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Abstract. In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-
Ramanujan continued fraction R(g) and its reciprocal. We obtain the 5-dissections for
functions R(q)R(q?)? and R(q)%/R(¢?), which are essentially Ramanujan’s parameter and
its companion. Additionally, 5-dissections of the reciprocals of these two functions are
derived. These 5-dissection formulas imply that the coefficients in their series expansions
have periodic sign patterns with few exceptions.
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1. INTRODUCTION

Throughout the paper, we always assume that ¢ is a complex number such
that |¢| < 1. As a g-analog of the golden ratio, the Rogers-Ramanujan continued
fraction

1 ¢ ¢ ¢
Ra) =7 T4 T+ T+
was discovered by Rogers (see [18]) and later popularized by Ramanujan (see [15]). In
some contexts like [2], R(q) has an extra factor of ¢*/°. But in this paper, we will drop
this factor so that in its series expansion, all powers are nonnegative integers. The
Rogers-Ramanujan continued fraction is closely related to the Rogers-Ramanujan
identities, as indicated by their names. Before proceeding with our introduction, let
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us record some fairly standard notation:

(49)0 == [J(1 = Agh),
k=0
(A1;A27--- An?Q)oo = (A ) (A27 ) ---(AMQ)om

—~

<A17A27~~~7An.q> X A )OO(A27 )OO(Aqu)OO
Bl;BQM--;Bm, oo. BlyQ)oo(BQ;Q)oo---(Bm;q)oo.

The celebrated Rogers-Ramanujan identities (see [12], equations (17.4.2), (17.4.3))
state that

—~

2

o0 ?’L 1
(1.1) Z (1-9q) 1—q) (=) (6050

n=0
n +n 1

(12 g (1-4q) 1—q) a—q)

(02,4 4°) o

The functions G(¢q) and H(q) are known as the Rogers-Ramanujan functions. The
relation between G(q) and H(q) along with the continued fraction R(q) was initially
found by Rogers, see [18]:

4
(1.3) R(q)—M_<;2qug;q5> |

It was also recorded as Entry 38 (iii) in Chapter 16 of Ramanujan’s Notebook, see [15],
page 204.

Another two important functions in the theory of Rogers-Ramanujan continued
fraction are the so-called Ramanujan’s parameter

(1.4) k= qR(q)R(¢*)?

and its companion R(q)?/R(q?). These functions are extensively used in the modular
equations related to the Rogers-Ramanujan continued fraction. See, for instance,
Raghavan and Rangachari in [14], Kang in [13], Gugg in [10] and Cooper in [4];
see also Hirschhorn’s book [12], Chapter 40. Also, there is a general theory at
level 10 with Ramanujan’s parameter & involved, from which various series for 1/x
are discovered, see [5] or [6], Chapter 10 for a detailed discussion.

In 1968 or early 1969, Szekeres observed a surprising phenomenon that in the series
expansions of R(q) and its reciprocal R(q)~!, the signs of their coefficients are even-
tually periodic with period 5. This observation was later confirmed in the asymptotic
sense by Richmond and Szekeres, see [17]. In 1978, Andrews in [1] found some for-
mulas of Ramanujan in the Lost Notebook, and used these to give a complete proof
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of Szekeres’ observation. The study of this topic reached the climax in 1998, when
Hirschhorn in [11] discovered the following explicit 5-dissections of R(q) and R(q)™':

R(q) _ (q125; q125)oo << q307 q95 . q125> B q<q20’ q105 . q125>
(4% 4°) 0 g, ¢t - g%, ¢t -

55 70 5 120 45 80
+q? 7*°.q . 125 18 4 g . 125 4 q*.q . 125
q 35 9079 q 60 659 q 40 859
q,q 00 q 7,9 00 q 7,9 00

and

1 (¢"%¢P) (< %0, ¢% . 125) . (qﬁo,qﬁs). 125)
Rla) (@0 20, g1%5 14 . q q3o’q957q .
_ q7<Qiz7 qZZ : q125) - <q150, q112105 ; q125> _ q14(q1555’ q17100 ; q125) )
q 9 o q,9 o q 9 00
It is notable that Ramanujan indeed partially discovered the two 5-dissections in

terms of Lambert series in his Lost Notebook, see [16], page 50. But he left the final
punch, which can be done by the quintuple product identity, to Hirschhorn.

Considering the significance of dissection formulas in the study of sign patterns
in g-series expansions, a natural question is about the 5-dissections of Ramanujan’s
parameter, its companion and their reciprocals, since these functions also play an
important role in the theory of Rogers-Ramanujan continued fraction. In this paper,
we obtain the following 5-dissections.

Theorem 1.1. We have

W) R = (L s
a",¢", 4", ¢, ¢, 4", 4% q o

_q( ¢°,4°,4", 4%, ¢%,¢%, 4", ¢* 50)

q oo

10 10 10 20 30 40 40 40:9
44 5,97,97,4,9 7,4

of 44,6, 6%, 4%, 4%, ¢ 5
- (qlo,q207q207q20,q307q30,q30,q4o7q )Oo
(L )
74", ¢, ¢, ¢, ¢, 4% q -

¢’ < 1q(f 7 (]2507 q52,0q152,0q353,0q453,0q453,0q4540 ) q50>
"¢, ¢, ¢°,¢%°,¢*°, 4%, q .
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1 (4%,415,0%5,4%,¢%,¢%,¢%,¢® .,
R(OR(2)? (qm7 020, ¢, ¢20, ¢, 30, 30 440 )OO
@45, 4,415, ¢%,¢%,¢5,¢%
+ <q1o7 10 q10, 20 430 440 ;40 40 4 )OO
+2¢? ( q150, q1150, q1250, q22507 q2350, q33507 (134507 q4450 ; q50>
q 9 9,9 ,94,9,9,q 0o
. 3< g5, g%, 25, g% 5, gt 50>
(o]

g
q10, q107 q107 q20, q307 q40, q40, q40 ’

+_q4< 4", 4%, 4%, ¢*,¢*,¢%, ¢% 'q50>
qIO’ q207 q207 q20’ q307 q30’ q30’ q40 ’ -

Theorem 1.2. We have

wn R(q)? _ (_qsv_qm’_q107_q107_q15,_q15’_q15’_q20.q25)
R(¢?) 0,410, g1, ¢10. q15, 15 15, 420 ; .
(e
qa,9°,9°,9",97,97,97", 4 oo
+4¢° ( " —qlg —5q10170—q11057 _1;]1515_61227 —2%25, e ;q25)
q9,9,9 9 49,9 ,9,49 00
4 ( —g'0, _q1;)’ —5q155, _1(1015’1_5q226_g(2)5’ 2_Oqz57 g% ; q25>
q9,49,9°,9,9,97,9",q 00
(O
qa,9 7,9 7,99 ,97,4",94 oo
and

n ) (g )

q9,9,9°,9 ,9 94 ,q9"",q .
+ 2(] < _q5’ _qli: _5?1057)_({0 15 20 ,20

q9,49,49°,9,9,97,97,q

_4q7<_q57_q5,_q 207_q257_ 25 25 25

15 15 20 25 25
,—q¢ T, —q7, —q7", —q . 25

2 —q 0, —¢®,—¢* 4
@09, ¢, 41, g1, g1, g5, ¢2° g )Oo
caat (T s )
q9,9°,9 9,94 ,9",97,49
(S
qa,9 9,949,949 ,4,94
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As direct consequences of the 5-dissection formulas (1.5)—(1.8), the following sign

patterns hold.

Corollary 1.1. Define the sequences {a(n)}, {8(n)}, {v(n)} and {6(n)} by

[ee] [ee] 1
a(n)q” =R(q)R(¢*)?, n)q" = ,
; (n)q" =R(¢)R(¢*) ;B( 1" = RRER
> R(q)? . R(¢%)
n)q" = , o(n)g" =
nzzjov( 4 =R ;::0 (" = Z 72
For any n > 0, we have
>0 ifn=0,3,6,7,9 (mod 10),
(1.9) a(n)
<0 ifn=1,2,4,58 (mod 10),
>0 ifn=0,1,2,3,4 (mod 10),
(1.10) B(n) .
<0 ifn=5,6,7,89 (mod 10),

1.11 n
(L) 7n) <0 ifn=1,3 (mod 5),

>0 ifn=0,1 (mod 5),

(1.12) 5(n)
<0 ifn=2,3,4 (mod 5),

{> 0 ifn=0,2,4 (mod 5),

except for a(4) = f(5) = 4§(2) = 0.

2. LEMMAS

Let us record some necessary identities for our proofs. The first several are related
to the Rogers-Ramanujan functions G(q) and H(q).

Lemma 2.1. We have

2 2G(@)G(*)?

(2.1) G(¢)’H(¢*) + G(¢*)H(q) (% q10)2,
(2.2) G(q)*H(q*) — G(¢*)H(q)* = %v
G(@)*H(q*) — G(¢*)H(9)* _ qH(9)H(¢*)?

G
(2.3) G(@)?H(?) + G H(q)>  G(9)G(¢?)?

Proof. Identities (2.1)—(2.3) are (17.4.10)—(17.4.12) in [12], respectively. O
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The next lemma gives three modular equations related to Ramanujan’s parame-
ter k as in (1.4).

Lemma 2.2. We have

R(g)*> 1-k
24 R@)  1+k
—q)? 1— 4k —k?
s o aue
Y(@)?  1+kE—Fk
(26) WEE Tk

Here p(q) and ¥(q) are two of Ramanujan’s classical theta functions defined by

NS (@*:¢%)% e n(n+1)/2 _ (% 4°)%
o= 3 4" = GoL@ez Y9 '7,;(1 (@)

n=-—oo

Proof. The identity (2.4) appears in [2], equation (1.9.29). For (2.5) and (2.6),
see [2], Entry 1.8.2 (i) and (ii), respectively. See also [12], Chapters 40 and 41. [

Further, we need the following identity involving ¢(—q).

Lemma 2.3. We have

49(; 0)o (¢"% ¢'°)3
27 _q2_ _q52:_ OO.
@7) #l=a)" ~o(=0) (4% 6%) oo (4°: 4% oo
Proof. The identity (2.7) follows from [12], equation (34.1.21). O

Finally, we require the following 5-dissections.

Lemma 2.4. We have

G(q2)2 _ 5 1
(2.8) CHQ? G(¢°)G(¢")? — ¢H (¢°)G(¢"°)?
- 2¢°H(¢°)G(¢"°)H(q"") + ¢*G(¢°)H(¢"°)?,
H(q2)2 _ 5 1 1
(2.9) G H D H(¢")G(¢"%)* — 2¢G(¢°)G(¢")H (¢"°)
+¢°G(°)H(¢")* + ¢"H(¢")H (¢"?)?,
2
210) g = GO + G H (A )Gl)
+*G(¢°)*H(q") + ¢*H(¢")*H(¢"),
(2.11) Hlg) 5 =G(¢°)’G(¢") + °H(¢°)*G(¢")

G(q?)H(q?)
+2¢°G(¢°)H(¢°)H (¢"°) — ¢"H(¢°)*H (q"?).
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Proof. The identities (2.8) and (2.9) follow from Theorems 1.1 and 1.2 in [7]
together with (1.1) and (1.2), respectively. For (2.10) and (2.11), we make use of
Theorems 1.1 and 1.2 in [20]. O

3. AUXILIARY IDENTITIES
We shall establish two auxiliary identities that are also of independent interest.

Lemma 3.1. We have

(3.1) G(q)*H(q%)* — H(q)*G(¢*)* + 4G(q)*H(q)*G(¢*) H(¢?)
_ He"%4")% G H(9)?
(@®¢°)4  G(¢®)?H(q?)?

Proof. We first prove

4q%6%)2,(4"%¢") o

42 RaP R @)k
To see this, we obtain from (2.4) that
2 2 2
9 R meToE TR TR
Further, from (2.5) we find that
o(—q)? B 1—4k—k? 4k
o(—¢°)? 1—k2 1— k2
Hence,
(3.4) (0~ o) 496 0050 °)5
1— k2 p(—q°)? (4% 4%)o0 (4% 4°)%

where (2.7) is utilized. We arrive at (3.2) by substituting (2.6) and (3.4) into (3.3).
Finally, we notice that

Substituting (3.2) into the above yields the desired identity. O
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Lemma 3.2. We have

(35) H(0)'G(*)? — G(@)*H(¢*)? + G(q)*H(9)*G(¢*)H(¢*) =

Proof. We first prove

(3.6) -

_1—k;_1+k:+1_1—4k;—k2
R(¢?) R(q)? 14k 11—k 1—k2

We arrive at the desired identity by substituting (3.6) into the above. O

4. PROOFS

4.1. Idea behind the proofs. Before presenting our proofs, it appears necessary
to explain the idea behind them.

oo
> Guessing the 5-dissection. Given a formal power series > a,q", we may start by

n= oo

computing, for example, the first 1000 terms of each m-dissection slice > apn+1g™
n=0

(with 0 <1 < m —1). If the slice has a nice product form, then such a g-product

could be induced through the prodmake command of Garvan’s Maple pack-
age gseries, see [9]. In other words, we can take advantage of the package
gseries to conjecture the 5-dissections of R(q)R(¢%)?, 1/R(q)R(¢*)?, R(q)?/R(¢?)
and R(q%)/R(q)*.

In a recent work, Frye and Garvan in [8] further implemented another two
Maple packages thetaids and ramarobinsids to provide automatic proofs of
theta-function identities with the help of modular forms. It should be admitted
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that the above conjectural 5-dissections could be shown automatically through the
package thetaids. The interested reader may consult [21] for a recent application
of this computer-assisted approach.

On the other hand, elementary proof of dissection formulas often has its own
research interest. In this section, we will present such proofs of (1.5)—(1.8) in which
only identities involving the Rogers-Ramanujan functions G(q) and H(q) will be
utilized. In particular, the trick of substitution of one which will be discussed
below makes our proof less routine.

Constructing an auziliary product. To start the proofs, we first need to reformulate

R(q)R(¢*)%, 1/R(q)R(¢*)?, R(q)*/R(¢*) and R(q*)/R(q)* as

ae (AP P)(0:,¢% ¢  H()? G(g%)?
RORW) = (S i o~ Gt GG
1 (@054’ a0 _  G(e?)? / H(q*)?
R(QR(¢*)?  (¢%,¢%¢°)e(0,¢% ¢'0)%  G(q)H(q)?/ G(q)?H(q)’
R(@)? _ (¢.4%¢°)2%(a"¢% ) H(q)? G(g)?
R(@®)  (¢%¢%0°)% (% %%~  G(¢>)H(¢*)?/ G(¢?)2H(¢*)’
R(®) _ (%6 ¢")% (%0 G0 / H(q)?
R(g)*  (4,9%¢°)%(¢" ¢%¢"%)  G(¢*)*H(¢?)/ G(¢*)H(q?)?

As long as we have conjectured the 5-dissections through Garvan’s Maple package
gseries, then in light of the above, it suffices to prove

Dissection = Numerator/Denominator,

or
Denominator x Dissection = Numerator,

where the “Numerator” and “Denominator” come from the right-hand sides of the
above reformulations. Now we multiply by a simple extra term on both sides of
the above,

Denominator x Dissection x [extra term] = Numerator X [extra term).

Our auxiliary products then come from here. More precisely, these auxiliary prod-
ucts have the form
H* = H*l X H*Q

such that II,; = Denominator by Lemma 2.4 and II,, = Dissection X [extra term)]
by (2.1) and (2.2). Therefore, it suffices to verify

II, = Numerator x [extra term].
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> Substitution of one. To complete the proofs, we want to highlight a trick which we
call the substitution of one. We first expand the auxiliary product II, = I1.q x I1,2
and collect terms according to the power of g,

H* - 2*1 + q52*2

such that in both 3,1 and X2, the powers of g are up to ¢*. We then see from (2.3)
that

()G( 02 G(¢°)*H(¢"°) — H(¢°)*G(q")
H

iy H@ AR G P ) T

Hence, we may rewrite II, as

G(¢°)G(q"")? G(q5)2H(q10)—H(q5)2G(q10))
- .

Il = Bu1 4 ¢° Tz X ( H(¢)H (q'0)2 ' G(q®)2H (q10) +

Expanding and then factoring the above, we arrive at an expression, where either
Lemma 3.1 or Lemma 3.2 could be applied. Finally, we deduce II, = Numerator x
[extra term| through Lemma 2.4.

Remark 4.1. It is notable that the trick of substitution of one has also been
used in [3], [19]. However, in those work, 1 is substituted by different expressions
involving the Rogers-Ramanujan functions G(q) and H(g) other than (4.1).

We will use (1.5) to present a detailed proof while the rest could be shown analo-

gously.
4.2. Proof of (1.5). We define the auxiliary product by Iy := IIy; x I35, where

Iy = G(¢°)G(q'")* = ¢H (¢°)G(¢")* = 2¢°H(¢*)G(q") H (¢"°) + " G(¢*) H (¢"°)?

and
12 =4G(¢°)*H(¢°)*G(¢"°)* H(¢")?
—2¢G(¢°)H(¢°)*G(¢"*)? H(¢")* - (G(¢*)*H(¢"°) + H(¢*)*G(¢""))
- 2¢°G(¢°)*H(¢")G(¢"*)H(¢")" - (G(¢°)*H (¢") + H(¢°)*G(¢"))
+4¢°G(¢°)H(¢°)?G(¢")H(¢")" - (G(¢°)*H (") + H(¢°)*G(¢""))
+q"H(q")H(q")* - (
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Then by (2.8), we have

_ G(?)?
(42 M = G H@?
Also, in light of (2.1) and (2.2),
(4.3) Thio =4G(¢°)* H(¢°)?
X<G(q10)3H(q10)3 B (JG( 10)4H( 0)3 qQG(q10)3H(q10)4
G(g°)? G(@)2H (@) (¢ ¢)%  G(®)H(°)(¢%5;¢)%
2¢°G(¢"°)*H (¢"%)* ¢°G(4"%) (qlo)6

2
G PH@) @ )% | Gl PH ) ([ 400 )

On the other hand, we expand the product in II; and rearrange terms so that
H1 = 211 + q5212 where

S = 4G(e°V H (¢ Ol H ()
—2¢(3G(¢°)?H(¢°)* G(¢"*)>H(¢")* + G(¢°)* H(¢°)*G(¢"*)* H (¢"*)*)
+2¢*(G(*)H(¢°)°G(¢")° H(¢")® — G(¢°)° H(¢°)G(¢"°)* H(¢"")°)
—2¢*(G(¢°)*H(¢®)* G(¢"")* H(q"")* = 3G(¢°)* H(¢")*G(¢"*)> H(¢"")°)
" (G(¢°)H(¢*)°G(¢"*) H(¢"")* —4G(¢*)* H(¢*)*G(¢")* H (¢"°)°
- G(¢°)’H(¢")G(¢"")?H(¢"")°)
and

Sip = (H( )8G(q") H(q")* + 2G(¢°)* H(¢°) G(q"°)* H (")’
G(¢°) H(¢*)*G(¢"*)?H (¢'")°)
— 2q(4G(q5)H(q5) G(¢")*H(¢")° +5G(¢°)° H(¢"°)*G(¢"°)* H(¢"")°
G(¢°)’H(q”)G(q" ) H (q")")
+2¢*(H(¢°)°G(¢"°)*H(¢"°)° + 2G(¢°)* H(¢*) ' G(¢"*)?H (¢"°)°
G(¢*)* H(¢°)*G(¢"*)H (¢"*)")
- (G(°)H (") G(¢"°)’H(¢")® — G(¢°)’H(¢*)H (¢"°)®).

By (4.1), we rewrite II; as
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Applying (3.1) to the second factor and (2.9) to the third factor, we find that

_ 4@ )% . 5\4 77 (5)3 H(q*)?
. =g OO Gy

Therefore, (1.5) follows (after simplification) from (4.2), (4.3) and (4.4) together
with the fact that
(4°)

2\2 __
R(q)R(¢")* = G(q>2H(q>/ Gla)H

4.3. The remaining dissections. We list the required auxiliary products in the
proofs of (1.6), (1.7) and (1.8). The calculations are similar to those for (1.5) and
therefore the details are omitted.

> Dissection (1.6). We require the auxiliary product Iy = Il x IIag, where
2y = H(¢")G(¢"")* = 24G(q")G(¢" ) H (¢"°) + ¢°G(q")H(¢'%)* + ¢*H(¢") H (¢"°)?

and

99 = 4G(q5)4H(q5)G(q10)3H(q10)3
+qG(q°)G(q")*H(
+4¢°G(¢°)*H(q
+2¢°G(q 5) (q

> Dissection (1.7). We require the auxiliary product II3 = II3; x II32, where
51 = G(¢°)*G(¢") +2¢G(¢°)H(¢")G(¢") + ¢*G(¢°)*H (¢"°) + ¢*H(¢")? H (¢"°)

and

a2 = G(¢°)*H(¢°)°G(¢")’
—qG(@°H(¢°)*G(¢")H(¢") - (G(a°)’ H(¢") + H(¢")*G(¢"?))
+2¢°G(¢°)?H (") G (¢ ) H(¢"") - (G(¢°)?H (¢"°) + H(4a°)*G(¢™))
~¢°G(¢")H ()’ H(q") - (G(¢°)*H(q"°) + H(¢*)*G(¢""))?
+q'G(¢*)?H(¢") H(¢"°)* - (G(¢°)*H(¢") + H(¢*)*G(¢"?)).-
> Dissection (1.8). We require the auxiliary product 11y = Iy x 42, where

Iy = G(¢°)*G(¢") + *H(¢°)*G(¢"°) + 2¢°G(¢°)H (") H (¢"°) — ¢*H(¢°)* H (¢"°)
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and
iy = G(¢°)° H(q")*G(¢'*) H (")
+4qG(°)’ H(¢*)*G(q")H (¢") - (G(¢°)*H(¢") + H(¢")*G(¢""))
- ¢*G(¢°)?H(¢°)*H(¢"") - (G(¢°)*H(¢"") + H(¢*)*G(¢""))
x (G(¢°)*H(¢") — H(¢")*G(¢"))
—-2¢°G(¢°)*H(¢®)’H(¢"*)? - (G(¢°)*H(¢"%) + H(¢°)*G(¢"?))
- ¢'G(¢")*H (") H(¢"")* - (G(¢°)*H (¢"°) + H(¢°)*G(¢"")).
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