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Some interpretations of the (k, p)-Fibonacci numbers

Natalia Paja, Iwona W loch

Abstract. In this paper we consider two parameters generalization of the Fi-
bonacci numbers and Pell numbers, named as the (k, p)-Fibonacci numbers. We
give some new interpretations of these numbers. Moreover using these interpre-
tations we prove some identities for the (k, p)-Fibonacci numbers.

Keywords: Fibonacci number; Pell number; tiling

Classification: 11B39, 11B83, 05C15, 05A19

1. Introduction

In general we use the standard notation, see [6], [8]. The nth Fibonacci num-

ber Fn is defined recursively as follows Fn = Fn−1 + Fn−2 for n > 2, with

F0 = F1 = 1. By numbers of the Fibonacci type we mean numbers defined

recursively by the rth order linear recurrence relation of the form

(1) an = b1an−1 + b2an−2 + · · · + bran−r for n > r,

where r > 2 and bi > 0, i = 1, 2, · · · , r , are integers.

For special values of r and bi, i = 1, 2, · · · , r, the equality (1) defines other

well-known numbers of the Fibonacci type. We list some of them:

(1) Lucas numbers: Ln = Ln−1 + Ln−2 for n > 2, with L0 = 2, L1 = 1.

(2) Pell numbers: Pn = 2Pn−1 + Pn−2 for n > 2, with P0 = 0, P1 = 1.

(3) Pell–Lucas numbers: Qn = 2Qn−1 + Qn−2 for n > 2, with Q0 = 1,

Q1 = 3.

(4) Jacobsthal numbers: Jn = Jn−1 + 2Jn−2 for n > 2, with J0 = 0, J1 = 1.

(5) Padovan numbers: Pv(n) = Pv(n − 2) + Pv(n − 3) for n > 3, with

Pv(0) = Pv(1) = Pv(2) = 1.

(6) Tribonacci numbers of the first kind: Tn = Tn−1+Tn−2+Tn−3 for n > 3,

with T0 = T1 = T2 = 1.
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There are many generalizations of the classical Fibonacci numbers and numbers

of the Fibonacci type. We list some of these generalized numbers. Let k, n, p be

integers.

(1) k-generalized Fibonacci numbers, see E. P. Miles, Jr., [14]: F
(k)
n = F

(k)
n−1+

F
(k)
n−2 + · · · + F

(k)
n−k for k > 2 and n > k, with F

(k)
0 = F

(k)
1 = · · · =

F
(k)
k−2 = 0, F

(k)
k−1 = 1.

(2) Fibonacci p-numbers, see A. P. Stakhov, [15]: Fp(n) = Fp(n−1)+Fp(n−

p− 1) for p > 1 and n > p + 1, with Fp(0) = · · · = Fp(p + 1) = 1.

(3) Generalized Fibonacci numbers, see M. Kwaśnik, I. W loch, [12]: F (k, n) =

F (k, n− 1) + F (k, n− k) for k > 1 and n > k + 1, with F (k, n) = n + 1

for 0 6 n 6 k.

(4) k-Fibonacci numbers, see S. Falcón, Á. Plaza, [9]: Fk,n = kFk,n−1+Fk,n−2

for k > 1, n > 2, with Fk,0 = 0, Fk,1 = 1.

(5) Generalized Pell numbers, see I. W loch, [17]: P (k, n) = P (k, n − 1) +

P (k, n − k + 1) + P (k, n − k) for k > 2, n > k + 1, with P (2, 0) = 0,

P (k, 0) = 1 for k > 3 and P (k, 1) = 1, P (k, n) = 2n− 2 for 2 6 n 6 k.

(6) Generalized Pell (p, i)-numbers, see E. Kiliç, [10]: P
(i)
p (n) = 2P

(i)
p (n−1)+

P
(i)
p (n − p − 1) for p > 1, 0 6 i 6 p, n > p + 1, with P

(i)
p (1) = · · · =

P
(i)
p (i) = 0 and P

(i)
p (i + 1) = · · · = P

(i)
p (p + 1) = 1.

(7) k-Pell numbers, see P. Catarino, [7]: Pk,n = 2Pk,n−1 + kPk,n−2 for k > 1,

n > 2, with Pk,0 = 0, Pk,1 = 1.

(8) (k, c)-generalized Jacobsthal numbers, see D. Marques, P. Trojovský, [13]:

J
(k,c)
n = J

(k,c)
n−1 + J

(k,c)
n−2 + · · · + J

(k,c)
n−k for k > 2 and n > k, with J

(k,c)
0 =

J
(k,c)
1 = · · · = J

(k,c)
k−2 = 0, J

(k,c)
k−1 = 1.

For other generalizations of numbers of the Fibonacci type see for example [5].

In [1] a new two-parameters generalization, named as the (k, p)-Fibonacci num-

bers, was introduced and studied. We recall this definition.

Let k > 2, n > 0 be integers and let p > 1 be a rational number. The (k, p)-

Fibonacci numbers denoted by Fk,p(n) are defined recursively in the following

way

(2) Fk,p(n) = pFk,p(n− 1) + (p− 1)Fk,p(n− k + 1) + Fk,p(n− k) for n > k

with initial conditions

(3) Fk,p(0) = 0 and Fk,p(n) = pn−1 for 1 6 n 6 k − 1.

For special values k, n, p the equality (2) gives well-known number of the Fi-

bonacci type. We list these special cases.
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(1) If k = 2, p = 1, n > 0 then F2,1(n + 1) = Fn.

(2) If k > 2, p = 1, n > k then Fk,1(n) = F (k, n− k).

(3) If k > 2, p = 1, n > 1 then Fk,1(n) = Fk−1(n).

(4) If k = 2, p = 3/2, n > 0 then F2,3/2(n) = Pn.

(5) If k = 2, p = t/2, t ∈ N, t > 2 and n > 0 then F2,p(n) = F2p−1,n.

The properties of these numbers were studied in [1].

Theorem 1.1 ([1]). Let k > 2 be an integer and let p > 1 be a rational number.

The generating function of the sequence Fk,p(n) has the following form

fk,p(x) =
x

1 − px− (p− 1)xk−1 − xk
.

The generating function for the (k, p)-Fibonacci numbers generalized other

well-known generating functions for Fibonacci numbers, Pell numbers and k-

Fibonacci numbers.

2. Main results

The Fibonacci numbers and numbers of the Fibonacci type have many inter-

esting interpretations also in graphs, see for example [10], [11], [12], [17]. The

graph interpretation of the Fibonacci numbers was initiated by H. Prodinger and

R. F. Tichy in [16]. In [5] a total graph interpretation for numbers of the Fibonacci

type was given. In this paper we shall show that this interpretation works also

for the (k, p)-Fibonacci numbers. We recall some of necessary definitions and

notations.

Let G be an undirected, simple graph with the vertex set V (G) and the edge

set E(G). By P (m), T (m), S(m) and C(m) we denote a path, a tree, a star and

a cycle of size m, respectively. Let I = {1, 2, · · ·, k}, k > 2, and let Ii = {1, · · ·, bi},

bi > 1. Let C =
⋃

i∈I Ci be a nonempty family of colors, where Ci = {iAj : j ∈ Ii}

for i = 1, 2, · · ·, k. The set Ci will be called as the set of bi shades of the colour i.

Consequently, for all i 6= p, 1 6 i, p 6 k, it holds iAj 6= pAj and this implies that

the family C has exactly
∑k

i=1 |Ci| =
∑k

i=1 bi colours.

A graph G is (iAj : i ∈ I, j ∈ Ii)-edge coloured by monochromatic path if for

every maximal iAj-monochromatic subgraph H of G, where iAj ∈ Ci, 1 6 i 6 k,

1 6 j 6 bi, there exists a partition of H into edge disjoint paths of the length i. If

b1 6= 0 then (iAj : i ∈ I, j ∈ Ii)-edge colouring by monochromatic paths always

exists.

Now we define special graph parameter associated with this edge colouring

of the graph. Let G be a graph which can be (iAj : i ∈ I, j ∈ Ii)-edge

coloured by monochromatic paths. Let F be a family of distinct (iAj : i ∈ I,
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j ∈ Ii)-edge coloured graphs obtained by colouring of the graph G. Let F =

{G(1), G(2), · · ·, G(l)}, l > 1, where G(p), 1 6 p 6 l, denotes a graph obtained by

(iAj : i ∈ I, j ∈ Ii)-edge colouring by monochromatic paths of a graph G.

For (iAj : i ∈ I, j ∈ Ii)-edge coloured graph G(p), 1 6 p 6 l, by θ(G(p)) we

denote the number of all partitions of iAj-monochromatic subgraphs of G(p) into

edge disjoint paths of the length i. If G(p) is 1As-monochromatic, 1 6 s 6 p,

then we put θ(G(p)) = 1.

The number of all (iAj : i ∈ I, j ∈ Ii)-edge colourings is defined as the graph

parameter as follows

σ(iAj : i∈I, j∈Ii)(G) =
l

∑

p=1

θ(G(p)).

The parameter σ(A1,2A1)(G) was studied for different classes of graphs i.e.

paths, trees and unicyclic graphs, see [2], [3], [4], [5].

Theorem 2.1 ([5]). Let m be an integer. Then

σ(A1,2A1)(P(m)) = Fm for m > 1,

σ(A1,2A1)(C(m)) = Lm for m > 2.

Theorem 2.2 ([5]). Let T (m) be a tree of size m, m > 1. Then

Fm 6 σ(A1,2A1)(T (m)) 6 1 +
∑

j≥1

(

m

2j

) j−1
∏

p=0

[2j − (2p + 1)].

Moreover

σ(A1,2A1)(P(m)) = Fm and σ(A1,2A1)(S(m)) = 1 +
∑

j≥1

(

m

2j

) j−1
∏

p=0

[2j − (2p + 1)].

Theorem 2.3 ([2]). Let G be a unicyclic graph of the size m, m > 3. Then

σ(A1,2A1)(G) > Lm. The equality holds if G ∼= C(m).

For future investigation we use following notation. Let e ∈ E(G) be a fixed

edge. If e is coloured by iAj then we write c(e) = iAj and σiAj(e)(G) be the

number of all (iAj : i ∈ I, j ∈ Ii)-edge colouring of the graph G with c(e) = iAj ,

i ∈ I, j ∈ I.

For convenience in the next part of this section instead of (A1, · · ·, Ap, kB,

(k − 1)C1, · · ·, (k − 1)Cp−1)-edge colouring of the graph G we will write α-edge

colouring of the graph G. Consequently instead of

σ(A1,···,Ap,kB,(k−1)C1,···,(k−1)Cp−1)(G)

we put σα(G).
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Theorem 2.4. Let k > 2, m > 1, p > 1 be integers. Then for fixed k, p

(4) σα(P (m)) = Fk,p(m + 1).

Proof: We use induction on m. Let P (m) be the path of size m with E(P (m)) =

{e1, e2, · · ·, em} and the numbering of edges in the natural fashion. We will prove

that for fixed k, p
σα(P (m)) = Fk,p(m + 1).

By the definition of α-edge colouring it follows that edges of the path P (m)

can be coloured by colours A1, · · ·, Ap, kB, (k − 1)C1, · · ·, (k − 1)Cp−1.

Let m = 1. If k = 2 then it is obvious that the unique edge e1 ∈ E(P (1)) can

be coloured using one of colours A1, · · ·, Ap, C1, · · ·, Cp−1 so σα(P (1)) = 2p− 1 =

F2,p(2). If k > 3 then the unique edge e1 ∈ E(P (1)) can be coloured by colours

A1, · · ·, Ap. Since the colour can be chosen into p ways so σα(P (1)) = p = Fk,p(2).

Let m > 2 and for t < m we have σα(P (t)) = Fk,p(t + 1). We shall show that

σα(P (m)) = Fk,p(m + 1).

Let us consider an arbitrary α-edge colourings of P (m) and let em ∈ E(P (m)).

We have the following possibilities

(1) Let c(em) = Ai, i = 1, · · ·, p. Since the colour of em can be chosen into

p ways so by the induction’s hypothesis we have
p

∑

i=1

σAi(em)(P (m)) = p · σα(P (m− 1)) = pFk,p(m).

(2) Let c(em) = kB. Then there exists a kB-monochromatic path em−k+1 −

· · · − em in the graph P (m). This path has the length k and using the

induction’s hypothesis we obtain that

σkB(e)(P (m)) = σα(P (m− k)) = Fk,p(m− k + 1).

(3) Let c(e) = (k − 1)Cj , j = 1, · · ·, p − 1. Then there exists a (k − 1)Cj-

monochromatic path em−k+2−· · ·−em in the graph P (m). This path has

the length k − 1. Because we have exactly p− 1 possibilities of colouring

of the path em−k+2−· · ·−em, so from the induction’s hypothesis we have

p−1
∑

j=1

σ(k−1)Cj(e)(P (m)) = (p− 1)σα(P (m− k + 1)) = (p− 1)Fk,p(m− k + 2).

From above possibilities and (2) we obtained that

σα(P (m)) = pFk,p(m) + Fk,p(m− k + 1) + (p− 1)Fk,p(m− k + 2) = Fk,p(m + 1),

which ends the proof. �
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We can use the above interpretation as the proving tool for some identities.

Theorem 2.5. Let k > 2, n > k − 2, m > k, p > 1 be integers. Then

(5)

Fk,p(m + n) = pFk,p(m− 1)Fk,p(n + 1)

+ (p− 1)

k−1
∑

i=1

Fk,p(m− k + i)Fk,p(n− i + 2)

+

k−1
∑

j=0

Fk,p(m− k + j)Fk,p(n− j + 1).

Proof: Let P (m − 1 + n) be the path of size m − 1 + n with E(P (m)) =

{e1, · · ·, em−1, em, · · ·, em−1+n} and the numbering of edges in the natural fashion.

From Theorem 2.4 we have

σα(P (m− 1 + n)) = Fk,p(m + n).

We shall show that

σα(P (m− 1 + n)) = pFk,p(m− 1)Fk,p(n + 1)

+ (p− 1)

k−1
∑

i=1

Fk,p(m− k + i)Fk,p(n− i + 2)

+
k−1
∑

j=0

Fk,p(m− k + j)Fk,p(n− j + 1).

Consider the following cases

(1) Let c(em−1) = Ai, i = 1, 2, · · ·, p. Then from Theorem 2.4

p
∑

i=1

σAi(em−1)(P (m− 1 + n)) = σα(P (m− 2)) · p · σα(P (n))

= pFk,p(m− 1)Fk,p(n + 1).

(2) Let c(em−1) = (k−1)Cj , j = 1, 2, · · ·, p−1. Then there exists a (k−1)Cj -

monochromatic path P = ei − · · · − em−1 − · · · − ei+k−2 of the length

k − 1. Of course this path P can be coloured in p − 1 ways. For future

investigations let us denote from now by P (m− 1) the path of size m− 1

such that E(P (m−1)) = {e1, e2, · · ·, em−1} and by P (n) the path of size n

with E(P (n)) = {em, em+1, · · ·, em−1+n}. Let us consider the following

cases

i) Let em−1 = ei+k−2. Then P ⊆ P (m− 1). Because paths P (m− k),

P (n) can be α-edge coloured in Fk,p(m − k + 1), Fk,p(n + 1) ways,
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respectively, so

p−1
∑

j=1

σ(k−1)Cj(em−1)(P (m− 1 + n)) = (p− 1)Fk,p(m− k + 1)Fk,p(n + 1).

ii) Let em−1 = ei+k−3. Then P \ {ei+k−2} ⊆ P (m − 1) and ei+k−2 −

em ∈ E(P (n)). Because σα(P (m − k + 1)) = Fk,p(m − k + 2) and

σα(P (n− 1)) = Fk,p(n), so

p−1
∑

j=1

σ(k−1)Cj(e)(P (m− 1 + n)) = (p− 1)Fk,p(m− k + 2)Fk,p(n).

...

iii) Let em−1 = ei. Consequently P \ {em−1} ⊆ P (n) and of course

em−1 ⊆ E(P (m − 1)). Because paths P (m − 2) and P (n − k + 2)

can be α-edge coloured in Fk,p(m − 1) and Fk,p(n − k + 3) ways,

respectively, we obtain that

p−1
∑

j=1

σ(k−1)Cj(e)(P (m− 1 + n)) = (p− 1)Fk,p(m− 1)Fk,p(n− k + 3).

From all above cases we have that

p−1
∑

j=1

σ(k−1)Cj(e)(P (m− 1 + n)) = (p− 1)Fk,p(m− k + 1)Fk,p(n + 1)

+ (p− 1)Fk,p(m− k + 2)Fk,p(n)

+ · · · + (p− 1)Fk,p(m− 1)Fk,p(n− k + 3)

= (p− 1)

k−1
∑

i=1

Fk,p(m− k + i)Fk,p(n− i + 2).

(3) Let c(e) = kB. Then there exists a kB-monochromatic path ej − · · · −

em−1 − · · · − ej+k−1 of the length k. Using the same method as in case

(2) we obtain

σkB(e)(P (m− 1 + n)) = Fk,p(m− k)Fk,p(n + 1) + Fk,p(m− k + 1)Fk,p(n)

+ · · · + Fk,p(m− 1)Fk,p(n− k + 2)

=

k−1
∑

j=0

Fk,p(m− k + j)Fk,p(n− j + 1).



304 N. Paja, I. W loch

Therefore from possibilities (1), (2) and (3) we have

σα(P (m− 1 + n)) = pFk,p(m− 1)Fk,p(n + 1)

+ (p− 1)

k−1
∑

i=1

Fk,p(m− k + i)Fk,p(n− i + 2)

+

k−1
∑

j=0

Fk,p(m− k + j)Fk,p(n− j + 1),

which completes the proof. �

Corollary 2.6. Let k > 2, m > k, n > k − 2, p > 1, be integers.

(1) If k = 2, p = 1, then Fm+n = FmFn+1 + Fm−1Fn.

(2) If k = 2, p > 1, then F2p−1,m+n = F2p−1,mF2p−1,n+1+F2p−1,m−1F2p−1,n.

Now we give another interpretation of the (k, p)-Fibonacci numbers with re-

spect to tilings.

Let k > 2, n > 1, p > 1 be integers. Let consider tilings of 1 × (n− 1) boards,

called (n− 1)-boards.

The pieces we are going to use in order to tile our (n − 1)-boards are: 1 × 1

red squares (squares), 1 × (k − 1) blue rectangles ((k − 1)-rectangles) and 1 × k

white rectangles (k-rectangles). Suppose that we have unlimited resources for

these tiles and we distinguish color shades of squares and (k − 1)-rectangles. Let

R = {r1, r2, · · ·, rp} be the set of shades of red squares. Let B = {b1, b2, · · ·, bp−1}

be the set of shades of blue (k − 1)-rectangles.

Let fk,p(n) be the number of tilings on an (n− 1)-board using the mentioned

pieces.

Theorem 2.7. Let k > 2, n > 1, p > 1, be integers. Then fk,p(n) = Fk,p(n).

Proof: We use induction on n. Let k, n, p be as in the statement of the theorem.

We consider the following cases:

(1) If n = 1 then fk,p(1) counts the empty tiling so fk,p(1) = 1 = Fk,p(1).

(2) Let 2 6 n < k. Then every piece of the (n − 1)-board can be tiled

using only red squares. Since we have p shades of red color so there are

pn−1 = Fk,p(n) possibilities in this case.

(3) Let n = k. Then we can use red squares or a blue (k − 1)-rectangle in

order to tile the (k − 1)-board. Since we have p shades of red color and

(p−1) shades of blue color so there are pk−1+p−1 = Fk,p(k) possibilities

in this case.

(4) Let n > k + 1. Assume that for m < n we have fk,p(m) = Fk,p(m). We

shall show that fk,p(n) = Fk,p(n). We consider the following cases:
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(a) The (n− 1)-board ends with the red square in one of the p shades.

Then the remaining board can be covered on fk,p(n− 1) ways.

(b) The (n − 1)-board ends with the blue (k − 1)-rectangle in one of

the p− 1 shades. Then by removing this last piece we are left with

fk,p(n− k + 1) tilings.

(c) The (n − 1)-board ends with the white k-rectangle. Then the re-

maining board can be covered in fk,p(n− k) ways.

Consequently, from above cases we obtain

fk,p(n) = pfk,p(n− 1) + (p− 1)fk,p(n− k + 1) + fk,p(n− k).

From the above and by the initial conditions we have that Fk,p(n) = fk,p(n),

which completes the proof. �

Using this interpretation we can prove the following identity.

Theorem 2.8. Let k > 2, n > 2, p > 1 be integers.

(1) If k is an even number then

Fk,p(2n) = p

[(2n−1)/k]
∑

i=0

Fk,p(2n− 1 − ki)

+ (p− 1)

[(2n−k+1)/k]
∑

j=0

Fk,p(2n− k + 1 − kj).

(2) If k is an odd number then

Fk,p(2n) = p

[(2n−1)/(k−1)]
∑

i=0

(p− 1)iFk,p(2n− 1 − (k − 1)i)

+ (p− 1)

[(2n−k)/(k−1)]
∑

j=0

Fk,p(2n− k − (k − 1)j).

Proof: We prove only case (1) as case (2) can be proved similarly. Suppose that

k is an even number. We will show that

fk,p(2n) = p
[

fk,p(2n− 1) + fk,p(2n− k − 1) + · · · + fk,p

(

2n− 1 −
[2n− 1

k

]

k
)]

+ (p− 1)
[

fk,p(2n− k + 1) + fk,p(2n− 2k + 1)

+ fk,p(2n− 3k + 1) + · · · + fk,p

(

2n− k + 1 −
[2n− k + 1

k

]

k
)]

.
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Since (2n−1)-board is an odd length so each tiling of this board have to contain

at least one square or at least one (k − 1)-rectangle. Let us consider the location

of the last odd length piece. We have the following possibilities

1. The last odd length piece is a square. Of course we have exactly p pos-

sibilities to choose a red square. Moreover the last square can occur

in cells with number: (2n − 1) or (2n − k − 1) or (2n − 2k − 1) · · ·

or (2n − 1 − [(2n− 1)/k]k). Then the remaining board can be cov-

ered in fk,p(2n − 1) or fk,p(2n − k − 1) or fk,p(2n − 2k − 1) · · · or

fk,p(2n−1− [(2n− 1)/k]k) ways, respectively. So in that case the number

of all possible tilings of the (2n− 1)-board is equal to

pfk,p(2n− 1) + pfk,p(2n− k − 1) + · · · + pfk,p

(

2n− 1 −
[2n− 1

k

]

k
)

.

2. The last odd length piece is a blue (k−1)-rectangle. Since we have exactly

(p− 1) shades of the blue (k− 1)-rectangle, so by considering the location

of the last (k − 1)-rectangle we obtain the following possibilities.

◦ If (k − 1)-rectangle is the last piece of the (2n− 1)-board, then the

remaining board can be covered in fk,p(2n− k + 1) ways.

◦ If (k − 1)-rectangle occurs in cells with numbers from (2n− 2k + 1)

to (2n− k − 1), then the remaining (2n− 2k)-board can be covered

in fk,p(2n− 2k + 1) ways.

· · ·

◦ If (k − 1)-rectangle occurs in cells with numbers from (2n− k + 1 −

[(2n− k + 1)/k]k) to (2n−1−[(2n− k + 1)/k]k), then the remaining

board can be covered on fk,p(2n− k + 1 − [(2n− k + 1)/k]k) ways.

From all above possibilities we obtain that the number of all possible

tilings of the (2n− 1)-board in that case is equal to

(p− 1)fk,p(2n− k + 1) + (p− 1)fk,p(2n− 2k + 1) + (p− 1)fk,p(2n− 3k + 1)

+ · · · + (p− 1)fk,p

(

2n− k + 1 −
[2n− k + 1

k

]

k
)

.

Finally, we have

Fk,p(2n) = p

[(2n−1)/k]
∑

i=0

Fk,p(2n− 1 − ki)

+ (p− 1)

[(2n−k+1)/k]
∑

j=0

Fk,p(2n− k + 1 − kj).

�
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[9] Falcón S., Plaza Á., On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007), no. 5,
1615–1624.
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