Finally, substituting (3.14) into (3.13) completes the proof. O

(3.14) —G/O (Y —wz)(3s —)de < —= (1/) Wy) dx—i——/ (3s —)* dz

Lemma 3.4. Let (w,%,s,z) be a solution of (2.3). Then the functional Fj,
defined by

1 1
Fs(t) := SIQ/ sysdx + 26/ s?dz, t>0,
0 0
satisfies

1
(3.15) iFg, -3D | s2dx —|— —_— (w —wy)? dw

dt
1
—37/ s dx—l—SIg/ sfdx.
0 0

Proof. Direct computations involving simple differentiation of F3, followed by
substitution for the integral of sy using (2.3)s, then integrating by parts the term
containing s..s, lead to

1 1
(3.16) gF3( t)=—-3D | s2 da:—4’y/ s*dx

1 1
+3]Q/ s? dx—3G/ (Y — wg)sdx.
0 0

Using Young’s inequality, we estimate the last terms of (3.16) as follows:

1 9g2 [1 , 1
—3G/ (w—wm)sdxg—/ (Y —wy) dx—i—'y/ s2da
0 4y Jo 0

1 1
c/ (w—wx)de—i—'y/ s dz.
0 0

Consequently, we obtain (3.15), which completes the proof. O

Lemma 3.5. If (w,, s, z) is a solution of (2.3), then the functional F,, defined by

1

1 1
Fy(t) := _/0 (3s¢ — Y )w, do — /0 (3sy — VYz)wy dx + 3/0 (3sy —y)sdx, t >0,
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satisfies for any €3 > 0 the estimate

(317) Lr) < §

dt
1 1 1
—l—c/ wfdx—l—c/ (w—wx)de—l—c/ 22(x,1,t) dz
0 0 0

- (I_g - E) /01 (350 — ¥2) (¥ — wx)x dz.

Proof. Differentiating Fy, making use of the first two equations in system (2.3)
coupled with the fact that w, = —(¢¥ —w,) — (3s — ¥) + 3s, and then integrating by
parts the terms involving (3sy; — 142 ), We arrive at

(3.18)

d
S Fa = “91/0(3535 wx)wtdx—k—/ (355 — ¥a)2(z, 1,8) da

1 1 1
(o v ot [ s -v)Pdot 2 [ st
0 0 €3 Jo

_|_—/(w—wx)2da:+g/(w—wx)(35—¢)d$+3/01(38t—wt)stdx

2 [t (2-9) [ o v - e

Next, we exploit Young’s and Poincaré’s inequalities to estimate the non-square
terms of (3.18),

1 1 2 1
1 D 2 3,7 2
? ; (38 — Y )wp da < 6_19 ; (3sy — )" da + 2D J, wy do

D 1 5 1
< — (3sg — ¥z) dx—i—c/ w? du,
61, Jo 0
1 1 2 1
] _ <2 ) de 4 Sleta / 2
. /0 (3sg — ¥z)z(z,1,t)dz < o, J, (3sg — y)" da + 2D J, z%(x,1,t)dz
D ! ) L
< — (3sg — ¥z) dx—i—c/ z%(x,1,t) da,
61, Jo 0

G [* 3G2 ! D [t 0
T,_,/o w—wx)(ss—w)dmzmg/o (0= wdr+ o [ (3s -0

1 D 1
C/ (1/)—1095) d$+ o (351’ _wz)Q diL',
0 61,
and for e3 >0

1 1 1
9
3/ (3s; — y)spda < 53/ (3st—1/)t)2dx+—/ 52 dz.
0 0 €3 Jo

Combining the above four estimates with (3.18) concludes our proof. g
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Lemma 3.6. Let (w,1,s,z) be a solution of (2.3). Then the functional Fj,

defined by
1,1
t) ;:7—/ / e 722 (z,0,t)dodx, t>0,
0o Jo

satisfies, for some m1 > 0, the estimate
d 1 1,1 1
(3.19) —F5(t) < ml/ zQ(x,l,t)da:—mlr/ / z2(x,a,t)adx+/ w? dx.
de 0 o Jo 0
Proof. Differentiating F5 and using (2.3)4 and z(z,0,t) = w;, we get

%Fs(t):—2/ / (z,0,t)z5(x,0,t)do dx

// _Wzmatdadx—r// T2 (x,0,t) do dx
do

:—/[*T 2(x,1,t) — 2%(x,0,1))] d(E—T// T2 (x,0,t) do dz

0

1 1
—/ eszz(a:,l,t)dx—l—/ w?dx—r/ / e "2 (x,0,t)do d.
0 0 0 Jo

Next, exploiting the inequality e™™ < e7?7 < 1 for any o € (0, 1), for some m; = e~ "

)

we arrive at the estimate (3.19). O

4. EXPONENTIAL STABILITY

Our next task is to define a Lyapunov functional £ and show that it is equivalent
to the energy functional E.

Lemma 4.1. For N > 0, N, > 0 (k = 1,...,5), the Lyapunov functional
defined by

5
(4.1) L(t) == NE(t)+ > NpFi(t), t>0,
k=1

satisfies the equivalence relation (L ~ E)
(4.2) A B(t) < L) < eE(t) Vt=0

for some positive constants ¢; and cs.
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Proof.

1 1
|L(t) = NE(t)| < QNl/ lwwe|dx + QN1/
0 0

x
ar [ vl aa
0
1 1
LN, / (350 — )(3s — )] dz + 3L, / P
0 0
1 1
+ 26N3 / s2dx + N4/ [(3s¢ — Yy )w, | dx
0 0
1 1
4 N4/ (352 — o) do + 3N4/ (350 — )| da
0 0
1,1
+ TN5/ / e 7" 2%(x,0,t) do dz.
o Jo
Furthermore, using Young’s, Poincaré’s, Cauchy-Schwarz inequalities, the facts that

Y=—B8s—)+3s, w, = —(p—w;)— (3s— 1) +3s,and e 77 < 1 for all o € (0,1),
we obtain

1
IL(t) = NE(t)] < b/ [w + (Bs: = ¥0)* + (352 —2)? + 57 + 53 + 57 + (¥ —wa) ] du
0
1,1
—|—b/ / 22(z,0,t)do dz,

o Jo
for some constant b > 0. Using (2.5), we obtain
(4.3) |L(t) — NE(t)| < b1 E(t),
where by > %maX{Qb, 0,31,,3D,4v, G, T|uz|}. Inequality (4.3) yields

(N —b1)E(t) < L(t) < (N +b1)E(t).

Taking N is sufficiently large, the estimate (4.2) follows accordingly. O

At this point, we are ready to state and prove the first part of our main results.

Theorem 4.1. Let (w,1,s,z) be a solution of (2.3). Then the energy func-
tional (2.5) satisfies, for all t > 0,

(4.4) E(t) < koe Mt if

Q)
i/

where ko and ky are positive constants.

805



Proof.

We begin by differentiating (4.1), and then substitute the esti-
mates (3.6), (3.12), (3.15), (3.17), and (3.19) to obtain

L)< - [moN - cN1(1 n ?11 ¥ é) — N, — Ns,} /01 w? dz

1 1
— 3DN3/ si dx — 3'yN3/ s2dx
0 0

9Ng7 (1
- [45]\1 — eyNy — 3I,N3 — —4} / s2da
€3 0
1
— [I,N2 —e1 Ny — €3N4]/ (3s¢ — )* d
0
GN !
_ [ 5 ! —CNQ—CNg—CN4i|/ (w—wx)Qdm
0

DN, 3DNy7 [* 9
- [ 21, 2 }/0 (380 — )" da

1 1 1
—[m1N5—cN1—cN4]/ zQ(x,l,t)dx—merg;/ / 2*(x,0,t)do dz
0 o Jo
D G
_ N4<

T E) /01 (382 — 1) (¢ — wa),, du.

Next, we carefully choose our constants. We begin by setting

1,
N2:N3:€2=1, =

I,

= — = d Ny=4I
€1 3N1’ €3 3N, an 4 0>

to arrive at

1
ﬁ/(t) < — [moN — CgNl(l —|—N1) — C3 — N5]/
0

1 1
_[45N—N1—3Ig]/ s2da — {GNI —C3}/ (¥ — w,)? da
0 2 0
1 I 1 1 D 1
—3D/ sidm——g/ (3st—1pfdm—37/ S2dl‘——/ (35, — . )* da
0 3 Jo 0 2 Jo
1 1 1
—[m1N5—03N1—(33]/ zQ(m,l,t)dx—merg;/ / 2%(x,0,t)do dx
0 0o Jo

-3(2-9) [ s - v v, an

w? da

for some c3 > 0. Now, we choose Ny large enough such that

GN
21—63>0.

806



Once Nj is fixed, we proceed to choose N5 large enough such that
mi1Ns — c3 N1 —c3 > 0.
Lastly, we choose N so large that (4.2) remains valid, and furthermore,
moN —c3N1(1+ N1) — Ns —c3 >0 and 48N — N; — 31, > 0.

Hence, for some o > 0, we end up with
(4.5)

1
£'(t) < —040/ [wE + 87 + (35 — 1) + (350 — )’ + 82 + 82 + (¥ — w,)?] da
0

11
—ao/ / 2*(x,0,t)do dz
0o Jo

D G\ [!
- 4-[,9040<I_Q - E) A (SSz - %»)(1/) - wx)x dz.
Hence, from (2.5) and the fact that G/p = D/I,, we arrive at
(4.6) L'(t) < —aE(t) Yt>0
for some oy > 0. It follows directly from (4.2) and (4.6) that
(4.7) L'(t) < —ki1L(t) Vit>0,
where k1 = a1 /ca. A simple integration of (4.7) over (0,t) yields

(4.8) L(t) < L(0)e ! Vi >0.

Consequently, the relation (4.4) follows from (4.8) and (4.2) with ko = c2FE(0)/c1.
O

5. POLYNOMIAL STABILITY

In this section, we consider the case of non-equal wave speeds and establish a poly-
nomial stability result.

Theorem 5.1. Let (w, 1, s, z) be a strong solution of (2.3). If G/p # D/I,, then
the energy functional (2.5) satisfies

k
(5.1) E(t) < 72 V>0,
where ko is a positive constant.
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Proof. To prove estimate (5.1), we require the following second-order energy

functional.
(5.2)
1t
Elt) = 5 / [ow?, + 1y(3see — 1e)® + D(35q1 — ar)? + 31,57, + 3Ds2, + 4ys;] da
0
1t 1
+ 5/ (G — wee)? + T|,u2|/ 22(z,0,t)do] dz.
0 0

As in Lemma 3.1, it follows that £ satisfies the relation

1

1
(5.3) &) < —mo/ wftdx—llﬁ/ shdr Vt>0.
0

0

Similarly to Lemma 4.1, we define a Lyapunov functional L as follows:

5

(5.4) L(t) = N[E(t) + Et)] + > NiFi(t),
k=1
where Fy, k = 1,...,5, and their respective derivatives remain as defined in Lem-

mas 3.2-3.6. It is important to note that the relation (4.2) does not hold for L. To
this effect, therefore, the major task ahead of us now is to find an estimate for the
term ¢ D )

(E - I_,g) /0 (351’ - %)(1/) - wz)x dz
in (3.18) and consequently a new estimate for the derivative of the functional Fj.
Let us begin by setting x = (G/o — D/I,). Using (2.3)1, we obtain

1 1
(5'5) X/O (35:8 - %)(1# - wx)x dz = — % ) (35:c - "px)wtt dz
1
— %/0 (3sy — Wz )wy dx
1
H2 X
-G (38 — Vz)z(z, 1,t) da.

Next, exploiting the Cauchy-Schwarz and Young’s inequalities, we estimate the three
terms on the right-hand side of (5.5) as follows:

1 1 2,2 1
ox 2 o°X 2
—EX | (Bsy —h)wndr <5 [ (355 —1by)?d dz,
G 0 (S T/J)wtt x /O(S w) x+45G2/0 Wy AT

1 1 2.2 rl
Hix 2 H1X 2
- == 38, — Y )widr <6 35, — )" d dz,
G/O(s Vg )we dx /O(s Pz) x+45G2/0wtx

pax [ ! S
- == 38y — Yz)z(x, 1, dxéé/ 38, — ;)" dx + / 2%(x,1,t) dz.
2| s v e <0 [ Be -0 e+ B2 [ 2

808



Therefore, for some

2 pix? u%xQ}
10G2 46G2’ 46G2 S

cq = max{

we have

1 1 1
(5.6) X/o (352 — Vo) (Y — wy),, do < 35/0 (355 — 1hy) da + 04/0 w? dz

1 1
+C4/ thtda:+C4/ 2%(x,1,t) dx.
0 0

Thus, using (5.6), choosing § = D/(121,) and setting ¢s = ¢ + ¢4, we note that the
derivative of F satisfies the new estimate

d D [t
. — < - =
(5.7) Fy(t) i1, /.

1 1
(355 — b)) dz + 05/ w? dx + c/ (1 — wy)? da
9 1 9 1 9
+ — sy dz +e3 (3s; — )" da
€3 Jo 0

1 1
+C4/ wftdm+05/ 2%(x,1,t) d.
0 0

Similarly, differentiating £(¢) defined in (5.4) and then substituting the esti-
mates (3.6), (3.12), (3.15) (3.19), and (5.7), we obtain

~ 9N 1
L't < - [4,8N — &Ny —3I,N3 — 6—3} / sf dx
3 0

1 1 1
— 3DN;3 / si dx — 3'yN3/ s2dx — [moN — c4Ny| / wft dz
0 0 0

11 !
— [mON—03N1(1+—+—) —C5N4—N5} / w%dx
€1 €2 0

GN !
_ |: 21 —C3N2—03N3—03N5:|/ (w—wx)2dx
0

DN, 3DNy7 [! 2
[419 2 } /0 (382 = ¥2)" de

1
— [I,N2 —e1 Ny — €3N4]/ (3s¢ — ) da
0
1
— [m1N5 — e¢Ny — C5N4]/ 2%(x,1,t)dx
0
1 1
— mlTN5/ / 2%(x,0,t)do dz.
0o Jo
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With similar choices of constants Ny, N3, €1, €2, and 3 as in the proof of Theo-
rem 4.1, and setting Ny = 81, coupled with suitable choices of Ny, N5, and IV, we
deduce that

1
L) < —a2/ [} + (¥ = wy)® + (Bsr — ) + (350 — ¥a)* + 57 + 57 + 53] da

0
1,1
—agr/ / 2%(x,0,t)do dz,
0o Jo

where a3 is a positive constant. Comparing with (2.5), we have, for some a3 > 0,

(5.8) L'(t) < —asE(t) Yt>0.

Since E is non-increasing, integrating (5.8) over (0,t) yields

tE(t) < /Ot E(s)ds < L tf’(s)ds = —[L(0) — L()] < =.

as Jo a3 as
Finally, for ky = £(0)/as = (E(0) + £(0))/cr3, we have

ks

E(t) < V>0,

which concludes the proof. O
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