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Abstract. In spectral bisection, a Fielder vector is used for partitioning a graph into two
connected subgraphs according to its sign pattern. We investigate graphs having Fiedler
vectors with unbalanced sign patterns such that a partition can result in two connected
subgraphs that are distinctly different in size. We present a characterization of graphs
having a Fiedler vector with exactly one negative component, and discuss some classes of
such graphs. We also establish an analogous result for regular graphs with a Fiedler vector
with exactly two negative components. In particular, we examine the circumstances under
which any Fiedler vector has unbalanced sign pattern according to the number of vertices
with minimum degree.
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1. Introduction and preliminaries

When does spectral bisection work well? Recall that spectral bisection is a method

to approximately solve the graph partitioning problem: partition a graph G into k

subgraphs each of which is similar in size while minimizing the number of edges

between each pair of components. There is the result in [11] about the maximal

error in spectral bisection with respect to the minimal cut while partition sizes are

the same. In contrast, we shall investigate if spectral bisection is a robust tech-

nique by considering the partition sizes. The method uses a so-called Fiedler vector

(see [5]) of a graph G so that the edges between two vertices valuated by different

signs of the Fiedler vector are cut in order to have the graph G partitioned into

two connected subgraphs. The paper of Urschel and Zikatanov (see [10]) provides
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a generalization of the work of Fiedler (see [5]) with respect to spectral bisection.

Specifically, [10] proves the existence of a Fiedler vector such that two induced sub-

graphs on the two sets of vertices valuated by non-negative signs and positive signs,

respectively, are connected. If all Fielder vectors of a graph G have a sign pattern

such that a few vertices are valuated by one sign and possibly 0, and the others are

valuated by the other sign, then spectral bisection will provide an inadequate par-

tition regarding the graph partitioning problem. The present paper examines such

graphs and their properties.

Let G be a simple graph of order n, that is, |V (G)| = n, where V (G) is the vertex

set of G, and let H be a subgraph of G. For v ∈ V (H), we define degH(v) as the

degree of v in H . We denote the minimum degree and the vertex connectivity of G

by δ(G) and v(G), respectively. The Laplacian matrix of G is L(G) = D(G)−A(G),

where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex

degrees. The spectrum of L(G), S(L(G)) = (λ1(G), . . . , λn(G)), is defined as the

sequence of eigenvalues of L(G) in nonincreasing order. It is well known that L(G) is

symmetric and positive semi-definite. In particular, L(G)1n = 0n, where 1n and 0n

are the all ones vector and the zero vector of size n, respectively (the subscript will

be omitted if no confusion arises). So λn(G) = 0. Similarly, the spectrum of A(G),

S(A(G)) = (µ1(G), . . . , µn(G)), is defined as the sequence of eigenvalues of A(G)

in nonincreasing order. Moreover, λi(G) and µi(G) are written as λi and µi if G

is clear from the context. We use am(λ) to denote the algebraic multiplicity of an

eigenvalue λ of L(G) or A(G). The algebraic connectivity α(G) of a graph G is

defined as λn−1(G). It is proven in [4] that α(G) 6 v(G) for a noncomplete graph G.

We refer the reader to [4] for more properties of α(G). Since v(G) 6 δ(G), we have

α(G) 6 δ(G) for a noncomplete graph G. An eigenvector associated with α(G) is

called a Fiedler vector. Let V (G) = {v1, . . . , vn} and x = [xi] be a Fiedler vector

of G. For 1 6 i 6 n, a vertex vi is said to be valuated by xi if xi is assigned to vi.

Suppose that x = [xj ] is an eigenvector associated to an eigenvalue λ of L(G)

or A(G). We define iλ(x) = min{|{xj : xj > 0}|, |{xj : xj < 0}|}. To distinguish

between L(G) and A(G), we define

iλ(G) := min
x 6=0

{iλ(x) : L(G)x = λx} and i∗µ(G) := min
x 6=0

{iµ(x) : A(G)x = µx}.

In particular, iα(G)(x) and iα(G)(G) are denoted as i(x) and i(G), respectively.

We also use some standard terminology and notation in this paper. A vertex v in

a connected graph G is a cut-vertex if the removal of v and all incident edges results

in a disconnected graph. A vertex v in a graph is a dominating vertex if v is adjacent

to all other vertices. A graph is r-regular if each vertex of the graph has the same

degree r. The complete graph Kn is the (n − 1)-regular graph on n vertices. The
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empty graph on k vertices, denoted as Nk, consists of k vertices with no edges. The

line graph of a graph G is the graph whose vertices are the edges of G, where two

vertices are adjacent if and only if their corresponding edges are incident in G. The

complement G of a graph G is a graph with the vertex set V (G), where two vertices

are adjacent in G if and only if the two vertices are not adjacent in G. For two

graphs G1 and G2 on disjoint vertex sets, the disjoint union G1+G2 of G1 and G2 is

defined as the graph (V (G1)∪V (G2), E(G1)∪E(G2))). For a vertex v ∈ V (G), G−v

is the subgraph of G obtained from G by deleting v and all edges incident with it.

The join of G1 and G2, denoted as G1 ∨G2, is the graph obtained from G1 +G2 by

joining every vertex in V (G1) to every vertex in V (G2). Furthermore,
k∨

i=1

G is defined

as G ∨ . . . ∨G︸ ︷︷ ︸
k times

. It it straightforward to see that G1 ∨ (G2 ∨ G3) = (G1 ∨ G2) ∨ G3

and G1 ∨G2 = G2 ∨G1.

We introduce the spectral properties of a join of graphs since we use them in several

places. Consider two graphs G1 and G2 on disjoint sets of p and q vertices, respec-

tively. Let S(L(G1)) = (λ1(G1), . . . , λp(G1)) and S(L(G2)) = (λ1(G2), . . . , λq(G2)).

It is known (see [8]) that the (multi-)set of all eigenvalues of L(G1 ∨G2) is

{0, λ1(G1) + q, . . . , λp−1(G1) + q, λ1(G2) + p, . . . , λq−1(G2) + p, p+ q}.

To see this, label the indices of rows and columns of L(G1 ∨ G2) in order of V (G1)

followed by V (G2). If x is an eigenvector orthogonal to 1p corresponding to λi(G1)

for 1 6 i 6 p− 1, then [x⊤ 0⊤ ] is an eigenvector of L(G1 ∨G2). Similarly, for an

eigenvector y orthogonal to 1q corresponding to λi(G2) for 1 6 i 6 q − 1, we have

[0⊤ y⊤ ] as an eigenvector of L(G1 ∨ G2). Furthermore, 1p+q and [−q1⊤ p1⊤ ]

are eigenvectors associated with 0 and p+ q, respectively.

In Section 2 we find equivalent conditions for G to have i(G) = 1 (see Theo-

rem 2.7). In Section 3, all graphs G with i(x) = 1 for all Fiedler vectors x are

characterized by studying minimum values of am(α(G)), according to the number of

vertices with minimum degree (see Theorem 3.19). Furthermore, we characterize the

graphs for which the sign patterns of all Fielder vectors are extremely unbalanced

(see Theorem 3.21). In Section 4, threshold graphs with i(G) = 1 and graphs with

three distinct Laplacian eigenvalues and i(G) = 1 are described. Section 5 provides

a characterization of all regular graphsG with i(G) = 2 by investigating sign patterns

of eigenvectors corresponding to the least adjacency eigenvalue of the complement

of G (see Theorem 5.12).

Throughout this paper, we assume that all graphs are simple and bold-faced letters

are used for vectors.
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2. Characterization of graphs with i(G) = 1

Proposition 2.1. Let G be a graph of order n > 2. The graph G is disconnected

if and only if i(G) = 0.

P r o o f. Suppose that G is disconnected. Then α(G) = 0. So, the all ones vector

is a Fiedler vector of G. Hence, i(G) = 0. Conversely, assume that i(G) = 0. Then

there exists a non-negative Fiedler vector x. Since L(G)x = α(G)x, 1⊤L(G)x =

α(G)1⊤x and it follows that α(G) = 0. Hence, G is disconnected. �

For a graph G of order 1, we have i(G) = 0, but G is connected. So, if G is a graph

on n vertices, where n > 2, then i(G) > 0 implies that G is connected.

Lemma 2.2. Let G be a noncomplete graph of order n > 3. If i(G) = 1, then

α(G) = δ(G).

P r o o f. Let x be a Fiedler vector with i(x) = 1, and we may suppose that

x1 < 0. We have (L(G)− α(G)I)x = 0, and considering the first entry, we find that

(l11 − α(G))x1 +
∑
k 6=1

l1kxk = 0. Since x1 < 0, l1k 6 0 and xk > 0 for all k 6= 1, it

must be the case that l11 6 α(G). Hence α(G) > δ(G), and since G is noncomplete,

α(G) 6 δ(G). We deduce that α(G) = δ(G). �

Example 2.3. Consider the complete graph Kn. Then (1,−1, 0, . . . , 0)⊤ is an

eigenvector of α(Kn) = n and by Proposition 2.1, i(Kn) = 1. Moreover, α(G) >

δ(G) = n− 1.

Now, we shall characterize noncomplete connected graphs G with α(G) = δ(G).

A characterization of graphs for which α(G) = v(G) appears in [6]: for a noncom-

plete, connected graph G on n vertices, α(G) = v(G) if and only if there exists

a disconnected graph G1 on n − v(G) vertices and a graph G2 on v(G) vertices

with α(G2) > 2v(G) − n such that G = G1 ∨ G2. Since α(G) 6 v(G) 6 δ(G),

if α(G) = δ(G), then α(G) = v(G) = δ(G). So, we begin with a join of a dis-

connected graph G1 on n − δ(G) vertices and a graph G2 on δ(G) vertices with

α(G2) > 2δ(G)− n.

Lemma 2.4. Let G be a noncomplete, connected graph of order n > 3. Then

α(G) = δ(G) if and only if G can be expressed as a join of G1 and G2, where the

graph G1 on n − δ(G) vertices has an isolated vertex, and G2 is a graph on δ(G)

vertices, and α(G2) > 2δ(G)− n.

P r o o f. Suppose that α(G) = δ(G). We will establish the desired conclusion

by induction. For order 3, there is only one graph, N1 ∨ N2, that is noncomplete

and connected; it has the same algebraic connectivity as the minimum degree and
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has the desired structure. Let n > 4. Suppose that a graph G of order n with

α(G) = δ(G) is noncomplete and connected. Since α(G) = v(G) = δ(G), G is

expressed as G1 ∨G2, where G1 is a disconnected graph of order n− δ(G), and G2

is a graph of order δ(G) with α(G2) > 2δ(G) − n. We have degG(v) > δ(G) for

v ∈ V (G1) and degG(w) > n − δ(G) for w ∈ V (G2). If G1 has an isolated vertex,

we are done. Suppose that G1 has no isolated vertex. Since δ(G1) > 0, we have

degG(v) > δ(G) for all v ∈ V (G1). So, there exists a vertex w ∈ V (G2) such that

degG(w) = degG2
(w) + (n− δ(G)) = δ(G) and degG2

(w) = δ(G2).

Since degG2
(w) > 0, we obtain n− δ(G) 6 δ(G).

Suppose that n− δ(G) = δ(G). Then degG2
(w) = 0, so G2 has an isolated vertex.

Since G1 is disconnected, α(G1) = 0. Moreover, δ(G) = 1
2n. By exchanging the roles

of G1 and G2, we obtain the desired description of G.

Assume that n − δ(G) < δ(G). Note that δ(G2) = 2δ(G) − n. Since α(G2) >

2δ(G) − n, we obtain α(G2) > δ(G2). Suppose that δ(G2) = δ(G) − 1. Then we

have δ(G) = n − 1, which contradicts the noncompleteness of G. Therefore, G2 is

a noncomplete, connected graph of order δ(G) with α(G2) = δ(G2). By induction,

there exists a graph H1 of order δ(G)−δ(G2) with an isolated vertex and a graph H2

of order δ(G2) such that G2 = H1 ∨ H2 and α(H2) > 2δ(G2) − δ(G). Hence, G =

G1∨H1∨H2. Consider G1∨H2 of order n−δ(G)+δ(G2). Since δ(G2) = 2δ(G)−n,

the order of G1 ∨ H2 is δ(G). Furthermore, G1 is disconnected, so α(G1 ∨ H2) is

either δ(G2) or α(H2) + n − δ(G). Considering α(H2) > 2δ(G2) − δ(G), it follows

that α(H2) + n− δ(G) > δ(G2). So, α(G1 ∨H2) = δ(G2) = 2δ(G)− n. Therefore G

can be expressed as a join of H1 and G1∨H2. Conversely, suppose that G1 is a graph

of order n − k with an isolated vertex, where 1 6 k 6 n − 2, and G2 is a graph of

order k with α(G2) > 2k − n. Since α(G2) + n − k > k, we have α(G1 ∨ G2) = k.

Let v be an isolated vertex in G1. Then degG(v) = k. So, δ(G) 6 k = α(G) implies

δ(G) = α(G). �

Remark 2.5. If G is a noncomplete connected graph on n vertices, we have

δ(G) < n− 1. So, G1 in Lemma 2.4 is of order at least 2. However, G2 can consist

of a single vertex v. Then the vertex v is a cut-vertex of G, and also a dominating

vertex in G. Considering the fact that |V (G1)| > 2 and G = G1 ∨ G2, there is no

cut-vertex of G in G1. Moreover, if G2 contains a cut-vertex of G, |V (G2)| = 1.

Therefore, if i(G) = 1, then G has at most one cut-vertex.

Lemma 2.6. Let G be a noncomplete, connected graph of order n. Suppose

that G can be expressed as a join of G1 and G2, where the graph G1 on n − δ(G)

vertices has an isolated vertex v, G2 is a graph on δ(G) vertices, and α(G2) >

2δ(G)− n. Then i(G) = 1.
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P r o o f. There exists an eigenvector x corresponding to α(G), where entries cor-

responding to vertices in G1 except for v are all ones, the entry for v is−(|V (G1)| − 1)

and zeros elsewhere. Therefore i(G) = 1. �

Corollary 2.6.1. Let G be a noncomplete, connected graph. There exists a cut-

vertex v and i(G) = 1 if and only if v is a dominating vertex that is adjacent to

a pendent vertex, that is, G = (G − v) ∨ {v}, where G− v has an isolated vertex.

P r o o f. Suppose that v is a cut-vertex in G and that i(G) = 1. By Remark 2.5,

G is expressed as G1 ∨ G2, where G1 contains an isolated vertex w and G2 = {v}.

It is straightforward that v is a dominating vertex and is adjacent to w, which is

a pendent vertex.

Conversely, suppose that v ∈ V (G) is a dominating vertex and is adjacent to

a pendent vertex w. Let G1 = G − v and G2 = {v}. Then w is an isolated vertex

in G1 and G = G1 ∨G2. By Lemma 2.6, we have the desired result. �

Thus, the following theorem is obtained by Lemmas 2.2, 2.4 and 2.6.

Theorem 2.7. Let G be a noncomplete, connected graph of order n. Then the

following statements are equivalent:

(1) i(G) = 1,

(2) α(G) = δ(G),

(3) G can be written as a join ofG1 and G2, where the graphG1 on n−δ(G) vertices

has an isolated vertex, G2 is a graph on δ(G) vertices, and α(G2) > 2δ(G)− n.

Proposition 2.8. Suppose that G is a connected graph of order n > 3 and

i(G) 6= 1. Then we can construct a graph G′ such that i(G′) = 1 and G is an

induced subgraph of G′ by adding at most two vertices and joining them to some

vertices of G. In particular, we need only one vertex if G is a join. Otherwise, we

need two vertices.

P r o o f. Suppose that G can be expressed as a join of two graphs, say H1

of order n1 and H2 of order n2, where n1 > n2. Let G
′ be ({v} + H1) ∨ H2 for

a new vertex v. Then δ(G′) = n2. Since α(G′) = min{n2, a(H2) + n1}, we have

δ(G′) = α(G′) and i(G′) = 1.

Assume that G is not a join of some graphs. Let H1 = {v} + G and H2 = {w},

where v 6= w. Consider G′ = H1 ∨ H2. Since H1 contains an isolated vertex and

α(H2) = 0 > 2δ(G′)− n, by Theorem 2.7, i(G′) = 1. It remains to show that every

graph H obtained from a graph G by adding just one new vertex v and joining it to

some vertices does not satisfy i(H) = 1. Suppose to the contrary that there exists

such a graph H with i(H) = 1. By Theorem 2.7 and Remark 2.5, H is expressed as
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a join of two graphs G1 and G2, where G1 has an isolated vertex and |V (G1)| > 2.

Suppose that the new vertex v is in G1. Since |V (G1)| > 2, a removal of v inH results

in the graph G that is a join of some graphs, a contradiction. Hence, v ∈ V (G2).

Furthermore, G2 = {v}, for otherwise, G would be written as a join of some graphs.

Thus, G = G1 and so G is disconnected. This contradicts the hypothesis that G

is connected. Therefore, we need to add at least two vertices to have a connected

graph G′ with the desired properties. �

3. Algebraic multiplicity of a graph with i(G) = 1

Recall that i(x) is defined as the minimum number of negative components in x

or −x.

Example 3.1. Let G1 = K2 +N1 and G2 = N1 ∨N3. Since G1 has an isolated

vertex and α(G2) = 2δ(G1 ∨ G2) − 7, we have i(G1 ∨ G2) = 1 by Theorem 2.7.

Furthermore, α(G1 ∨ G2) = 4 and am(α(G1 ∨ G2)) = 3. Labeling vertices in order

of V (G1) and V (G2), there are three linearly independent Fiedler vectors correspond-

ing to α(G1 ∨G2):

x⊤
1 = [ 1 1 −2 0 0 0 0 ] ; x⊤

2 = [ 0 0 0 0 1 −1 0 ] ;

x⊤
3 = [ 0 0 0 0 1 0 −1 ] .

Therefore i(x1 + x2) = 2 and i(x1 + x2 + x3) = 3.

Let G be a noncomplete graph of order n with i(G) = 1. So, G can be written

as G = G1 ∨ G2, where the graph G1 on n − δ(G) vertices contains an isolated

vertex, and G2 is a graph on δ(G) vertices with α(G2) > 2δ(G) − n. We observe

from Example 3.1 that if α(G2) = 2δ(G) − n, then am(α(G2)) must be considered

to compute am(α(G)). Let β(H) denote the number of connected components in

a graph H . Since the algebraic multiplicity of the eigenvalue 0 of G1 is β(G1), by

considering G = G1 ∨G2, we have

(3.1) am(α(G)) =

{
β(G1)− 1 + am(α(G2)) if α(G2) = 2δ(G)− n,

β(G1)− 1 if α(G2) > 2δ(G)− n.

Moreover, from Example 3.1 we see that for a noncomplete connected graph G the

condition that i(G) = 1 and am(α(G)) > 1 does not guarantee that i(x) = 1 for

every Fiedler vector x.

Proposition 3.2. Let G be a noncomplete graph of order n and i(G) = 1. Sup-

pose that G 6= N3∨G
′ for any graph G′ with α(G′) > 2δ(G)−n. Then am(α(G)) > 1

if and only if there exists a Fiedler vector x such that i(x) > 1.
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P r o o f. Suppose that am(α(G)) > 1. Since i(G) = 1, there are graphs G1

and G2 such that G = G1 ∨ G2, where the graph G1 on n − δ(G) vertices contains

an isolated vertex and G2 is a graph of order δ(G) with α(G2) > 2δ(G)−n. Assume

that α(G2) > 2δ(G)− n. From (3.1), we find that there are at least three connected

components in G1. Since G1 6= N3, |V (G1)| > 4. Choose two components H1 and H2

of G1 such that H1 and H2 are the smallest and second smallest orders in G1. Then

H1 = N1. Labeling vertices in order of V (H1), V (H2), V (G1) \ (V (H1) ∪ V (H2))

and V (G2), there exists a Fiedler vector

x⊤ =
[
−1−

Υ− 1

|V (H2)|
1⊤
|V (H2)|

1⊤
Υ0

⊤
|V (G2)|

]
, where Υ = |V (G1)|− |V (H1)|− |V (H2)|.

Then x and−x have |V (H1)|+|V (H2)| andΥ negative components, respectively. It is

clear that |V (H1)|+ |V (H2)| > 2. Since G1 6= N3 and H1 and H2 are the components

of the smallest and second smallest orders in G1, we have Υ > 2. Therefore i(x) > 2.

Suppose that α(G2) = 2δ(G) − n. Let v be an isolated vertex in G1. Then we

have a Fiedler vector x1 =

[
1|V (G1)| − |V (G1)|ev

0|V (G2)|

]
, where |V (G1)| > 2. Choose

an eigenvector y corresponding to α(G2) such that y
⊤1 = 0 and i(y) > 0. Since

α(G2) = 2δ(G)− n, x2 =

[
0|V (G1)|

y

]
is a Fiedler vector of G. Then i(x1 + x2) > 1.

Suppose that there is a Fiedler vector x such that i(x) > 1. By hypothesis, there

is a Fiedler vector x′ such that i(x′) = 1. Evidently, x′ is not a scalar multiple of x,

so those two vectors are linearly independent. Hence, am(α(G)) > 2. �

Proposition 3.2 establishes that the condition that i(G) = 1 and am(α(G)) = 1

forces any Fiedler vector x to have i(x) = 1. Moreover, the set of all graphs G such

that am(α(G)) > 1 and i(x) = 1 for all Fiedler vectors x is

{N3 ∨G′ : G′ is a graph with α(G′) > 2δ(N3 ∨G′)− |V (N3 ∨G′)|}.

We will characterize graphs with i(G) = 1 and am(α(G)) = 1 by studying the rela-

tion between am(α(G)) and the number of vertices of degree δ(G). Before presenting

the characterization, lower bounds on am(α(G)) will be derived.

Lemma 3.3. Let G be a noncomplete connected graph of order n. There are

exactly l vertices of degree δ(G) and i(G) = 1 if and only if for some k > 1 there are

graphs G1, . . . , Gk satisfying the following conditions:

(1) |V (G1)| = . . . = |V (Gk)| = n− δ(G) > 2;

(2) for i = 1, . . . , k each Gi contains li(> 1) isolated vertices of degree δ(G) in G,

and l =
k∑

j=1

lj ;
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(3) G is described by one of two cases:

(3a) G =
k∨

j=1

Gj or

(3b) G =
( k∨

j=1

Gj

)
∨G′, where G′ is a graph on kδ(G)− (k− 1)n vertices such

that degG(v) > δ(G) for all v ∈ V (G′) and α(G′) > (k + 1)δ(G)− kn.

P r o o f. We will use induction on l to prove the necessity of conditions (1), (2)

and (3) in order for G to have exactly l vertices of degree δ(G) and i(G) = 1. The

case l = 1 follows immediately from Theorem 2.7. Let l > 2. Since G is noncomplete

and i(G) = 1, G can be written as a join of two graphs Ĝ1 and Ĝ2, where Ĝ1 is

a graph on n − δ(G) vertices with an isolated vertex and Ĝ2 is a graph on δ(G)

vertices with α(Ĝ2) > 2δ(G) − n. The order of Ĝ1 is more than 1 by Remark 2.5.

If Ĝ1 contains l isolated vertices, then degG(v) > δ(G) for all v ∈ V (Ĝ2). By

choosing G1 = Ĝ1 and G′ = Ĝ2, we have the desired result with k = 1, which

corresponds to case (3b). Assume that there are l1 isolated vertices in Ĝ1, where

l1 < l. Then Ĝ2 contains exactly l̂2 := l − l1 vertices of degree δ(G) in G. Since

δ(G) is the minimum degree in G, the l̂2 vertices are also of the minimum degree

in Ĝ2. We have δ(Ĝ2) = 2δ(G) − n from the fact that G = Ĝ1 ∨ Ĝ2. If Ĝ2 is

complete, then δ(Ĝ2) = δ(G) − 1 and so δ(G) = n − 1, which contradicts the fact

that G is noncomplete. Hence, Ĝ2 is a noncomplete graph and δ(Ĝ2) > α(Ĝ2). Since

δ(Ĝ2) = 2δ(G)− n and α(Ĝ2) > 2δ(G)− n, we have

δ(Ĝ2) = α(Ĝ2) = 2δ(G)− n.

Assume that Ĝ2 is disconnected. Then α(Ĝ2) = 0, which yields δ(Ĝ2) = 0 and

δ(G) = n/2. Since δ(Ĝ2) = 0, the l̂2 vertices are the only isolated vertices in Ĝ2.

Moreover, we have |V (Ĝ1)| = |V (Ĝ2)| since δ(G) = n/2. Setting up l2 = l̂2, G1 = Ĝ1,

G2 = Ĝ2, we have the result with k = 2, which corresponds to (3a).

Suppose now that Ĝ2 is connected. Then i(Ĝ2) = 1 by Theorem 2.7. Since l̂2 < l,

by induction, there are graphs G2, . . . , Gk for some k > 2 satisfying the conditions:

(i) |V (G2)| = . . . = |V (Gk)| = δ(G) − δ(Ĝ2) = n− δ(G) > 2;

(ii) for i = 2, . . . , k each Gi contains li(> 1) isolated vertices of degree δ(Ĝ2) in Ĝ2

with l̂2 =
k∑

j=2

lj ; and

(iii) Ĝ2 is described by one of two cases:

(a) Ĝ2 =
k∨

j=2

Gj or
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(b) Ĝ2 =
( k∨
j=2

Gj

)
∨G′, where G′ is a graph on (k− 1)δ(Ĝ2)− (k− 2)|V (Ĝ2)|

vertices such that degĜ2

(v) > δ(Ĝ2) for all v ∈ V (G′) and α(G′) >

kδ(Ĝ2)− (k − 1)|V (Ĝ2)|.

Clearly, condition (1) is satisfied. Since the l̂2 vertices in Ĝ2 have degree δ(G) in G,

we have l = l1+ l̂2 =
k∑

j=1

lj . So, condition (2) is shown. Let G1 = Ĝ1. If Ĝ2 =
k∨

j=2

Gj ,

we obtain case (3a). Suppose that Ĝ2 =
( k∨

j=2

Gj

)
∨ G′. Considering the fact that

G = G1 ∨ Ĝ2, δ(Ĝ2) = 2δ(G)− n and |V (Ĝ2)| = δ(G), it is straightforward to check

the remaining conditions in (3b). Therefore, our desired description of G is obtained.

For the proof of the converse, suppose that there exists a graph G with G1, . . . , Gk

for some k > 1 satisfying conditions (1) and (2) in the statement. For case (3a),

G contains l vertices of degree δ(G) by condition (2). Consider case (3b). Since

degG(v) > δ(G) for all v ∈ V (G′), G contains exactly l vertices of degree δ(G). It

remains to show i(G) = 1. Suppose that G is as in case (3b). Note that α(G′) >

(k+1)δ(G)−kn. So, α(G) can be obtained from the eigenvalue 0 in G1 by computing

the spectrum of the join, so α(G) = (k − 1)(n− δ(G)) + |V (G′)| = δ(G). Therefore

by Theorem 2.7, i(G) = 1. Similarly, for case (3a), it is straightforward to show that

α(G) = δ(G). �

Remark 3.4. Continuing with the notation and terminology of Lemma 3.3, we

have |V (G′)| = kδ(G)− (k − 1)n and |V (G1)| = n− δ(G). So,

α(G′) > (k + 1)δ(G)− kn = |V (G′)| − |V (G1)|.

Furthermore, we observe that the complement Gi of each Gi for i = 1, . . . , k is

connected, so Gi cannot be expressed as a join of graphs. Thus, the decomposition

of G in terms of joins in Lemma 3.3 is unique (up to the ordering of the graphs). In

particular, k is uniquely determined.

Definition 3.5. Let l > 1. Graphs H1, . . . , Hl are called elementary if

(1) |V (H1)| = . . . = |V (Hl)| > 2 and

(2) each Hi for i = 1, . . . , l contains at least one isolated vertex.

A graph G is said to be an elementary k-join if G can be written as G =
k∨

j=1

Gj for

some k > 2 such that G1, . . . , Gk are elementary. The graphs G1, . . . , Gk are called

elementary graphs of G.

Definition 3.6. A graph G on n vertices is said to be a combined k-join if G

can be expressed as G =
( k∨

j=1

Gj

)
∨ G′ for some k > 1 such that G1, . . . , Gk are
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elementary and G′ is a graph on kδ(G)− (k− 1)n vertices such that degG(v) > δ(G)

for all v ∈ V (G′) and α(G′) > |V (G′)| − |V (G1)|. The graphs G1, . . . , Gk and the

graph G′ are called the elementary graphs and the combined graph of G, respectively.

Remark 3.7. If G is an elementary k-join, then k > 2. Otherwise, G would

be disconnected. Considering Remark 3.4, an elementary k-join G does not imply

that G is a combined k-join and vice versa.

Definition 3.8. A graph G is called a k-join if G is either an elementary k-join

or a combined k-join.

Remark 3.9. A k-join is not a complete graph.

The following result is straightforward from Lemma 3.3.

Theorem 3.10. Let G be a noncomplete connected graph. Then i(G) = 1 if and

only if G is a k-join.

Example 3.11. Consider the Shrikhande graph G′ with parameters (16, 6, 2, 2),

which is a strongly regular graph, see [1]. By computation, α(G′) = 4 and

am(α(G′)) = 6. Let G1 = K11 + {v}. Then i(G1 ∨ G′) = 1 and it has only

one vertex with the minimum degree, but am(α(G1 ∨ G′)) = 7. Moreover, G1 ∨ G′

is a combined 1-join.

Theorem 3.12. Suppose that G is an elementary k-join and G1, . . . , Gk are the

elementary graphs of G. Then am(α(G)) =
k∑

i=1

β(Gi)− k. Assume that G is a com-

bined k-join, and G1, . . . , Gk and G′ are the elementary graphs and the combined

graph of G, respectively. Then

am(α(G)) =





k∑

i=1

β(Gi)− k + am(α(G′)) if α(G′) = 2δ(G)− n,

k∑

i=1

β(Gi)− k if α(G′) > 2δ(G)− n.

P r o o f. Considering the spectrum of a join of graphs, we immediately obtain

the desired result. �

Let Al be the set of all noncomplete graphs G with l vertices of minimum de-

gree δ(G) such that i(G) = 1. For G ∈ Al, G is a k-join for some 1 6 k 6 l.

Note that if k = 1, then G is a combined 1-join. In order to attain the minimum of

am(α(G)), where G ∈ Al is a k-join, by Theorem 3.12 we only need to consider ele-

mentary k-joins and combined k-joins G, where the combined graph G′ of G satisfies
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α(G′) > 2δ(G)−|V (G)|. Let Al,k denote the subset of Al that consists of elementary

k-joins and such combined k-joins. Define

ml,k := min{am(α(G)) : G ∈ Al,k}.

We will investigate ml,k and families of graphs attaining ml,k. Then the greatest

lower bound of {am(α(G)) : G ∈ Al} will be derived.

Let G ∈ Al,k, where 1 6 k 6 l. Let G1, . . . , Gk be the elementary graphs of G.

For i = 1, . . . , k, each Gi contains at least one isolated vertex, say vi, so β(Gi) − 1

is the number of connected components in Gi − vi. Since there are l − k isolated

vertices left in the disjoint union of G1 − v1, . . . , Gk − vk by Theorem 3.12, we have

am(α(G)) = l − k + p(G),

where p(G) is the number of components of order greater than 1 in the elementary

graphs G1, . . . , Gk of G. Define

pl,k := min{p(G) : G ∈ Al,k}.

Therefore we have

ml,k = l − k + pl,k.

Then ml,k can be completely determined by considering 3 cases for 1 6 k 6 l:

(i) k | l, where l > 2 and 1 6 k < l, (ii) k = l or k = l − 1 > 2, (iii) k ∤ l and

2 6 k 6 l − 2.

Lemma 3.13 (Case (i)). Let G ∈ Al,k, where l > 2 and 1 6 k < l. Suppose that

G1, . . . , Gk are the elementary graphs of G. Then k | l if and only if ml,k = l− k. In

particular, Gi = Na+1 for i = 1 . . . , k, where a > 1 and l = (a+ 1)k.

P r o o f. Note that k | l if and only if k | l− k. Assume that l− k = ak for some

a > 1. By choosing Gi = Na+1 for i = 1 . . . , k, we have p(G) = 0. Hence, pl,k = 0

and ml,k = l − k. Conversely, if ml,k = l − k, then pl,k = 0 and so each Gi must

consist of isolated vertices. Since |V (G1)| = . . . = |V (Gk)| > 2, it follows that there

is a > 1 such that l − k = ak. Furthermore, Gi = Na+1 for i = 1, . . . , k. �

We shall consider an example to see that p(G) depends on how G1, . . . , Gk consist

of isolated vertices.

Example 3.14. Let G ∈ A12,5 and let G1, . . . , G5 be the elementary graphs

of G. Note that for i = 1, . . . , 5, Gi has at least one isolated vertex. Consider the

following configurations of three distributions of 12 isolated vertices in G1, . . . , G5:

1082



G1 G2 G3 G4 G5

Case 1

G1 G2 G3 G4 G5

Case 2

G1 G2 G3 G4 G5

Case 3

For each case, ◦ indicates an isolated vertex, and the jth column describes how

many isolated vertices Gj has. Note that for each case there are no more isolated

vertices in Gj ; Gj may have disconnected components of order greater than 1 under

the condition that |V (G1)| = . . . = |V (G5)| > 2.

Consider Case 1. If |V (Gi)| = 3 for i = 1, . . . , 5, then G3, G4 and G5 must have

three isolated vertices, a contradiction to l = 12. In order for G to satisfy the

condition that it only has 12 isolated vertices and |V (G1)| = . . . = |V (G5)| > 2,

at least one component of order greater than 1 must be added to each Gj . Thus,

p(G) > 5 for Case 1.

Using the same argument for Case 2, it follows that we also need at least five

components of order greater than 1. Hence, p(G) > 5 for Case 2.

For Case 3, we minimally need three components: K2, K3 and K3 in G3, G4

and G5, respectively. Thus, |V (G1)| = . . . = |V (G5)| > 4 and p(G) > 3.

Let G ∈ Al,k, where l − k > 1. Suppose that G1, . . . , Gk are the elementary

graphs of G, and vi is an isolated vertex in Gi for i = 1, . . . , k. Let ci(G) > 0 be the

number of isolated vertices in Gi − vi, so l− k =
k∑

i=1

ci(G). Suppose that cmax(G) :=

max{c1(G), . . . , ck(G)} and q(G) := |{i : ci(G) = cmax(G) for 1 6 i 6 k}|. Since

l − k > 1, we have cmax(G), q(G) > 1. If G is clear from the context, then ci(G)

and cmax(G) can be written as ci and cmax, respectively. Assume that there is

a Gj − vj such that cmax − cj = 1. Since |V (G)| = . . . = |V (Gk)| and there are

only l − k isolated vertices in the disjoint union of G1 − vi, . . . , Gk − vk, there must

be at least one component of order greater than 1 in each Gi. Thus, p(G) > k.

Furthermore, choosing Gj = Ncj+1 +Ks−cj−1 for j = 1, . . . , k, where s > cmax + 3,

we have |V (G1)| = . . . = |V (Gk)| = s and so p(G) = k. On the other hand, suppose

that cmax − cj 6= 1 for all 1 6 j 6 k. Choosing

Gj =

{
Ncj+1 +Kcmax−cj if cmax − cj > 2,

Ncmax+1 if cj = cmax

for 1 6 j 6 k, we obtain |V (G1)| = . . . = |V (Gk)| > 2 and so p(G) = k − q(G),

where q(G) > 1.
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Let Gl,k be the set of graphs G ∈ Al,k such that for the elementary graphs

G1, . . . , Gk, cmax − cj 6= 1 for all 1 6 j 6 k, where l − k > 1. Then we imme-

diately have the following proposition.

Proposition 3.15. Suppose that G ∈ Al,k, where l − k > 1. If G ∈ Gl,k, then

p(G) > k − q(G), where q(G) > 1, and there exists a graph H ∈ Gl,k such that

p(H) = k − q(G), where q(G) > 1. If G /∈ Gl,k, then p(G) > k and there exists

a graph H ∈ Al,k such that p(H) = k.

Proposition 3.15 implies that if Gl,k is nonempty, then pl,k < k. Otherwise,

pl,k = k, and so ml,k = l.

Lemma 3.16 (Case (ii)). Let G ∈ Al,k. If k = l or k = l − 1 > 2, then ml,k = l.

P r o o f. Let G1, . . . , Gk be the elementary graphs of G. Suppose that k = l.

Note that |V (Gi)| > 2 for i = 1, . . . , k. Since each Gi for i = 1, . . . , k has exactly one

isolated vertex, every Gi must have at least one component of order greater than 1.

Thus, pl,l = k, and so mll = l. If k = l − 1 > 2, there exists a graph Gj for some

1 6 j 6 k such that cmax − cj = 1. So Gl,k is the empty set, which implies that

ml,l−1 = l. �

Example 3.17. Let G ∈ A16,5 and let G1, . . . , G5 be the elementary graphs

of G. Note that each Gi for i = 1, . . . , 5 has at least one isolated vertex. See the

following configurations of two distributions of the 16 vertices into G1, . . . , G5:

G1 G2 G3 G4 G5

Case 1

G1 G2 G3 G4 G5

Case 2

G1 G2 G3 G4 G5

Case 3

For each case, ◦ indicates an isolated vertex and the jth column describes how

many isolated vertices Gj has. For Case 1, G ∈ G16,5 and by Proposition 3.15, we

may have p(G) = 3. Suppose that G corresponds to the configuration of Case 2.

Since cmax − c4 = 1, G /∈ Gl,k and so p(G) > 5. If G corresponds to Case 3, then

cmax − cj 6= 1 for all 1 6 j 6 5, so we can obtain p(G) = 2 by placing K2 in G4

and G5. Furthermore, there is no graph in G ∈ G16,5 such that cmax = 2, by the

pigeonhole principle. Therefore p16,5 = 2 and so m16,5 = 13.

Let H ∈ A15,4 and let H1, . . . , H4 be the elementary graphs of H . Consider the

following configurations of two distributions of the 15 vertices into H1, . . . , H4:
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H1 H2 H3 H4

Case 4

H1 H2 H3 H4

Case 5

For Case 4, H /∈ G15,4, so p(H) > 4. For Case 5 we have p(H) > 2. One can check

that m15,4 = 13.

Observe from Cases 1, 2 and 3 in Example 3.17 that cmax(G) should be minimized

in order to maximize q(G) so that pl,k can be attained. So, we shall consider graphs

G ∈ Al,k such that 0 6 l − k − cmax(G)q(G) 6 cmax(G) − 1, and then investigate

the minimum of cmax(G) among the graphs G. However, Cases 4 and 5 in Exam-

ple 3.17 show that the minimum of cmax(G) being attained at Ĝ does not guarantee

attaining pl,k if l− k = cmax(Ĝ)q(Ĝ)− 1.

Lemma 3.18 (Case (iii)). Let G ∈ Al,k, where k ∤ l and 2 6 k 6 l − 2. Let

c̃ = max{⌈ l−k
k ⌉, 2}. Then

ml,k =





l −
⌊ l− k

3

⌋
if l− k is odd, and

⌊ l − k

2

⌋
6 k − 1,

l −
⌊k(l − k)

l + 1

⌋
if k | (l + 1), and l + 1 > 4k,

l −
⌊ l− k

c̃

⌋
otherwise.

P r o o f. Let us consider a graph G ∈ Al,k. Then there exist the elementary

graphs G1, . . . , Gk of G. Suppose that 0 6 l − k − cmax(G)q(G) 6 cmax(G) − 1,

where k ∤ l and 2 6 k 6 l − 2. We may assume that c1 = . . . = cq(G) = cmax(G)

and cq(G)+1 = r(G), where r(G) = l − k − cmax(G)q(G). Note that if 0 6 r(G) 6

cmax(G)− 2, then G ∈ Gl,k.

Let c0 = min{c > 2: ⌊ l−k
c ⌋ 6 k − 1} and r0 = l − k − c0⌊

l−k
c0

⌋. We shall

consider 3 cases:

(a) c0 = 2 and r0 = 1,

(b) ⌊ l−k
c0

⌋ = k − 1 and r0 = c0 − 1, where c0 > 3,

(c) neither (a) nor (b) holds.

⊲ Case (a): If cmax(G) = 2 and r(G) = 1, then cmax(G)− cq(G)+1 = 1, so p(G) > k.

Suppose that cmax(G) = 3. Since c0 = 2 and r0 = 1, ⌊ l−k
2 ⌋ 6 k − 1 implies that

⌊ l−k
3 ⌋ 6 k − 2. If r(G) = 0 or r(G) = 1, then G ∈ Gl,k and by Proposition 3.15,

pl,k = k−⌊ l−k
3 ⌋. Assume that r(G) = 2. Since ⌊ l−k

3 ⌋ 6 k−2, there exists a graph
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Ĝ ∈ Gl,k such that c1(Ĝ) = . . . = cq(G)(Ĝ) = 3 and ck−1(Ĝ) = ck(Ĝ) = 1. By

Proposition 3.15, we find that ml,k = l− ⌊ l−k
3 ⌋. Furthermore, considering c0 = 2,

the condition r0 = 1 is equivalent to l − k being odd.

⊲ Case (b): If cmax(G) = c0 > 3, q(G) = k−1 and r(G) = c0−1, then cmax − ck = 1

soG /∈ Gl,k. Note that l−k = c0(k−1)+c0−1 can be expressed as c0 = l+1
k −1 > 3,

i.e., l + 1 is divisible by k and l + 1 > 4k. Suppose that cmax(G) = c0 + 1. We

have q(G) = ⌊ l−k
c0+1⌋ = ⌊k(l−k)

l+1 ⌋. Since ⌊ l−k
c0

⌋ = k − 1, we have q(G) 6 k − 2. If

r(G) = 0, there exists Ĝ ∈ Gl,k such that c1(Ĝ) = . . . = cq(G)(Ĝ) = c0 + 1. If

r(G) > 1, choose a graph Ĝ ∈ Gl,k such that c1(Ĝ) = . . . = cq(G)(Ĝ) = c0 + 1,

ck−1(Ĝ) = r(G)−1 and ck(Ĝ) = 1. Hence, by Proposition 3.15,ml,k = l−⌊k(l−k)
l+1 ⌋.

⊲ Case (c): Considering cases (a) and (b), if c0 = 2, then r0 = 0; if r0 = c0− 1, then

⌊ l−k
c0

⌋ 6 k − 2. Let cmax(G) = c0 and q(G) = ⌊ l−k
c0

⌋. It is readily checked that for

c0 = 2 we can obtain our desired result. If r(G) = c0 − 1 > 2, then q(G) 6 k − 2.

Then there exists a graph Ĝ ∈ Gl,k such that c1(Ĝ) = . . . = cq(G)(Ĝ) = c0,

ck−1(Ĝ) = r(G) − 1 and ck(Ĝ) = 1. If r(G) < c0 − 1, it is straightforward that

G ∈ Gl,k. Therefore ml,k = l − ⌊ l−k
c0

⌋. Consider c0 = min{c > 2: ⌊ l−k
c ⌋ 6 k − 1}.

Since ⌊ l−k
c ⌋ 6 k − 1 ⇔ l−k

c < k ⇔ l−k
k < c, we have c0 = max{⌈ l−k

k ⌉, 2}. �

Summarizing Lemmas 3.13, 3.16 and 3.18, we have the following theorem.

Theorem 3.19. Let G ∈ Al,k, where 1 6 k 6 l. Then

(3.2) ml,k =





l if k = l − 1 > 2 or k = l,

l − k if k | l and 1 6 k < l,

l −
⌊k(l − k)

l + 1

⌋
if k | (l + 1), l + 1 > 4k, 2 6 k 6 l − 2,

l −
⌊ l − k

3

⌋
if k ∤ l, 2 ∤ (l − k),

⌊ l − k

2

⌋
6 k − 1 6 l − 3,

l −
⌊ l − k

c̃

⌋
otherwise,

where c̃ = max{⌈ l−k
k ⌉, 2}.

Corollary 3.19.1. Let G be a noncomplete connected graph of order n with

i(G) = 1 and l > 1 vertices of δ(G). Then

am(α(G)) >





l

2
, l is even,

l −
⌊ l
3

⌋
, l is odd
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with equality for even l if and only if G =
l/2∨
i=1

N2 (l > 4) or G =
( l/2∨
i=1

N2

)
∨Kn−l. In

particular, G = N2 ∨Kn−2 for l = 2.

P r o o f. Let ml := min{am(α(G)) : G ∈ Al}. We only need to find ml for

even l and odd l to complete the proof. Continuing the notation of Theorem 3.19,

for case (3.2)3 there exists a > 4 such that l+ 1 = ak. So, l− ⌊k(l−k)
l+1 ⌋ can be recast

as l − ⌊ (l−k)
a ⌋ > l − ⌊ (l−k)

3 ⌋, i.e., ⌊ (l−k)
a ⌋ 6 ⌊ (l−k)

3 ⌋.

Suppose that l is even. Then 1
2 l | l. From (3.2)2 we have ml,l/2 = l − 1

2 l with

k = 1
2 l. Note that c̃ > 2. So, we have ⌊ l−k

3 ⌋ < 1
2 l and ⌊ l−k

c̃ ⌋ < 1
2 l for 1 6 k 6 l.

Hence, ml = l − 1
2 l, which is only attained from (3.2). Furthermore, we find from

Lemma 3.13 that am(α(G)) = 1/2l for G ∈ Al if and only if G = ∨
l/2
i=1N2 (l > 4) or

G = (∨
l/2
i=1N2) ∨G′, where α(G′) > |V (G′)| − 2. It follows from δ(G′) 6 |V (G′)| − 1

that G′ is the complete graph.

It is straightforward that m1 = 1. Assume that l is odd and 3 | l. Applying (3.2)2,

ml,l/3 = l− 1
3 l. Suppose that for (3.2)5 there are c̃ > 2 and k0 > 1 such that l 6= 3k0

and ⌊ l−k0

c̃ ⌋ > 1
3 l. Since k0 > 1, we must have c̃ = 2. This implies that l > 3k0. So,

⌈ l−k0

k0

⌉ > 2, which is a contradiction to c̃ = max{⌈ l−k0

k0

⌉, 2} = 2. Hence, ⌊ l−k
c̃ ⌋ < 1

3 l.

Furthermore, since ⌊ l−k
3 ⌋ < 1

3 l for 1 6 k 6 l, we have ml = l − 1
3 l.

Suppose that l is odd and l = 3b + 1 for some b > 2. In order to consider the

minimum in the case (3.2)5, we choose k = b+1 so that l− k = 2b. Then, it follows

from ⌊ l−k
2 ⌋ = b that ml,b+1 = l − ⌊ l

3⌋. If k is as in the case of (3.2)2, then k (6= l)

is a divisor of l. Then k = 1 or k > 5. Note that l is odd and l > 7. It follows that

k < ⌊ l
3⌋ for all divisors k (6= l) of l. Moreover, since we have ⌊ l−k

3 ⌋ < ⌊ l
3⌋ for k > 2,

ml,b+1 < ml,k for any k corresponding to (3.2)3 or (3.2)4. Therefore ml = l− ⌊ l
3⌋.

Similarly, assume that l is odd and l = 3d+2 for some d > 1. In order to consider

the minimum in the case (3.2)5, we choose k = d+2. Then, it follows from l−k = 2d

that ml,d+2 = l−⌊ l
3⌋. Note that l > 5. For (3.2)2, let k (6= l) be a divisor of l. Then

k 6 ⌊ l
3⌋ with equality if and only if k = 1 and l = 5. Furthermore, ⌊ l−k

3 ⌋ 6 ⌊ l
3⌋

for k > 2 with equality if and only if k = 2. In particular, one can verify that if

k = 2, then k falls under (3.2)3, and ⌊k(l−k)
l+1 ⌋ = ⌊ l

3⌋ if and only if l = 5. Hence,

ml,d+2 6 ml,k for any k corresponding to (3.2)3 or (3.2)4 with equality if and only if

k = 2 and l = 5. �

Remark 3.20. Continuing the notation of Corollary 3.19.1, graphs attaining

the equality for odd l can be classified by the proof in Corollary 3.19.1. Suppose

that 3 | l. By Lemma 3.13, G =
l/3∨
i=1

N3 for l > 6 or G =
( l/3∨

i=1

N3

)
∨ G′, where

α(G′) > |V (G′)|−3. Assume that l is odd and l = 3b+1 for some b > 2. Since l > 7,

the equality is only attained in case (3.2)5. Hence, G =
( b∨
i=1

N3

)
∨ (N1 + K2) or
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G =
( b∨
i=1

N3

)
∨ (N1 +K2)∨G′, where α(G′) > |V (G′)| − 3. Suppose that l = 3d+2

for some d > 1. For l = 5, we have the following cases: for k = 1, G = N5∨G′, where

α(G′) > |V (G′)| − 5; for k = 2, G = N4 ∨ (N1 +K3), G = N4 ∨ (N1 + (N1 ∨K2)),

G = N4∨(N1+K3)∨G
′ or G = N4∨(N1+(N1∨K2))∨G

′, where α(G′) > |V (G′)|−4;

for k = 3, G = N3 ∨ (N1+K2)∨ (N1 +K2) or G = N3 ∨ (N1+K2)∨ (N1 +K2)∨G′,

where α(G′) > |V (G′)| − 3. For l > 11 it can be checked that ml is only attained by

G =
( d∨
i=1

N3

)
∨(N1+K2)∨(N1+K2) or G =

( d∨
i=1

N3

)
∨(N1+K2)∨(N1+K2)∨G′,

where α(G′) > |V (G′)| − 3.

The following theorem is our main result in this section for classifying graphs G

with i(G) = 1 and am(α(G)) = 1.

Theorem 3.21. Let G be a noncomplete connected graph of order n. Then

i(G) = 1 and am(α(G)) = 1 if and only if either G = N2 ∨Kn−2 or G = G1 ∨ G′,

where G1 is a graph of order n − δ(G) with exactly one isolated vertex, and G′ is

a graph on δ(G) vertices with α(G′) > 2δ(G)− n and δ(G′) > 2δ(G)− n.

P r o o f. Suppose that i(G) = 1 and am(α(G)) = 1. Let l be the number of

vertices of the minimum degree in G. By Corollary 3.19.1, l = 1 or l = 2. For

l = 1, since G is connected, G is a 1-join with G′. Since degG(v) > δ(G) for all

v ∈ V (G′), we have δ(G′) > 2δ(G) − n. The hypothesis that am(α(G)) = 1 implies

that α(G′) > 2δ(G)− n. For l = 2, the conclusion is clear from Corollary 3.19.1.

It is straightforward to prove the converse. �

Example 3.22. Suppose that G1 = Kn1
+N1 and G

′ = Kn2
, where n1, n2 > 0.

Consider G = G1 ∨ G′. Then α(G′) = n2, δ(G
′) = n2 − 1 and 2δ(G) − |V (G)| =

n2 − n1 − 1. By Theorem 3.21, we have i(G) = 1 and am(α(G)) = 1.

Now, we shall introduce a result without proof, as well as some notation in [10],

to find pathological graphs with respect to applying spectral bisection for the graph

partitioning problem. Let G be a connected graph of order n, and let X be the

eigenspace corresponding to α(G), and denote

i+(x) :={j : 1 6 j 6 n, xj > 0}, i−(x) := {j : 1 6 j 6 n, xj < 0},

i0(x) :={j : 1 6 j 6 n, xj = 0}, i0(X) :=
⋂

x∈X

i0(x).

Theorem 3.23 ([10]). Let G be a connected graph. Then there exists a Fiedler

vector x such that the subgraphs of G induced by i+(x) ∪ i0(x) and i−(x) are

connected.
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Proposition 3.24. Let G be a connected graph of order n, and X be the

eigenspace corresponding to α(G). Suppose that there exists an induced subgraphG2

of G such that G = G1 ∨G2 and α(G2) > α(G) − |V (G1)|. Then V (G2) ⊆ i0(X).

P r o o f. Considering eigenvectors of the join of graphs and the condition that

α(G2) > α(G) − |V (G1)|, it implies that for any Fiedler vector, vertices of V (G2)

are valuated by 0. Hence, V (G2) ⊆ i0(X). �

Example 3.25. The converse of Proposition 3.24 does not hold for the following

graph G:

v5 v6 v7 v8

v1 v2 v3 v4

Let X be the eigenspace corresponding to α(G). It follows from computations that

λ1(G) < |V (G)| = 8, am(α(G)) = 1 and i0(X) = {v5, v6, v7, v8}. Since λ1(G) < 8,

G cannot be expressed as a join.

Theorem 3.23 provides the existence of a Fiedler vector preserving connectedness

of the two subgraphs for any connected graph. However, this does not guarantee

that such a Fiedler vector gives a partition into two subgraphs such that they are

similar in size. Next, we will show a family of graphs such that sign patterns of all

Fiedler vectors are extremely unbalanced. In Theorem 3.23, we may slightly change

the condition for the result as follows: the subgraphs of G induced by i−(x) ∪ i0(x)

and i+(x) are connected.

Example 3.26. Suppose that G is a noncomplete connected graph of order n

with i(G) = 1 and am(α(G)) = 1. Then, by Theorem 3.21, either G = N2∨Kn−2 or

G = G1∨G′, where G1 is a graph of order n− δ(G) with exactly one isolated vertex,

and G′ is a graph on δ(G) vertices with α(G′) > 2δ(G) − n and δ(G′) > 2δ(G)− n.

For a Fiedler vector x of G = N2 ∨Kn−2, without loss of generality, two subgraphs

of G induced by i−(x) ∪ i0(x) and i+(x) are Kn−1 and N1, respectively.

For the latter case G = G1∨G′, let us revisit Example 3.22. Suppose that X is the

eigenspace corresponding to α(G), where G = (Kn1
+N1)∨Kn2

. By Proposition 3.24,

we have Kn2
⊆ i0(X). Since am(α(G)) = 1, i0(X) = Kn2

. From Theorem 3.23, we

may have that i−(x)∪i0(x) and i+(x) areKn2+1 andKn1
, respectively. Therefore, for

pairs (n1, n2) such that n1/n2 → ∞, the corresponding graph G will be pathological

with respect to spectral bisection.
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4. Some classes of graphs with i(G) = 1

In this section, we will consider threshold graphs and graphs with three distinct

Laplacian eigenvalues in the context of i(G) = 1.

Definition 4.1. A threshold graph is a graph obtained from a single vertex by

repeatedly performing one of the following operations:

(1) addition of a single isolated vertex to the graph,

(2) addition of a dominating vertex.

Proposition 4.2. Every connected threshold graph G of order n has i(G) = 1.

P r o o f. We will use induction on the number of vertices to complete the proof.

If G is a complete graph, we are done. Let G be a noncomplete connected threshold

graph of order n. For order 3, N2∨N1 is the only such graph, and i(N2∨N1) = 1. Let

n > 3. Suppose that any noncomplete connected threshold graph H of order k < n

satisfies i(H) = 1. Since G is a connected threshold graph, there exists a vertex v

with deg(v) = n − 1. Let G′ = G − {v}. Suppose that G′ is connected. Then G′

is not complete, otherwise, G would be complete. By induction, i(G′) = 1, and so

δ(G′) = α(G′). Considering the spectrum of G′ ∨ {v}, we have

α(G) = α(G′) + 1 = δ(G′) + 1 = δ(G).

Therefore i(G) = 1. If G′ is disconnected, then G′ has an isolated vertex. By

Theorem 2.7, i(G) = 1. �

The spectrum of a threshold graph appears in [7]. In paper [7], a connected

threshold graph is called a maximal graph since it is proved there that the degree

sequence of a connected threshold graph of size m is not majorized by any other

degree sequences of graphs of size m. In particular, we will introduce the following

results used for seeing what role am(α(G)) plays.

Theorem 4.3 ([7]). If G is a connected threshold graph, then S(G) = d∗,

where d∗ is the conjugate of the degree sequence of G.

Theorem 4.4 ([7]). Let G be a threshold graph. Suppose that G is disconnected,

so there are l + 1 connected components. Then l components consist of isolated

vertices.

Proposition 4.5. Suppose that G is a noncomplete connected threshold graph

of order n. Then α(G) = k and am(α(G)) = l if and only if there are exactly k

vertices v1, . . . , vk such that degG(vi) = n− 1 for i = 1, . . . , k and the subgraph G1

of G induced by V (G) − {v1, . . . , vk} consists of l + 1 components, l components of

which consist of a single vertex, respectively.
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P r o o f. Suppose that α(G) = k and am(α(G)) = l. By Theorem 4.3, the

number of vertices of degree n − 1 is α(G). There are exactly k vertices v1, . . . , vk
such that degG(vi) = n− 1 for i = 1, . . . , k. Suppose that G1 is the subgraph of G

induced by V (G)−{v1, . . . , vk}. Since there are only k vertices of degree n− 1 in G,

the graph G1 is disconnected. Moreover, G = G1 ∨Kk. Since am(α(G)) = l, from

Theorem 4.4, we obtain the desired result.

For the converse, evidently we have G = G1 ∨Kk. Since G1 has exactly l isolated

vertices, α(G) = k and am(α(G)) = l. �

Now, we will investigate an equivalent condition for a graphG that is a join having

three distinct Laplacian eigenvalues to have i(G) = 1.

Proposition 4.6. Let G be a noncomplete, connected graph of order n. The

graph G has three distinct Laplacian eigenvalues 0, α(G) and n, where am(α(G)) = k

if and only if there exist integers p > 0, q > 1 and r > 2 such that p + q > 2 and

G = Kp ∨
( q∨

i=1

Nr

)
, where n = qr + p, α(G) = r(q − 1) + p and k = q(r − 1).

P r o o f. Suppose that G has 3 distinct Laplacian eigenvalues 0, α(G) and n.

Then the complement G of G has n− k connected components since G has 0 as an

eigenvalue with multiplicity n− k. Hence, there are graphs G1, . . . , Gn−k such that

G = G1∨ . . .∨Gn−k, where n−k > 2. Note that for i = 1, . . . , n−k, L(Gi) does not

have |V (Gi)| as an eigenvalue. If there is a Gj with three distinct eigenvalues, then

from the spectrum of a join of graphs, we find that G has more than three distinct

eigenvalues, a contradiction. So, each Gi has either one or two distinct eigenvalues.

The only graphs with one eigenvalue are empty graphs, and the only graphs with

two distinct eigenvalues are complete graphs. So, each Gi is either Nri or Kpi
for

some ri or pi. Consider Nri and Nrj for ri, rj > 2 and ri 6= rj . Then L(Nri ∨Nrj )

has 4 distinct eigenvalues 0, ri, rj and ri + rj . Hence, all empty graphs as factors

in G1 ∨ . . . ∨ Gn−k must have the same order. Evidently, Kpi
∨ Kpj

= Kpi+pj
for

pi, pj > 1. If Gi is a complete graph, then Gi = K1. Let p be the number of isolated

vertices in G, let q be the number of the complete graphs of order r > 2 in G. If

q = 0, then G is a complete graph. So, q > 1. If p + q = 1, then G is disconnected

and so p+ q > 2. Therefore, we have the desired graph G. Considering the spectrum

of a join of graphs, the remaining conditions for n, α(G) and k can be checked.

By the spectrum of a join, the proof of the converse is straightforward. �

Corollary 4.6.1. Let G be a noncomplete, connected graph of order n with

three distinct Laplacian eigenvalues. The largest Laplacian eigenvalue is n if and

only if i(G) = 1.
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P r o o f. Suppose that the largest Laplacian eigenvalue is n. From Proposi-

tion 4.6, there exist p > 0, q > 1 and r > 2 such that p+q > 2 and G = Kp∨
( q∨
i=1

Nr

)
.

Since G = Nr ∨
(
Kp ∨

(q−1∨
i=1

Nr

))
, we obtain i(G) = 1 by Theorem 2.7. Conversely,

i(G) = 1 implies that G is a join of some graphs. So, the largest eigenvalue is n. �

Corollary 4.6.2. Let G be a noncomplete, connected graph of order n with three

distinct Laplacian eigenvalues 0, α(G) and n, where k = am(α(G)). Then the clique

number of G is ω(G) = n− k.

P r o o f. It follows from Proposition 4.6 that there exist p > 0, q > 1 and r > 2

such that p + q > 2 and G = Kp ∨
( q∨

i=1

Nr

)
. So, ω(G) = p + q. Since n = qr + p

and k = qr − q, we have ω(G) = n− k. �

5. Characterization of regular graphs with i(G) = 2

In this section, we shall consider i(G) = 2. It turns out that i(Kn) = 1. So, if

i(G) = 2, then G is noncomplete and connected.

Proposition 5.1. Let G be a connected graph of order n with i(G) = 2, and x

be a Fiedler vector with i(x) = 2. Then two vertices valuated by negative numbers

of x are adjacent and 0 < δ(G) − α(G) 6 1. Moreover, one of the two vertices has

degree δ(G).

P r o o f. Since i(G) = 2, there exists x = (x1 . . . , xn)
⊤ ∈ Rn such that x1, x2 < 0,

xj > 0 for j = 3, . . . , n and (L(G)− α(G)I)x = 0. We have

(l11 − α(G))x1 + l12x2 + l13x3 + . . .+ l1nxn = 0,(5.1)

l21x1 + (l22 − α(G))x2 + l23x3 + . . .+ l2nxn = 0.(5.2)

Since i(G) > 1, it follows that

(5.3) lii − α(G) > δ(G) − α(G) > 0

for i = 1, . . . , n. Assume that l12 = l21 =0. Thus, (l11−α(G))x1 < 0 and
n∑

j=3

l1jxj 6 0,

which leads to having the left-hand side of (5.1) negative. Therefore l12 = l21 = −1.

Adding (5.1) and (5.2), we have

(5.4) (l11 − α(G)− 1)x1 + (l22 − α(G) − 1)x2 +

n∑

j=3

(l1j + l2j)xj = 0.
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Without loss of generality, suppose that l11 6 l22. If l11 − α(G) > 1, then the

left-hand side of equation (5.4) is negative. Therefore l11 − α(G) 6 1 and by (5.3),

0 < δ(G)−α(G) 6 1. Furthermore, suppose that l11 > δ(G), that is, l11 > δ(G)+ 1.

Using l11 −α(G) 6 1, we deduce α(G) = δ(G), which is a contradiction to i(G) = 2.

Thus, l11 = δ(G). �

Remark 5.2. Proposition 5.1 provides two cases: 0 < δ(G) − α(G) < 1 and

δ(G) − α(G) = 1. Note that δ(G) > v(G) > α(G). Consider the case 0 < δ(G) −

α(G) < 1. Since α(G) is not an integer, we have δ(G) = v(G) > α(G).

Suppose that δ(G) − α(G) = 1. Then, continuing the notation and hypothesis in

the proof of Proposition 5.1, it follows from (5.4) that l22 6 α(G) + 1 = δ(G) by

l22 > δ(G), we have l22 = δ(G). Hence, the two vertices valuated by negative signs of

a Fiedler vector x in Proposition 5.1 have degree δ(G). Furthermore, we have either

δ(G) − v(G) = 0 or δ(G) − v(G) = 1. For the latter case, since δ(G) − α(G) = 1,

we have v(G) = α(G). It follows from [6] that G can be written as a join of two

graphs G1 and G2 such that G1 is a disconnected graph of order n− v(G) and G2 is

a graph on v(G) vertices with α(G2) > 2v(G)− n.

Recall that λk(G) and µk(G) are kth-Laplacian and kth-adjacency eigenvalues in

the sequences of eigenvalues S(L(G)) and S(A(G)) in nonincreasing order, respec-

tively. We shall consider a connected r-regular graph G of order n with i(G) = 2.

Note that L(G) = rI − A(G). So α(G) = r − µ2(G), where µ2 < r, and any Fiedler

vector of G is an eigenvector of A(G) associated to µ2. Therefore we also use eigen-

vectors associated to the second largest eigenvalue of A(G) as Fiedler vectors without

distinction.

A matching in a graph G is a set of edges in G such that no two edges in the set

share a common vertex.

Proposition 5.3. Let G be a connected r-regular graph G of order n with

i(G) = 2. Then 0 < µ2(G) 6 1.

In particular, if µ2(G) = 1, then there is a matching of size at least 2 in G.

P r o o f. Consider α(G) = r − µ2(G) and δ(G) = r. It is straightforward from

Proposition 5.1 that 0 < µ2(G) 6 1. Suppose that µ2(G) = 1. Since i(G) = 2,

there exists x ∈ Rn such that (A(G)− µ2(G)I)x = 0 and i(x) = 2. We may assume

that x = (x1, . . . , xn)
⊤ ∈ Rn such that x1, x2 < 0, xj > 0 for j = 3, . . . , n. Let

A(G) = [aij ]n×n. By Proposition 5.1, we have a12 = a21 = 1. From the equations in

the first and second rows of (A(G) − µ2(G)I)x = 0,

−x1 + x2 +

n∑

j=3

a1jxj = 0 and x1 − x2 +

n∑

j=3

a2jxj = 0.
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Adding the two equations, we obtain

n∑

j=3

a1jxj +

n∑

j=3

a2jxj = 0.

Since xj > 0 for j = 3, . . . , n and A(G) > 0, it follows that
n∑

j=3

a1jxj =
n∑

j=3

a2jxj = 0

and xk = 0 for any vertex vk adjacent to v1 or v2. Furthermore, x1 = x2. Let

I = {k ∈ [n] : xk > 0}, where [n] = {1, . . . , n}, and let Ã be the corresponding

principal submatrix A[I] and x̃ be the corresponding subvector x[I]. Then Ãx̃ = x̃,

where x̃ > 0. Suppose that a subgraph H associated with Ã is connected. By the

Perron-Frobenius theorem, the eigenvalue 1 is the spectral radius of Ã and is simple.

It implies that H = K2. Since any vertex vk for k ∈ I is not adjacent to v1 and v2,

there are two edges, namely v1 ∼ v2, and the edge in H , such that they do not

share any vertex. Next, assume that H is disconnected. Since each component of H

is connected, H consists of pairwise nonadjacent edges. Therefore, G contains at

least 2 pairwise nonadjacent edges. �

It can be found in [3] that µ2(Kn1,n2,...,nk
) = 0, where max(n1, n2, . . . , nk) > 2,

µ2(Kn) = −1, and µ2(G) > 0 for all other connected graphs G. It is clear that

i(Kn) = i(Kn1,n2,...,nk
) = 1. Motivated by Proposition 5.3, we will consider all

regular graphs G with 0 < µ2(G) 6 1 and i(G) = 2. Since A(G) + A(G) = J − I,

it follows that 0 < µ2(G) 6 1 is equivalent to −2 6 µn(G) < −1. Moreover, any

eigenvector of A(G) associated to µn(G) is an eigenvector of A(G) associated to

µ2(G) and vice versa. It follows that the eigenspace associated to α(G) coincides

with the eigenspace associated to µn(G), which is the least adjacency eigenvalue ofG.

Furthermore, the eigenspace corresponding to µn(G) is the same as the eigenspace

corresponding to λ1(G). Recall that i∗λ(G) := min{iλ(x) : A(G)x = λx}. Therefore,

for a regular graph G, i(G) = i∗µ2
(G) = i∗µn

(G) = iλ1
(G).

Let G be a connected regular graph of order n with i(G) = 2. Then i∗µn
(G) = 2. It

can be easily checked that G is connected if and only if G is not expressed as a join of

graphs. Hence, the difference between the degree in G and µn(G), which is the largest

Laplacian eigenvalue of G, is less than n. Suppose that G is disconnected and Hj

is a component on mj vertices in G for j = 1, . . . , k for some k > 2. Then there

exist components Hj1 , . . . , Hjq for some 1 6 q 6 k such that µn(G) = µmji
(Hji)

for i = 1, . . . , q. It follows that i∗µmji

(Hji) > i∗µn
(G) for i = 1, . . . , q. Since the

eigenspace of G corresponding to µn is the direct sum of the eigenspaces associated

to µmji
of Hji for i = 1, . . . , q, the condition i∗µn

(G) = 2 implies that there exists an

i ∈ {1, . . . , q} such that i∗µmji

(Hji) = 2. Thus, we have the following result.
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Lemma 5.4. Let G be a connected regular graph of order n. Suppose that Hj

is a component on mj vertices in G for j = 1, . . . , k for some k > 1. We have

i(G) = 2 if and only if there exists a component Hj for j ∈ {1, . . . , k} such that

µmi
(Hi) > µmj

(Hj) for all 1 6 i 6 k and i∗µmj
(Hj) = 2.

Lemma 5.4 tells us that to understand a regular graph G with i(G) = 2, we should

investigate the components of the complement of G. Specifically, we may narrow our

focus to eigenvectors of the least adjacency eigenvalue −2 6 µn < −1 of a connected

r-regular graph H of order n, where r − µn < n, that is, H can not be written as

a join of graphs.

It appears in [2] that an r-regular graph H of order n with µn(H) > −2 is either

a line graph, a cocktail party graph or a regular exceptional graph. It is known that

every cocktail party graph is written as a join of graphs. So, all cocktail party graphs

are excluded.

Proposition 5.5 ([2]). A connected regular graph with least adjacency eigenvalue

greater than −2 is either a complete graph or an odd cycle.

Since i(Kn) = 1, Kn is ruled out. We will consider eigenvectors of the least

adjacency eigenvalue of a cycle Cn of length n. As stated in [1], for l = 0, . . . , n− 1,

2 cos(2πl/n) is an eigenvalue of A(Cn) associated to xl = [1, εl, . . . , ε(n−1)l]⊤, where

ε = e2πi/n. If n is even, then µn(Cn) is simple and xn/2 = [1,−1, 1, . . . , 1,−1]⊤

is a corresponding eigenvector. So, we have i∗µn
(Cn) = 1

2n for even n. Suppose

that n is odd. Then the algebraic multiplicity of µn is 2, and corresponding linearly

independent eigenvectors are x(n−1)/2 and x(n+1)/2. Let v = [v0, . . . , vn−1]
⊤ and

w = [w0, . . . , wn−1]
⊤, where vj = (−1)j cos(πj/n) and wj = (−1)j sin(πj/n) for

j = 0, . . . , n− 1, respectively. One can verify that

v =
x(n−1)/2 + x(n+1)/2

2
and w =

−x(n−1)/2 + x(n+1)/2

2i
.

Hence, in order to find i∗µn
(Cn) for odd n, we need to consider all possible linear

combinations of v and w.

Proposition 5.6. Let Cn be a cycle of length n. Then i∗µn
(Cn) = ⌊n

2 ⌋.

P r o o f. For an even cycle, it is clear that i∗µn
(Cn) = 1

2n. Suppose that n is

odd. Since every Fiedler vector of Cn is a linear combination of v and w, i
∗
µn

(Cn) =

min{iµn
(c1v + c2w) | c1, c2 ∈ R, (c1, c2) 6= (0, 0)}. Let u = c1v + c2w, where u =

[u0, . . . , un−1]
⊤. If c1 = 0 and c2 6= 0, then i∗µn

(u) = 1
2 (n− 1). Assume that c1 6= 0.

Note that for j = 0, . . . , n − 1, uj = c1vj + c2wj = (−1)j
√
c21 + c22 cos(πj/n − θ),

where tan(θ) = c2/c1. We have ujuj+1 = −(c21 + c22) cos(αj) cos(αj + π/n), where
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αj = πj/n − θ. One can check that ujuj+1 > 0 if and only if αj ∈ (0, 1
2π) and

αj + π/n ∈ (12π, π), or αj ∈ (π, 1
23π) and αj + π/n ∈ (123π, 2π). Suppose that uj 6= 0

for all j = 0, . . . , n− 1. Since α0, . . . , αn−1 ∈ [−θ,−θ + π), there exists at most one

index j in {0, . . . , n − 2} such that ujuj+1 > 0. Hence, since ujuj+1 > 0 implies

that uj and uj+1 have the same sign, a change of signs between uj and uj+1 for

j = 0, . . . , n−2 occurs at least (n−2) times. It follows that there are either 1
2 (n−1)

negative and 1
2 (n+1) positive signs in u or 1

2 (n−1) positive and 1
2 (n+1) negative signs

in u. Therefore i∗µn
(u) = 1

2 (n− 1). Assume that there exists j0 ∈ {0, . . . , n− 1} such

that uj = 0. Since α0, . . . , αn−1 ∈ [−θ,−θ+ π), the j0 is the only solution to uj = 0

for j = 0, . . . , n − 1. Consider uj0−1uj0+1 = (c21 + c22) cos(αj0−1) cos(αj0+1). Since

αj0−1 ∈ (0, 1
2π) and αj0+1 ∈ (12π, π), or αj0−1 ∈ (π, 1

23π) and αj0+1 ∈ (123π, 2π), we

obtain uj0−1uj0+1 < 0. Furthermore, ujuj+1 < 0 for j ∈ {0, . . . , n− 2} \ {j0 − 1, j0}.

Then there are 1
2 (n − 1) positive and negative signs, respectively, and one 0 in u.

Hence, i∗µn
(u) = 1

2 (n− 1). Therefore, we have the desired result. �

Corollary 5.6.1. Let Cn be a cycle of length n. Then i∗µn
(Cn) = 2 ⇔ n = 4, 5.

Lemma 5.7. Suppose that a connected regular graphH of order n has µn(H)>−2.

Then i∗µn
(H) = 2 if and only if H = C5.

P r o o f. It is immediately proved by Proposition 5.5 and Corollary 5.6.1. �

Let ei be a vector whose ith component is 1 and zeros elsewhere. The size is clear

from the text.

Definition 5.8 ([2]). For n > 1, let Dn be the set of vectors of the form ±ei±ej,

i < j.

Definition 5.9 ([2]). Let E8 be the set of vectors in R
8 consisting of the 112 vec-

tors in D8 together with the 128 vectors of the form ± 1
2e1 ±

1
2e2 ± . . .± 1

2e8, where

the number of positive coefficients is even.

Now, the regular line graphs and regular exceptional graphs with least adjacency

eigenvalue −2 are left to consider. These graphs are studied in [2] using Dn and E8,

the so-called root systems. Let H be a graph on n vertices with least adjacency

eigenvalue −2. The symmetric matrix 2I +A(H) is positive semi-definite of rank s,

say. Since 2I+A(H) is orthogonally diagonalizable, it follows that C⊤C = 2I+A(H),

where C is an s× n matrix of rank s. According to [2], the column vectors of C are

determined by Dn or E8.

Lemma 5.10. Let H be a connected regular graph with the least adjacency

eigenvalue −2. If H contains an induced 4-cycle, there exists an eigenvector x⊤ =

[1,−1, 1,−1, 0, . . . , 0] of A(H) associated with −2.
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P r o o f. Considering the root systems, there exists a real matrix C such that

C⊤C = 2I +A(H). Since H contains an induced 4-cycle, without loss of generality,

the leading principal 4 × 4 submatrix of A(H) is an adjacency matrix of C4. Let

the first four columns of C comprise the matrix C̃. Then C̃⊤C̃ = 2I + A(C4).

Since x̃⊤ = [1,−1, 1,−1] is an eigenvector of A(C4) associated to −2, we have that

(C̃x̃)⊤C̃x̃ = 0. C is real, so C̃x̃ = 0. Suppose that x⊤ = [1,−1, 1,−1, 0, . . . , 0]. Then

Cx = 0. Therefore, it follows that x is an eigenvector of A(H) associated to −2. �

Lemma 5.11. LetH be a connected r-regular graph of order n with µn(H) = −2,

where r+ 2 < n. Then i∗µn
(H) = 2 if and only if H contains a 4-cycle as an induced

subgraph.

P r o o f. Suppose that i∗µn
(H) = 2. Since r + 2 < n, the complement H of H is

connected and regular with µ2(H) = 1. Moreover, iµ2
(H) = i(H) = 2. By Propo-

sition 5.3, H contains two nonadjacent edges as an induced subgraph. Therefore H

has an induced subgraph C4.

Conversely, by Lemma 5.10, there exists an eigenvector x⊤ = [1,−1, 1,−1, 0, . . . , 0]

of A(H) associated to −2. So i∗µn
(H) 6 2. Since µn 6= r, any eigenvector associated

to µn must contain negative and positive components. So i
∗
µn

(H) > 0. Suppose that

i∗µn
(H) = 1. Since H is connected, it follows that i∗µn

(H) = iµ2
(H) = i(H) = 1.

SoH can be expressed as a join of two graphs by Theorem 2.7. This is a contradiction

to being a connected graph. Therefore i∗µn
(H) = 2. �

Here is our main result in this section regarding the characterization of all con-

nected regular graphs G with i(G) = 2.

Theorem 5.12. Let G be a connected r-regular graph of order n. Then i(G) = 2

if and only if there exists a component H of order m in G such that µn(G) =

µm(H) = α(G) − r − 1 and H satisfies either

(1) r − 1 < α(G) < r and H = C5, or

(2) α(G) = r− 1, H is not a cocktail party graph and H contains C4 as an induced

subgraph.

P r o o f. Combining Lemmas 5.4, 5.7 and 5.11, we obtain the desired result. �

Example 5.13. Let H be a strongly regular graph with least adjacency eigen-

value −2. According to Seidel’s classification [9], H is one of the following:

(1) the complete n-partite graph K2,...,2 for n > 2,

(2) the Petersen graph,

(3) the line graph of Kn for n > 5,

(4) the Cartesian product of two Kns for n > 3,
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(5) the Shrikhande graph,

(6) one of the three Chang graphs,

(7) the Clebsch graph,

(8) the Schläfli graph.

Note thatK2,...,2 is expressed as a join of graphs. The girth of the Petersen graph is 5.

It can be checked that H has an induced 4-cycle if and only if the line graph of H

contains C4 as an induced graph. This implies that any line graph of a complete

graph is C4-free. For the other graphs from (4) to (8), it can be checked that they

have C4 as an induced subgraph. Therefore, if a connected regular graph G has one

of graphs from (4) to (8) as a component in G, then i(G) = 2.
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