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Non-normality points and nice spaces

Sergei Logunov

Abstract. J. Terasawa in “βX − {p} are non-normal for non-discrete spaces X”
(2007) and the author in “On non-normality points and metrizable crowded
spaces” (2007), independently showed for any metrizable crowded space X that

each point p of its Čech–Stone remainder X∗ is a non-normality point of βX.
We introduce a new class of spaces, named nice spaces, which contains both of
Sorgenfrey line and every metrizable crowded space. We obtain the result above
for every nice space.

Keywords: non-normality point; butterfly-point; nice family; nice space; metriz-
able crowded space; Sorgenfrey line

Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

A point p of a normal space X is called a non-normality point, if X \ {p}

is not normal. In a similar way, p is called a butterfly-point (b-point) of X , if

{p} = [F ] ∩ [G] for some subsets F and G of X \ {p}, see [7]. We modify this

notion for Čech–Stone compactification βX as follows: a point p of remainder

X∗ = βX \X is called a butterfly-point (b-point) of βX , if {p} = [F ]βX ∩ [G]βX
for some subsets F and G of X∗ \ {p}, which are closed in βX \ {p}. It implies,

obviously, that βX \ {p} is not normal.

Every point p of ω∗ is a non-normality point of ω∗ if [CH] holds, see [9]. But

so far despite several efforts not much is known within ZFC (Zermelo–Fraenkel

set theory). For example, p is called a Kunen point if there exists a discrete set D

in ω∗ such that |D| = ω1 and D\O is countable for each neighbourhood O of p. If

p is either an accumulation point of some countable discrete subset of ω∗, see [1],

or p is a Kunen point (E.K. van Douwen, unpublished), then p is a non-normality

point of ω∗.

As for crowded spaces, J. Terasawa and the author independently obtained the

following result.

Theorem 1 ([8], [5]). Let X be a non-compact metrizable crowded space. Then

any point p of X∗ is a butterfly-point in βX . Hence βX \ {p} is not normal.
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Some facts for Tychonoff products were obtained by the author.

Theorem 2 ([6]). Let τ be an arbitrary cardinal number and for every k < τ let

Fk be a family of metrizable spaces with the following properties: Fk contains

a crowded space and Fk contains at most one non-compact space. Let a space

S be a free union
⋃

k<τ Sk of Tychonoff products Sk =
∏

{X : X ∈ Fk}. Then

every point p of S∗ is a butterfly-point in βS. Hence βS \ {p} is not normal.

For instance, this is true if a space S is a free union of arbitrary powers of

closed segments
⋃

k<τ I
k or, in particular, S = ω × Ic. Some other relevant facts

may be seen in [2], [3] and [4].

Now we define a new class of spaces, nice spaces (see the definitions below) so

that Sorgenfrey line and all metrizable crowded spaces belong to this class and

prove the following

Theorem 3. Let X be a non-compact nice space. Then every point p of X∗ is

a butterfly-point in βX . Hence βX \ {p} is not normal.

Corollary 1. Let S be a Sorgenfrey line. Then every point p of S∗ is a butterfly-

point in βS. Hence βS \ {p} is not normal.

We obtain also the following more technical result.

Theorem 4. Let a space X be p-nice for some point p of X∗. Then p is a but-

terfly-point in βX . Hence βX \ {p} is not normal.

Theorems 3 and 4 follow from the last result of our paper, Theorem 5.

2. Preliminaries

In our article every space X is normal and crowded, i.e. X has no isolated

points. By a neighbourhood of a point or a set we always mean an open neigh-

bourhood. The closure of an open set is called a canonically closed set. By

X∗ = βX \X we denote a remainder of Čech–Stone compactification βX of X ,

by [ ] and [ ]βX – the closure operators in X and βX , respectively, 3 = {0, 1, 2}

and ω = {0, 1, 2, . . .}. By Oε we denote the biggest open in βX set, which trace

on X equals open set O ⊂ X . A family of nonempty open sets B is called a π-base

ofX , if every nonempty open subset ofX contains some member of B. A π-base B

is σ-locally finite, if it can be represented as B =
⋃

i∈ω Bi, where every Bi is locally

finite. A base B is called a regular base of Arhangelskii, if for every neighbour-

hood O of any point x in X there is another or the same neighbourhood O′ of x

with the following properties: O′ ⊂ O and at most finitely many members of B

meet both O′ and X \O simultaneously.
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Let π and σ be arbitrary families of sets. For any set A we put π(A) = {U ∈ π :

U ∩ A 6= ∅}. By Exp(π) we denote all subfamilies of π, i.e. Exp(π) = {F :

F ⊂ π}. We define a map fπ
σ : Exp(π) → Exp(σ) in every F ∈ Exp(π) as follows:

fπ
σ (F ) =

{

V ∈ σ :
⋃

F ∩ V 6= ∅
}

. If members of π are mutually disjoint (with

closure), then π is called (strongly) cellular. A set U is a proper subset of a set V ,

denoted U ( V , if both U ⊂ V and U 6= V . A set U of π is a maximal member

of π, if U ( V for no V ∈ π. We say, that π (strongly) refines σ, denoted (π ≻ σ)

π � σ, if U ∈ π is a (proper) subset of V ∈ σ whenever they are not disjoint.

The family

Cell(π) =

{

Uϕ =
⋂

ϕ \

[

⋃

(π \ ϕ)

]

: ϕ ⊂ π is nonempty

}

is a cellular refinement of π.

Let π and σ be nice families, i.e. maximal locally finite cellular families of open

in X sets and p ∈ X∗. A collection F ⊂ Exp(π) is called a p-filter on π, see [5],

if p ∈
[
⋃⋂

i≤n Fi

]

βX
for any finite subcollection {F1, . . . , Fn} ⊂ F . We write

π �F σ (π ≻F σ), if there is F ∈ F with F � σ (F ≻ σ). Obviously, the union of

any increasing family of p-filters is also a p-filter. So by Kuratowski–Zorn lemma

there are maximal p-filters or p-ultrafilters F on π, that is F = G whenever G

is a p-filter and F ⊂ G. Enriching any p-filter with new subfamilies of π, while

possible, we can embed it into some p-ultrafilter. It may be not unique one, if

a point p is not remote. But every p-ultrafilter contains π(O) for any neighbor-

hood O of p. We denote

⋂

F∗ =
⋂

{[

⋃

F

]

βX

: F ∈ F

}

.

3. Nice spaces

Definition 1. A π−base B of X is called a nice π−base, if B is σ-locally finite

and for every neighbourhood O of any closed set F there is a nice subfamily π

of B such that
⋃

π(F ) ⊂ O.

Definition 2. A normal crowded space X is called nice, if for any point p of X∗

there is a nice π-base B of X with the following property: p /∈ [U ]βX for every

U ∈ B.

Definition 3. Let p be any point of βX . A π-base B of X is called a p-nice

π-base, if B is σ-locally finite and for any neighbourhood O of p in βX there is

a neighbourhood O′ of p and a nice subfamily π of B such that
⋃

π(O′) ⊂ O.
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Definition 4. Let p ∈ X∗. A normal crowded space X is called p-nice, if there

is a p-nice π-base B of X with the following property: p /∈ [U ]βX for every U ∈ B.

Definition 5. Let π be any subfamily of a π-base B. Then a cap of π in B,

denoted B′(π), are all the sets U ∈ B with the following property: if U meets

some V ∈ π, then U is a proper subset of V , i.e.

B′(π) = {U ∈ B : ∀V ∈ π(U ∩ V = ∅ ∨ U ( V )}.

Definition 6. Let π be any subfamily of a π-base B. Then a little cap of π in B,

denoted B(π), are all maximal sets of a cap B′(π), i.e.

B(π) = {U ∈ B′(π) : ∀V ∈ B′(π)(¬(U ( V ))}.

Lemma 1. Let π be any family of open sets, Uϕ ∈ Cell(π) and x ∈ Uϕ. Then for

any V ∈ π the following hold: x ∈ V if and only if V ∈ ϕ.

Proof: Let x ∈ V and V /∈ ϕ. Then Uϕ ∩ [V ] = ∅ implies x /∈ Uϕ. Let x /∈ V

and V ∈ ϕ. Then Uϕ ⊂ V implies x /∈ Uϕ. �

Lemma 2. Let π and σ be any families of open sets such that π ⊂ σ. Then

Cell(π) � Cell(σ).

Proof: Let Uϕ∩ Uϕ′ 6= ∅ for some ϕ ⊂ π and ϕ′ ⊂ σ. For any point x ∈ Uϕ∩ Uϕ′

we have ϕ = {V ∈ π : x ∈ V } and ϕ′ = {V ∈ σ : x ∈ V }. Hence ϕ ⊂ ϕ′ implies
⋂

ϕ′ ⊂
⋂

ϕ. Moreover, π \ ϕ = {V ∈ π : x /∈ V } and σ \ ϕ′ = {V ∈ σ : x /∈ V }.

Hence π \ ϕ ⊂ σ \ ϕ′ and
[
⋃

(π \ ϕ)
]

⊂
[
⋃

(σ \ ϕ′)
]

. Finally, Uϕ′ ⊂ Uϕ. �

Lemma 3. Let a family π be open locally finite and everywhere dense in X .

Then Cell(π) is a nice family, refining π.

Proof: If Uϕ 6= ∅ for some ϕ ⊂ π, then ϕ is finite and Uϕ is open.

If U ∈ ϕ \ ϕ′, then Uϕ ⊂ U and Uϕ′ ∩ U = ∅. So Cell(π) is cellular.

Let an open set O meet only finitely many sets of π, say U0, . . . , Uk. Then

O ∩ Uϕ 6= ∅ implies ϕ ⊂ {U0, . . . , Uk}. So O meets at most 2k+1 members of

Cell(π), which is locally finite.

Let x not be a boundary point of any U ∈ π. Then x ∈ Uϕ for ϕ = {U ∈ π:

x ∈ U} and Cell(π) is everywhere dense.

Let Uϕ meet some V ∈ π. Then V ∈ ϕ by our definition. Hence Uϕ ⊂
⋂

ϕ

implies Uϕ ⊂ V , i.e., Cell(π) refines π. �

Lemma 4. Sorgenfrey line S has a nice π-base.

Proof: Every Bn = {[z + k/2n, z + k + 1/2n) : z ∈ Z and k = 0, . . . , 2n − 1}

is a nice family and B =
⋃

n∈ω Bn is a nice π-base. Indeed, let O be any
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neighbourhood of a closed set F . Define σ to be all maximal sets of the cover

A = {U ∈ B : U ∩F = ∅ ∨ U ⊂ O} of X . Since B is embedded, σ is cellular. Any

x ∈ F belongs to some U ∈ A. Let V be the maximal set of A, containing U .

Then V ∈ σ and σ is a cover. Hence σ is nice and
⋃

σ(F ) ⊂ O. �

Lemma 5. Every metrizable crowded space X has a nice π-base.

Proof: For every i ∈ ω let Pi be a locally finite open cover of X , consisting of

sets with diameter at most 1/(i+ 1). Obviously, P =
⋃

i∈ω Pi is a regular base

of Arhangelskii. Every Bi = Cell
(
⋃

j≤i Pi

)

is nice and Bi � Pi by Lemma 3,

Bi+1 � Bi by Lemma 2. Then B =
⋃

i∈ω Bi is a nice π-base. Indeed, let O be any

neighbourhood of a closed set F . Assume π to be all maximal sets of the cover

{U ∈ P : U ∩ F = ∅ ∨ U ⊂ O}. It is easy to see that π is a locally finite cover

of X and
⋃

π(F ) ⊂ O. For any U ∈ π we fix unique i0 ∈ ω so that U ∈ Pi0 .

If U meets some V ∈ Bi0 , where the index i0 is one and the same, then V ⊂ U .

Hence BU = {V ∈ Bi0 : V ⊂ U} is nice in U . Let Bπ be all maximal members

of
⋃

U∈π BU . Since B is embedded, Bπ is nice. Let V ∈ Bπ intersect F . Then

V ∈ BU for some U ∈ π by our construction. It implies V ⊂ U and U ∩ F 6= ∅.

But then U ⊂ O implies V ⊂ O and
⋃

Bπ(F ) ⊂ O. �

Lemma 6. Let B be a σ-locally finite π-base. Then B is nice if and only if for

any two closed disjoint subsets F and G of X there is a nice subfamily σ of B

such that
⋃

σ(F ) ∩
(
⋃

σ(G)
)

= ∅.

Proof: Let B be nice and let F and G be closed and disjoint. Then there is a nice

subfamily σ of B such that
⋃

σ(F ) ⊂ X \G. Since σ is cellular, σ(F ) ∩ σ(G) = ∅

implies
⋃

σ(F ) ∩
(
⋃

σ(G)
)

= ∅.

Vice versa. Let O and O′ be any neighbourhoods of a closed set F such that

[O′] ⊂ O. Then every nice subfamily σ of B is everywhere dense in canonically

closed G = [X \ [O′]]. Hence
⋃

σ(F ) ∩
(
⋃

σ(G)
)

= ∅ implies
⋃

σ(F ) ⊂ O. �

Lemma 7. Let there be a nice π-base A with the following properties: A =
⋃

i∈ω Ai and every Ai is locally finite. Then there is a nice π-base B such that

B =
⋃

i∈ω Bi and for every i ∈ ω the following hold:

1) Bi is a nice family;

2) Ai ≺ Bi;

3) Bi ≺ Bi+1;

4) there is a strongly cellular family {U(ν) : U ∈ Bi and ν ∈ 3} of sets

U(ν) ∈ Bi+1 with [U(ν)] ⊂ U .

Proof: Every

Di = Cell

(

⋃

j≤i

Aj ∪ {X}

)
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is nice and Ai � Di by Lemma 3, Di � Di+1 by Lemma 2. To provide (4) we put

B0 = D0 and assume Bi to be constructed for some i ∈ ω. There is a strongly

cellular family of nonempty open sets

Wi = {U(ν) : U ∈ Bi and ν ∈ 3}

with [U(ν)] ⊂ U . If Bi+1 = Cell(Bi∪Wi∪Di+1), then B =
⋃

i∈ω Bi is as required.

Indeed, leaving the conditions 1)–4) to the reader we will show only that B is

nice. Let O be any neighbourhood of a closed set F in X . There is nice σ ⊂ A

such that
⋃

σ(F ) ⊂ O. For any U ∈ σ we choose unique i0 ∈ ω so that U ∈ Ai0 .

By our construction, Ai0 � Di0 � Bi0 , where the index i0 is one and the same.

So V ∩ U 6= ∅ implies V ⊂ U for every V ∈ Bi0 . Hence BU = {V ∈ Bi0 : V ⊂ U}

is nice in U . Since σ is nice, Bσ =
⋃

U∈σ BU is also nice. Let V ∩ F 6= ∅ for some

V ∈ Bσ. Then V ∈ BU implies V ⊂ U for unique U ∈ σ and U ∩ F 6= ∅ implies

U ⊂ O. Hence V ⊂ O implies
⋃

Bσ(F ) ⊂ O and our proof is complete. �

From now on we may assume that every nice π-base B satisfies the conditions

1)–4). Then B is embedded and Bi ∩ Bj = ∅ if i 6= j. So for each U ∈ B we can

put n(U) = i if U ∈ Bi.

Lemma 8. If A ⊂ B is locally finite, then “little cap” B(A) is nice.

Proof: Since B(A) ⊂ B, it is a family of open sets.

Since B(A) is the family of maximal sets of B′(A), which is embedded, then

B(A) is cellular.

Let an open O intersect at most finitely many sets of A and let x ∈ O not

be in the boundary of any of them. There is a neighbourhood O0 of x such that

O0 ⊂ O and for any U ∈ A the following hold: either O0 ∩ U = ∅ or O0 ( U .

If V ∈ B and V ⊂ O0, then V ∈ B′(A). Let W be the maximal set of B′(A),

containing V . Then W ∩O 6= ∅ and W ∈ B(A), which is maximal.

Now we have to show only that B(A) is locally finite. Let a neighbour-

hood O of a point x intersect at most finitely many sets of A. We put either

k0 = max{n(U) : O meets U ∈ A}, if the last set is not empty, or k0 = 1 oth-

erwise. For any neighbourhood O0 of x with [O0] ⊂ O there is a nice sub-

family σ of B such that
⋃

σ(O0) ⊂ O. Let a neighbourhood O1 of x satisfy

both O1 ⊂ O0 and O1 meets at most finitely many members of σ. We set

k1 = max{n(U) : O1 meets U ∈ σ} and k = k0 + k1.

Let U ∈ B intersect O1 and n(U) > k. Since σ is nice, U ∩ O1 meets some

V ∈ σ. Then k1 ≥ n(V ) implies U ⊂ V ⊂ O0. Let U intersect some V ∈ A. Then

k0 ≥ n(V ) implies U ( V and U ∈ B′(A).

Let U ∈ B intersect O1 and n(U) > k + 1. By our construction, U is a proper

subset of unique V ∈ Bk+1. Since V ∈ B′(A), then U /∈ B(A).
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Finally, let a neighbourhood O2 satisfy both O2 ⊂ O1 and O2 intersects at

most finitely many members of
⋃

i≤k+1
Bi. Then O2 intersects at most finitely

many members of B(A). �

Corollary 2. For any locally finite subfamily π of B there is a nice subfamily σ

of B such that σ ≻ π.

Lemma 9. Let B be a σ-locally finite π-base. Then B is nice if and only if B is

p-nice for any point p of βX .

Proof: Let B be nice and assume O and O′ to be any neighbourhoods of p in βX

with [O′]βX ⊂ O. Then U = O∩X is an open neighbourhood of F = [O′]βX ∩X .

There is a nice subfamily σ of B such that
⋃

σ(F ) ⊂ U . But then O contains
⋃

σ(O′) =
⋃

σ(F ).

Vice versa. Let O be any neighbourhood of a closed set F in X . Then Oε

is an open neighbourhood of G = [F ]βX in βX . For any point x of G there is

a neighbourhood Ox in βX and a nice subfamily σx of B such that σx(Ox) ⊂ Oε.

The open cover {Ox : x ∈ G} of G contains a finite subcover {Ox1, . . . , Oxn}. The

family A =
⋃

i≤n σi, where σi = σxi
, is locally finite in X . Hence σ = B(A) is

nice by Lemma 8 and
⋃

σ(F ) ⊂ O. Indeed, every U ∈ σ(F ) intersects some Oxi.

Since σi is nice, U meets some V ∈ σi. Then U ⊂ V by the definition of σ and

V ∩Oxi 6= ∅. Hence V ⊂ Oε and our proof is complete. �

4. Butterfly-point

From now on a space X has a nice π-base B, satisfying the conditions 1)–4) of

Lemma 7. By Σ = Σ(B) we denote all nice subfamilies of B, i.e. Σ = {σ ⊂ B:

σ is nice}. For any σ ∈ Σ and ν ∈ 3 we put σ(ν) = {U(ν) : U ∈ σ}.

Lemma 10. Let a paracompact space X has a nice π-base. Then X is nice.

Proof: For any point p of X∗ there is an open locally finite cover P of X with

the following property: p /∈ [U ]βX for every U ∈ P . Let B =
⋃

i∈ω Bi be a nice

π-base, where every Bi is locally finite. Then each

B′
i = {U ∩ V : U ∈ Bi and V ∈ Cell(P)}

is locally finite and B′ =
⋃

i∈ω B′
i is as required. Indeed, for any open neighbour-

hood O of a closed set F there is a nice subfamily σ of B such that
⋃

σ(F ) ⊂ O.

But then σ′ = {U ∩V : U ∈ σ and V ∈ Cell(P)} is a nice subfamily of B′, having

the same property. �
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Lemma 11. Let B be a nice π-base of X and p ∈ X∗. If there is a zero-set Z in

βX with p ∈ Z ⊂ X∗, then there is σ ∈ Σ with the following property: p /∈ [U ]βX
for any U ∈ σ.

Proof: Let Z =
⋂

i∈ω Oi, where Oi is open in βX and [Oi+1]βX ⊂ Oi for each

i ∈ N . We put F0 = [X \ [O2]] and Fi = [Oi \ [Oi+2]]. We set W0 = X \ [O3]

and Wi = Oi−1 \ [Oi+3]. Then every Fi is a canonically closed subset of open Wi

and
⋃

i∈ω Fi = X . If σi ⊂ B is nice and
⋃

σi(Fi) ⊂ Wi, then A =
⋃

i∈ω σi(Fi)

is locally finite. Hence “little cap” σ = B(A) is nice by Lemma 8 and σ ≻ A. If

U ∈ σ meets any Fi, then U meets some V ∈ σi(Fi). It implies U ⊂ V ⊂ Wi and

our proof is complete. �

We omit the proofs of Lemmas 12–15, since they coincide with the proofs of

Lemmas 2–5 in [5].

Lemma 12. Let for a point p of X∗ there be σp ∈ Σ such that p /∈ [U ]βX for any

U ∈ σ. Then there is a well-ordered chain {σα : α < λ} ⊂ Σ and a p-ultrafilter Fα

on every σα, with the following properties for all α < β < λ and fα
β = fσα

σβ :

1) p /∈ [U ]βX for every U ∈ σ0;

2) fα
β (Fα) ⊂ Fβ ;

3) σα ≺Fα
σβ ;

4) for any σ ∈ Σ \ {σα : α < λ} there is α < λ with ¬(σα ≺Fα
σ).

Lemma 13. We have
⋂

F∗
0 ⊂ X∗.

Lemma 14. If α < β < λ, then
⋂

F∗
β ⊂

⋂

F∗
α.

Lemma 15. For any neighbourhoodO of p in βX there is α < λ with
⋂

F∗
α ⊂ O.

Lemma 16 coincides with Proposition 6 in [5]. Now we present a new proof,

probably clearer and easier to understand.

Lemma 16. The set

Bα(ν) =
⋂

F∗
α ∩

(

⋂

β∈λ\α

[

⋃

σβ(ν)

]

βX

)

is not empty for any α < λ and ν ∈ 3.

Proof: Let F ∈ Fα and let α < β0 < · · · < βi < · · · < βn < λ be any finite

sequence of indexes. Our goal is to find by induction U ∈ B so that U ⊂
⋃

F and

U ⊂ V (ν) for any i ≤ n and some V ∈ σ(βi). We can assume F ≺ σβ0
and choose

Gi ∈ Fβi
so that Gi ≺ σβi+1

for any i < n and Gn = σβn
. For F0 = fα

β0
F ∩ G0

and Fi+1 = fβi

βi+1
Fi ∩ Gi+1 we get Fi ∈ Fβi

, Fi ≺ Fi+1 and
⋃

Fi+1 ⊂
⋃

Fi. For



Non-normality points and nice spaces 391

any Un ∈ Fn and Ui ∈ Fi with Un ⊂ Ui we obtain

(1) Un ( · · · ( Ui ( · · · ( U1 ( U0 (
⋃

F.

Only in order to simplify the notation assume, that the order of the embedding

does not change.

To insert the set U0(ν) into the sequence (1), we note the following points.

1) Since every σβi
is nice and unique, Ui of σβi

can be replaced with another

or the same set U ′
i of σβi

so that

n
⋂

i=1

U ′
i ∩ U0(ν) 6= ∅.

2) Since Ui ( U0, then U ′
i ⊂ U0(ν) by the definition of B.

3) Perhaps U ′
1 6= U0(ν):

(2) U ′
n ⊂ · · · ⊂ U ′

i ⊂ · · · ⊂ U ′
1 ( U0(ν) ⊂ U0 ⊂

⋃

F.

4) Perhaps some sets of U ′
i are equal to U0(ν):

(3) U ′
n ⊂ · · · ⊂ U ′

i ⊂ · · · ⊂ U ′
i0
( U ′

i0−1 = · · · = U ′
1 = U0(ν) ⊂ U0 ⊂

⋃

F.

To insert the set U ′
1(ν) in sequence (2) we can repeat points 1)–4) to get either

(4) U ′′
n ⊂ · · · ⊂ U ′′

i ⊂ · · · ⊂ U ′′
2 ( U ′

1(ν) ⊂ U ′
1 ( U0(ν) ⊂ U0 ⊂

⋃

F

or

(5)
U ′′
n ⊂ · · · ⊂ U ′′

i ⊂ · · · ⊂ U ′′
i1
( U ′′

i1−1 = · · · = U ′′
2

= U ′
1(ν) ⊂ U ′

1 ( U0(ν) ⊂ U0 ⊂
⋃

F.

To insert the set U ′
1(ν) in sequence (3) we can repeat points 1)–4) to get either

(6)
U ′′
n ⊂ · · · ⊂ U ′′

i ⊂ · · · ⊂ U ′′
i0
( U ′

1(ν)

⊂ U ′
i0−1 = · · · = U ′

1 = U0(ν) ⊂ U0 ⊂
⋃

F

or

(7)
U ′′
n ⊂ · · · ⊂ U ′′

i ⊂ · · · ⊂ U ′′
i1
( U ′′

i1−1 = · · · = U ′′
i0
= U ′

1(ν)

⊂ U ′
i0−1 = · · · = U ′

1 = U0(ν) ⊂ U0 ⊂
⋃

F.

Now we can insert U ′′
2 (ν) into the sequences (4) and (5). We can insert U ′′

i0
(ν)

into the sequences (6) and (7) and so on. After each “stroke by the tail in front

of the set Ui(ν)” it becomes shorter by at least one set. So, after a finite number

k ≤ n of “strokes” it will be empty. Then Uk(ν) is as required. �
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Theorem 5. Let for a point p of X∗ there be σp ∈ Σ such that p /∈ [U ]βX for

any U ∈ σ. Then p is a butterfly-point of βX .

Proof: For any ν ∈ 3 denote Fν = {pα(ν) : α < λ}, where pα(ν) is any point

of the set Bα(ν) in the previous lemma. By Lemmas 13–15, Fν ⊂ B0 ⊂ X∗ and

for any neighbourhood O of p there is α < λ with {pβ(ν) : β ∈ λ \ α} ⊂ Bα ⊂ O.

Then the condition {pβ(ν) : β < α} ⊂
[
⋃

σα(ν)
]

βX
implies both that the sets

[Fν ]βX \ {p} are pairwise disjoint and p ∈ Fν for no more than one unique Fν .

The other two ensure that p is a b-point in βX . Our proof is complete. �
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