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DIVISION SCHEMES UNDER UNCERTAINTY OF CLAIMS

Xianghui Li, Yang Li and Wei Zheng

In some economic or social division problems, we may encounter uncertainty of claims, that
is, a certain amount of estate has to be divided among some claimants who have individual
claims on the estate, and the corresponding claim of each claimant can vary within a closed
interval or fuzzy interval. In this paper, we classify the division problems under uncertainty of
claims into three subclasses and present several division schemes from the perspective of axiom-
atizations, which are consistent with the classical bankruptcy rules in particular cases. When
claims of claimants have fuzzy interval uncertainty, we settle such type of division problems by
turning them into division problems under interval uncertainty.

Keywords: division scheme, bankruptcy, interval, fuzzy

Classification: 91A12,03B52

1. INTRODUCTION

The classical bankruptcy problem is described as follows: Several individuals hold claims
on a finite resource and the total amount is not enough to fulfill all of the claims. We
take the example of Aumann and Maschler [1]: a man dies, leaving debts d1, d2, . . . , dn
totalling more than his estate E. The key issue is how to distribute the estate to the
claimants. For this kind of bankruptcy problem, it always requires an exact knowledge
of each term, and has attracted the attention of many scholars, such as Elishakoff [6,
7]. However, in the realistic bankruptcy problems, the debts of claimants are in a
possible range and can only be described using some fuzzy words, such as “between” and
“around”. At this time, the classical bankruptcy rules for crisp bankruptcy problems,
such as the CGC rule introduced in Aumann and Maschler [1], are not suitable for
solving this kind of uncertain division problems. Based on this, Yager and Kreinovich
[16] investigated the uncertainty in the division problems, in which the possible fair
proportion of the total estate assigned to each claimant is an interval. They introduced
some natural fair properties, which chooses the unique “weights” from these intervals.
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1 Branzei et al. [3] concentrated on the division problems under interval uncertainty of
claims. They deleted the uncertainty of claims by compromising the lower and upper
bounds of the claim intervals, and then considered the deterministic division problems
with compromise claims.2

This paper deals with an extension the classical bankruptcy problem, that we call
division problems under uncertainty of claims. Here we mainly pay attention to the
interval and fuzzy interval uncertainty of claims, i. e., the claims are intervals or fuzzy in-
tervals. We divide division problems under interval uncertainty of claims (ID-problems
for short) into three types: normal interval division problems, strict interval division
problems, and trivial interval division problems. For each type, we introduce the corre-
sponding division schemes, in the similar spirit of the classical bankruptcy rules. When
the claims have the forms of fuzzy intervals, we transform such type of division problems
(FID-problems for short) into ID-problems and then give the corresponding division
rules.

It is important to consider division problems with claims under uncertainty, because
in various disputes including inheritance, claimants face uncertainty with regard to their
effective rights and as a result, individual claims can be expressed in the form of intervals
or fuzzy intervals. In such situations, our model offers flexibility to tackle with resource
conflict under uncertainty. To get some insight into applications, interpretations and
extensions for division problems under uncertainty, the readers can refer to a wide range
of papers such as cooperative interval games [2] and stochastic bankruptcy games [8].

The rest of this paper is organized as follows. In Section 2, we briefly review the
classical bankruptcy problems. In Section 3, we divide the division problems under
interval uncertainty of claims into three subclasses, and propose and characterize the
corresponding division schemes. Section 4 further discusses the division schemes for
division problems under fuzzy interval uncertainty of claims. Section 5 concludes.

2. CLASSICAL BANKRUPTCY PROBLEMS AND BANKRUPTCY GAMES

Bankruptcy problems originate from the situations that several agents claim portions of
a certain amount of estate and the sum of claims is larger than the total estate. The
classical bankruptcy problem can be modeled by a triple (N,E; c), written as (E; c) for
convenience, where E is the non-negative total estate and c = (c1, c2, . . . , cn) is the
vector of claims with ci (∀i ∈ N) being the claim of i.

A cooperative game is an ordered pair (N, v), where N is a set of players and v : 2N →
R is a real-valued function satisying v(∅) = 0. The subset S of N is called a coalition
and v(S) the worth of coalition S. The number of elements in S is denoted to |S|. A
cooperative game is said to be a convex game if for any S, T ⊆ N , v(S∪T )+v(S∩T ) ≥
v(S) + v(T ).

An imputation of a game (N, v) is an n-dimensional vector x = (xi)i∈N ∈ RN+ ,
satisfying

∑
i∈N xi = v(N) and xi ≥ v({i}). A solution concept for a cooperative game

is a mapping that assigns to every game a set of payoff vectors. A single-valued solution

1The author focused on division problems under the condition that 1 is between the sum of lower
and upper bounds of weights of all claimants.

2In this paper, the estate is limited to be less than the sum of all lower bounds of claims.
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is called a value. The well-known Shapley value for cooperative games is defined to be

Shi(N, v) =
∑

S⊆N ;i∈S

(|N | − |S|)!(|S| − 1)!

|N |!
[v(S)− v(S\{i})], for all i ∈ N.

The nucleolus (see Schmeidler [13]) of a game is the set of imputations that minimize the
complaint function θ(x) = v(S)−

∑
i∈S xi in the lexicographic order over the nonempty

compact convex imputation set. The another one-point solution concept, called τ value
(see Tijs [15]), is defined based on the idea of an upper bound for the core and the
excesses with respect to this upper bound.

Any bankruptcy problem (E; c) generates a corresponding cooperative game (N, vE;c),
called the bankruptcy game, whose characteristic form is given by

vE;c(S) = max

0, E −
∑
i∈N\S

ci

 , for any S ⊆ N. (1)

For classical bankruptcy problems, the adjusted proportional rule (AP-rule) [4], con-
tested garment consistent rule (CGC-rule) [1] and recursive completion rule (RC-rule)
[11] are known as specific bankruptcy rules. Curiel et al. [4] showed that these three
rules yield the τ value, nucleolus and Shapley value of the corresponding bankruptcy
game (N, vE;c) successively.

3. ID-PROBLEM

Let I(R) be the set of all closed and bounded intervals in R. We denote by I(R)n the
set of all n-dimensional vectors with components in I(R). Suppose I, J ∈ I(R), with
I = [I−, I+], J = [J−, J+] and k ∈ R+. The interval operations are defined by

I + J = [I− + J−, I+ + J+]
kI = [kI−, kI+].

We say that I ≥ J if I− ≥ J− and I+ ≥ J+. When I ≥ J and J ≥ I, we denote
I = J . Specially, 0 = [0, 0].

Let N be a finite set of claimants who face uncertainty regarding his claim. E is the
total estate that will be divided among N . We denote the claim vector by d ∈ I(R)n

with di = [d−i , d
+
i ] ≥ 0 (∀i ∈ N) meaning the claim interval of claimant i. A division

problem under interval uncertainty of claims (ID-problem) can be defined by a triple
(N,E; d), often abbreviated to (E; d). Particularly, when d−i = d+i , the claim interval di
degenerates into a real number d−i (d+i ). Generally, we interpret d−i as the lower bound
of claim or the least demand of claimant i, similarly d+i the upper bound of claim or the
utmost expectation of claimant i. For any S ⊆ N , we use d+(S) and d−(S) instead of∑
i∈S d

+
i and

∑
i∈S d

−
i .

Definition 3.1. A division scheme for any ID-problem is a nonnegative mapping g that
assigns to each ID-problem (E; d) a payoff vector g(E; d) ∈ Rn+ and satisfies efficiency
if d+(N) ≥ E, i. e., ∑

i∈N
gi(E; d) = E.
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The division scheme prescribes somehow a specific division of the total estate E among
n claimants. It requires that when the sum of utmost expectations of all claimants is
not less than E, the sum of payoff to any claimant is equal to E. Here we divide the
ID-problems into three types based on the relationship between E and d.

Definition 3.2. An ID-problem (E; d) is said to be a normal interval division problem
(NID-problem) if

d−(N) ≤ E ≤ d+(N).

Definition 3.3. An ID-problem (E; d) is said to be a strict interval division problem
(SID-problem) if

E < d−(N) ≤ d+(N).

Definition 3.4. An ID-problem (E; d) is said to be a trivial interval division problem
(TID-problem) if

d−(N) ≤ d+(N) < E.

In the next three subsections, we treat the NID-problem, SID-problem and TID-
problem respectively, in each one of which the specific division schemes are provided and
axiomatized.

Remark 3.5. With regard to the TID-problem, it is clear that each claimant can
receive his utmost expectation. As a matter of fact, in the following context we only need
to place emphasis on the NID-problem. Because any SID-problem can be converted
to an NID-problem by making a compromise to the least demands of claimants.

3.1. NID-problem

In this subsection, we tacitly treat (E; d) as the NID-problem.

Definition 3.6. Any NID-problem (E; d) generates a corresponding cooperative game
(N, vE;d) with the characteristic function form

vE;d(S) = max{d−(S), E − d+(N\S)}, for any S ⊆ N. (2)

We say an NID-problem (E; d) is lower-normalized if its corresponding cooperative
game (N, vE;d) satisfies vE;d({i}) = d−i (∀i ∈ N) and simple if the utmost expectation

of any claimant is not greater than the total estate, i. e., d+i ≤ E (∀i ∈ N).

Definition 3.7. For any NID-problem (E; d), the minimum right of claimant i is de-
fined as the surplus of the total estate after others fulfill their utmost expectations on
the understanding that it exceeds his own least demand, i. e., for all i ∈ N

mi = max{d−i , E − d
+(N\{i})}.
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Similarly, the maximum right of claimant i is defined as the left part of the estate after
others meet their least demands on the understanding that it is less than his own utmost
expectation, i. e., for all i ∈ N

Mi = min{d+i , E − d
−(N\{i})}.

Conveniently, we denote m(S) =
∑
i∈Smi and M(S) =

∑
i∈SMi for all S ⊆ N .

Proposition 3.8. For any NID-problem (E; d), the following statements hold:

1. d−i ≤ mi ≤Mi ≤ d+i , for all i ∈ N ,

2. vE;d(S) = max{m(S), E −M(N\S)}, for all S ⊆ N .

P r o o f . (1) Note that mi = max{d−i , E − d+(N\{i})} = vE;d({i}) and vE;d(N) −
vE;d(N\{i}) = E −max{d−(N\{i}), E − d+i } = min{d+i , E − d−(N\{i})} = Mi. Then,

it follows from the convexity3 of game (N, vE;d) that

d−i ≤ mi ≤Mi ≤ d+i .

(2) Put another cooperative game w with the characteristic function

w(S) = max{m(S), E −M(N\S)}, for any S ⊆ N. (3)

On one hand, since m(S) ≥ d−(S) and E −M(N\S) ≥ E − d+(N\S), we easily have
w(S) ≥ vE;d(S). On the other hand, by the convexity of (N, vE;d), we derive thatm(S) =∑
i∈S vE;d({i}) ≤ vE;d(S) and E−M(N\S) = vE;d(N)−

∑
i∈N\S (vE;d(N)− vE;d(N\{i}))

≤ vE;d(N)− (vE;d(N)− vE;d(S)) = vE;d(S) for all S ⊆ N . Further, it follows from (2)
and (3) that w(S) ≤ vE;d(S). Hence, it concludes that

w(S) = vE;d(S).

�

A division scheme what we want to find here is a function g which maps every NID-
problem into a vector g(E; d) ∈ Rn with the ith component varying from the least
demand to the utmost expectation of claimant i, i. e., for each i ∈ N ,

d−i ≤ gi(E; d) ≤ d+i ,

and simultaneously satisfies that

g1(E; d) + · · ·+ gn(E; d) = E.

Naturally, we expect that this mapping has the following properties.

3The convexity of (N, vE;d) is immediately obtained because Curiel [4] showed that the bankruptcy

game (1) is a convex game.



Division schemes for under uncertainty of claims 845

• Equal treatment: if there exists i, j ∈ N such that di = dj , then gi(E; d) =
gj(E; d).

Equal treatment property indicates that any two claimants with equal claims receive
equal outcome.

• Invariance under truncated claim:

gi(E; d) = gi(E; [d−j ,min{d+j , E − d
−(N\{j})}]j∈N )

for all i ∈ N .

This property means that truncating the upper bounds to ensure that other claimants
obtain their lower bounds of claims does not influence the final division.

Proposition 3.9. The corresponding cooperative game (N, vE;d) of each NID-problem

(E; d) coincides with its truncated form, i. e.,

vE;d = vE;[d−j ,min{d+j ,E−d−(N\{j})}]j∈N
.

P r o o f . Let dtj = [d−j ,min{d+j , E−d−(N\{j})}], it suffices to show vE;d(S) = vE;dt(S)

for all S ⊆ N , that is, max{d−(S), E − d+(N\S)} = max{d−(S), E − dt+(N\S)}. We
prove it in two cases as follows.

Case 1: if d+i ≤ E − d−(N\{i}) for any i ∈ N\S, we have that d+ = dt
+

for each

i ∈ N\S. Then max{d−(S), E − d+(N\S)} = max{d−(S), E − dt+(N\S)}.

Case 2: if there exists j ∈ N\S such that d+j ≥ E − d−(N\{j}), namely d+j − d
−
j >

E − d−(N), we deduce that E − dt+(N\S) = E −
∑
i∈N\S min{d+i , E − d−(N\{i})} =

E − d−(N\S)−
∑
i∈N\S min{d+i − d

−
i , E − d−(N)} ≤ E − d−(N\S)− (E − d−(N)) =

d−(S). Therefore, E − d+(N\S) ≤ E − dt+(N\S) ≤ d−(S) and then max{d−(S), E −
d+(N\S)} = max{d−(S), E − dt+(N\S)} = d−(S). �

• Composition of minimum right:
for all i ∈ N , gi(E; d) = mi + gi(E −m(N); [0, d+j −mj ]j∈N ).

This property implies that each claimant receives at least his minimum right, and also
the division result does not change even if each claimant takes his minimum right firstly.

• Divisibility of claims: for any lower-normalized and simple NID-problem (E; d), if
claimant i is replaced by several claimants i1, i2, . . . , ik with claims di1 , di2 , . . . , dik
satisfying di = di1 + di2 + · · ·+ dik , then for all j ∈ N\{i},

gj(E; d) = gj(E; d1, . . . , di−1, di1 , di2 , . . . , dik , di+1, . . . , dn).

This property says that for any lower-normalized and simpleNID-problem, each claimant
has no incentive to split into several claimants whose claims sum up to his initial claim.
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• I-bilateral consistency: for any (E; d) and S ⊆ N with |S| = 2, gi(N,E; d) =
gi(S,ES ; dS) (∀i ∈ S), where ES =

∑
j∈S gj(N,E; d) and dS = (dj)j∈S .

I-bilateral consistency property associates a given division problem to its subproblems,
that any two claimants become new groups and the amounts accumulated in the original
problem become the new amount to be divided.

• Two-person minimal share property: if N = {i, j} with i 6= j, then gi(N,E; d) ≥
1
2 min{d−i + d+i , E + d−i − d

−
j }.

Two-person minimal share property guarantees a minimal share to each claimant in the
two-person NID-problem. Assume N = {i, j}, this property says that claimant i will
receive at least (d+i − d

−
i )/2 when E − d−j ≥ d+i , otherwise at least (E − d−i − d

−
j )/2

after he takes d−i firstly.

Definition 3.10. Let g be a division scheme of an NID-problem (E; d). We define the
dual division scheme of g, denoted by g∗(E; d), to be

g∗(E; d) = d− + d+ − g(d+(N) + d−(N)− E; d).

• Self-duality: for any (E; d), g(E; d) = g∗(E; d).

The self-duality property requires that the resulting reward to any claimant in the orig-
inal problem (E; d), is equal to the sum of his least demand and his loss with respect
to his utmost expectation in the (d+(N) + d−(N) − E; d) problem. The new estate
d+(N) +d−(N)−E represents the total amount of unfulfilled utmost expectations after
they all get their least demands.

Generally, we automatically suppose the division scheme g is continuous, that is, the
small change in the endpoints d−i or d+i will not dramatically affect the final division
result.

Definition 3.11. For any NID-problem (E; d), the adjusted utmost expectation d∗i
(∀i ∈ N) is defined as the reduced utmost expectation with respect to the remaining
estate E −m(N) after all claimants receive their minimum rights, i. e.,

d∗i = min{d+i −mi, E −m(N)}.

Theorem 3.12. For any NID-problem (E; d), there exists one unique division scheme
g, called the AP -like division scheme, satisfying equal treatment, invariance under trun-
cated claim, composition of minimum right and divisibility of claims. And the general
formula is:

g(E; d) = m+ (E −m(N)) d∗∑
i∈N

d∗i
, if E > m(N);

= m, if E = m(N),
(4)

where d∗ = (d∗1, d
∗
2, . . . , d

∗
n).
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P r o o f . For any NID-problem (E; d), let g be its division scheme possessing the four
properties in Theorem 3.12. It is clear that g(E; d) = m when E = m(N). In the
following, we only need to verify that (4) is true when E > m(N).

If E > m(N), it follows from composition of minimum right and invariance under
truncated claim that

gi(E; d) = mi + gi(E −m(N); [0, d+j −mj ]j∈N )

= mi + gi(E −m(N); [0,min{d+j −mj , E −m(N)}]j∈N )

= mi + gi(E −m(N); [0, d∗j ]j∈N ).

Next we begin to prove that the division scheme g(E; d) can be described as the formula
(4). To prove it, let us first start by showing that this is true for all claims with rational
endpoints. If all endpoints of claims di = [d−i , d

+
i ] (∀i ∈ N) are rational, so d∗i for all

i ∈ N . We denote this common denominator of d∗i for all i ∈ N by C, then each d∗i
has the form αi/C where αi is a non-negative integer (αi = C · d∗i ). Obviously, from
[0, d∗i ] = [0, αi/C] = αi · [0, 1/C], we know that each interval [0, d∗i ] can be written as

a sum of αi intervals [0, 1/C]. Let (E − (m(N)); d
′′
) be the division problem which is

obtained from (E −m(N); [0, d∗j ]j∈N ) by replacing all intervals [0, d∗i ] for all i ∈ N with

αi intervals [0, 1/C]. Denote the same value that (E − (m(N)); d
′′
) maps all intervals

[0, 1
C ] into by β, by the equal treatment property we can get the mapping

[0, 1/C], . . . , [0, 1/C]︸ ︷︷ ︸
α1

, . . . , [0, 1/C], . . . , [0, 1/C]︸ ︷︷ ︸
αn

→ β, . . . , β︸ ︷︷ ︸
α1

, . . . , β, . . . , β︸ ︷︷ ︸
αn

.

Then by efficiency of division scheme, we have the equation α1·β+· · ·+αn·β = E−m(N),
so β = (E − m(N))/

∑
i∈N αi. Furthermore, we get gi(E − m(N); [0, d∗j ]j∈N ) = αi ·

β = (E −m(N)) αi∑
i∈N αi

by the property of divisibility of claims in the NID-problem

(E − m(N); [0, d∗j ]j∈N ). Finally, we obtain the resulting division scheme gi(E; d) =

mi + (E −m(N)) αi∑
i∈N αi

= mi + (E −m(N))
d∗i∑

i∈N d∗i
.

Now, the theorem is verified true for all claim intervals with rational endpoints. Since
the mapping g is continuous and every interval can be expressed as a limit of intervals
with rational endpoints, it concludes that the formula (4) is true for all claim intervals.

�

The AP -like division scheme for any NID-problem is carried out as follows: each
claimant i first receives his minimum right mi (∀i ∈ N), and then a new classical
bankruptcy problem is obtained with the estate E −m(N) and claim vector d∗; after
that, this classical bankruptcy problem (E−m(N); d∗) is solved by means of proportional
division, i. e., dividing the remaining estate E−m(N) among the claimants proportional
to their adjusted utmost expectations d∗i (∀i ∈ N).



848 X. LI, Y. LI AND W. ZHENG

Proposition 3.13. The AP -like division scheme for any NID-problem (E; d) has the
expression form

g(E; d) = d− + f(E − d−(N); d+ − d−),

where f corresponds to the AP rule for classical bankruptcy problems.

P r o o f . When E = m(N), we easily have

d− + f(E − d−(N); d+ − d−) = m = g(E; d).

When E > m(N), for all i ∈ N ,

fi(E − d−(N); d+ − d−)

=APi(E − d−(N); d+ − d−)

=m′i + (E − d−(N)−m′(N))
d∗i
′∑

i∈N
d∗i
′ ,

where m′i = max{0, E − d−(N) −
∑
j∈N\{i} (d+j − d

−
j )}, d∗i ′ = min{d+i − d

−
i −m′i, E −

d−(N)−m′(N)}. By simplification, we get that for all i ∈ N

mi = m′i + d−i , d
∗
i
′ = d∗i .

Therefore, g(E; d) = d− + f(E − d−(N); d+ − d−). �

Proposition 3.13 connects the NID-problems with the classical bankruptcy problems.
It implies that the AP -like division scheme of each claimant is equal to its least demand
plus its allocation by the AP rule in the reduced classical bankruptcy problem (E −
d−(N); d+ − d−).

Theorem 3.14. For any NID-problem (E; d), there exists one unique division scheme
g, called the CGC-like division scheme, satisfying I-bilateral consistency, two-person
minimal share property and self-duality. And the general formula is

g(E; d) = d− + f(E − d−(N); d+ − d−),

where f corresponds to the CGC rule for classical bankruptcy problems.

P r o o f . Let g be a division scheme for an NID-problem (E; d) that satisfies all prop-
erties mentioned in Theorem 3.14. According to I-bilateral consistency of g, together
with bilateral consistency [10] of f , we only need to prove that the Theorem 3.14 is true
when the population of claimants is two, namely |N | = 2. Let (N,E − d−(N); d+− d−)
be a bankruptcy problem with N = {1, 2} and d+1 − d

−
1 ≤ d+2 − d

−
2 . In this setting,

f(E − d−(N); d+ − d−) can be expressed as:

f(E − d−(N); d+ − d−)

=


(E−d

−(N)
2 , E−d

−(N)
2 ) , if E ≤ d+1 + d−2 ;

(
d+1 −d

−
1

2 , E − d−(N)− d+1 −d
−
1

2 ) , if d+1 + d−2 ≤ E ≤ d
−
1 + d+2 ;

(d+1 − d
−
1 −

d+1 +d+2 −E
2 , d+2 − d

−
2 −

d+1 +d+2 −E
2 ), if d−1 + d+2 ≤ E.
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There are three cases to be discussed.

Case 1: if E ≤ d+1 + d−2 , according to two-person minimum share property, we have

g1(E; d) ≥ E−d−2 +d−1
2 and g2(E; d) ≥ E−d−1 +d−2

2 . Together with efficiency of g, we have

g1(E; d) + g2(E; d) = E and then g(E; d) = (d−1 , d
−
2 ) + f(E − d−(N); d+ − d−).

Case 2: if d+1 + d−2 ≤ E ≤ d−1 + d+2 , since d+1 + d−2 ≤ E and g satisfies two-person

minimal share property, we get g1(E; d) ≥ d+1 +d−1
2 . Meanwhile, E ≤ d−1 +d+2 is equivalent

to d+(N)+d−(N)−E ≥ d+1 +d−2 , which implies that g1(d+(N)+d−(N)−E; d) ≥ d−1 +d+1
2

by two-person minimal share property in the (d+(N) + d−(N)−E; d) division problem.
In addition, with self-duality of g(E; d), we immediately obtain that g1(E; d) = d−1 +

d+1 − g1(d−(N) + d+(N) − E; d) ≤ d−1 +d+1
2 . Thus, g(E; d) = (

d−1 +d+1
2 , E − d−1 +d+1

2 ) =

(d−1 , d
−
2 ) + f(E − d−(N); d+ − d−).

Case 3: if d−1 + d+2 ≤ E, namely d−(N) + d+(N)− E ≤ d+1 + d−2 , we get g(d+(N) +

d−(N)−E; d) = (d−1 , d
−
2 ) + (d

+(N)−E
2 , d

+(N)−E
2 ). Then, g(E; d) = d−+d+− g(d−(N) +

d+(N)− E; d) = d− + f(E − d−(N); d+ − d−).

Hence, we complete the proof of Theorem 3.14. �

Remark 3.15. When E ≥ d+i + d−(N\{i}) for all i ∈ N , we can obtain a new division
scheme, called the RC-like division scheme, for the NID-problem, i. e.,

g(E; d) = d− + f(E − d−(N); d+ − d−),

where f is the RC rule for classical bankruptcy problems.

Definition 3.16. A division scheme g for any NID-problem (E; d) is called game the-
oretical, if we can find a solution concept ψ for the corresponding cooperative game
(N, vE;d) such that g(E; d) = ψ(N, vE;d).

The following proposition states that the AP -like, CGC-like and RC-like division
schemes are game theoretical.

Proposition 3.17. TheAP -like, CGC-like andRC-like division schemes agree with the
τ value, nucleolus and Shapley value of the corresponding cooperative game (N, vE;d)
respectively.

P r o o f . According to Definition 3.17, for any S ⊆ N ,

vE;d(S) = max{d−(S), E − d+(N\S)}
= max{d−(S), E − d+(N\S)− d−(S) + d−(S)}
= d−(S) + max{0, E − d+(N\S)− d−(S)}
= d−(S) + max{0, E − d−(N)− (d+(N\S)− d−(N\S))}
= d−(S) + vE−d−(N);d+−d−(S).

Moreover, it follows Driessen [5] that the AP rule, CGC rule, and RC rule for classical
bankruptcy problems (E − d−(N); d+ − d−) agree with the τ value, nucleolus, and
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the Shapley value of the cooperative game (N, vE−d−(N);d+−d−). Therefore, when g
is the AP -like, CGC-like, RC-like division schemes respectively, the corresponding f
represents the AP rule, CGC rule, RC rule, ψ represents the τ value, nucleolus, and
Shapley value,

g(E; d) = d− + f(E − d−(N); d+ − d−)
= d− + ψ(N, vE−d−(N);d+−d−)
= ψ(N, d− + vE−d−(N);d+−d−)
= ψ(N, vE;d)

holds following Proposition 3.13, Theorem 3.14, and Remark 3.15, where the penultimate
equation holds because of the relative invariance under S-equivalence of the τ value,
nucleolus, and Shapley value.

This proposition is proved. �

Example 3.18. In order to illustrate the division schemes above, we see an example
of an NID-problem (E; d), where E = 100 and d = ([20, 24], [30, 32], [40, 48]). The
different division schemes are presented in Table 1.

Player 1 Player 2 Player 3

AP -like 22 2
5 31 1

5 46 2
5

CGC-like 22 1
2 31 46 1

2

RC-like 22 1
3 31 1

3 46 1
3

Tab. 1. Division schemes in Example 3.18.

The comparisons of AP -like, CGC-like and RC-like division schemes are useful in
reality to support the choice of the preferred division scheme, for example, CGC-like

division scheme is favourable to claimant i with smaller d+i −d
−
i when E ≤ d+(N)+d−(N)

2 ,

conversely beneficial to claimant i with greater d+i − d
−
i .

3.2. SID-problem

In this subsection, (E; d) especially refers to the SID-problem.

Definition 3.19. For any SID-problem (E; d), the lower security of claimant i is de-
fined as the smallest amount he can get when all claimants outside him obtain their
lower bounds of claims, i. e., for all i ∈ N ,

si = max{0, E − d−(N\{i})}.

Let g be a division scheme for any SID-problem (E; d), we hope that it has such a
property which ensures each claimant get at least his lower security, i. e.,

• Lower security property: g(E; d) = g(E; [sj , d
+
j ]j∈N ).



Division schemes for under uncertainty of claims 851

With the fact that
∑
i∈N si =

∑
i∈N max{0, E − d−(N\{i})} ≤ E ≤ d+(N), we get

a transformation from the SID-problem to the NID-problem with the aid of lower
security property. Therefore, we can handle the SID-problem by the same method as
the NID-problem.

Remark 3.20. When the claim di of any claimant i (∀i ∈ N) is a degenerated interval,
the SID-problem is a particular case as the classical bankruptcy problem, and the divi-
sion results correspond to the AP rule, CGC rule and RC rule for classical bankruptcy
problems respectively if we adopt the AP -like, CGC-like or RC-like division scheme for
NID-problems.

Example 3.21. Consider an SID-problem (E; d), where E = 100, and

d = ([30, 50], [40, 50], [50, 60]).

The division results are displayed in Table 2.

Player 1 Player 2 Player 3

AP -like 26 32 42

CGC-like 23 1
3 33 1

3 43 1
3

RC-like 26 2
3 31 2

3 41 2
3

Tab. 2. Division schemes in Example 3.21.

3.3. TID-problem

In this subsection, (E; d) is fixed as the TID-problem.
Let g be a division scheme for any TID-problem (E; d). Since the total estate E

is far more than the sum of the utmost expectations of all claimants, it is natural to
distribute any claimant his utmost expectation, that is

g(E; d) = d+.

4. FID-PROBLEM

In the previous context, we present the division schemes for the ID-problems. Actually,
in some realistic situations claimants are also likely to declare their claims with vague
words just like “about”, “around” and so on, which can not be answered simply by “yes”
or “no”. In order to handle such kind of division problems, we first review some basic
concepts about fuzzy intervals.

Different from the ordinary sets that are clear and definite, the fuzzy set is used to
represent a set described by some vague concepts. A fuzzy set A in R is characterized by
a real-valued function µA which assigns to each point in R a real number in the interval
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[0, 1]. The function µA is called the membership function of the fuzzy set A. The value
µA(x) is called the grade of membership of x in A. For any λ ∈ (0, 1], the λ-cut of the
fuzzy set A is defined by [µA]λ = {x|µA(x) ≥ λ, x ∈ R}. A fuzzy set A defined on R is
said to be a fuzzy interval, if

1. there exists x0 ∈ R, such that µA(x0) = 1;

2. for any λ ∈ (0, 1], [µA]λ is compact and convex.

Remark 4.1. It is worth noting that for each fuzzy interval, its λ-cut is a classical
interval and we denote [µA]λ = [[µA]λ−, [µA]λ+].

A division problem under fuzzy interval uncertainty (FID-problem) is defined by a
triple (N,E;D), where the total estate E is exactly deterministic while the ith compo-
nent Di (∀i ∈ N) of claim vector D = (D1, D2, . . . , Dn) is a fuzzy interval. Generally,
we write (E;D) instead of (N,E;D).

Definition 4.2. A division scheme for any FID-problem is a nonnegative mapping h
which assigns to each FID-problem (E;D) a payoff vector h(E;D) ∈ Rn.

For most of literature on cooperative games with fuzzy payoffs, through the sum and
minimum operations of fuzzy intervals, the proposed solution concepts are still fuzzy,
such as literature [9, 14, 17]. Although fuzzy intervals can truthfully reflect the fuzzy
concepts of objective existence, we often need to obtain the exact outcome when we
finally have to make judgment or decision. Now we will focus on the type of division
problem (E;D) under fuzzy interval uncertainty of claims. We prepare to deal with it
by two steps.

In the first step: for each λ ∈ (0, 1] and claim vector D = (D1, D2, . . . , Dn), we can
get a sequence of λ-cut intervals [µD1

]λ, [µD2
]λ, . . . ,[µDn

]λ. In order to use all data of
fuzzy intervals of claims to make the resulting division scheme more fair and reasonable,
we convert the fuzzy intervals by applying the thought of integral into a sequence of

classical intervals d
′
1, d
′
2, . . . , d

′
n, namely,

D1, D2, . . . , Dn → d
′
1, d
′
2, . . . , d

′
n,

where d
′
i = [

∫ 1

0
[µDi

]λ−dλ,
∫ 1

0
[µDi

]λ+dλ] for any i ∈ N . Then the original FID-problem

(E;D) is switched to the ID-problem (E; d
′
).

In the second step: we can use the division schemes for the ID-problem referred in

the last section to give the division scheme h(E;D) = g(E; d
′
) for the FID-problem

(E;D), where d
′

= (d
′
1, d
′
2, . . . , d

′
n).

From the procedure to divide the total estate among claimants under the fuzzy inter-
val uncertainty of claims, we find that the FID-problem can be resolved applying the
division schemes for the ID-problem.
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Example 4.3. Given an FID-problem (E;D) with E = 100, D = (D1, D2, D3) and

µD1(x) =

{
1, if 20 ≤ x ≤ 24;

0, otherwise,

µD2
(x) =


1
2 (x− 29), if 29 ≤ x ≤ 31;
1
2 (33− x), if 31 < x ≤ 33;

0, otherwise,

µD3
(x) =


1
4 (x− 38), if 38 ≤ x ≤ 42;

1, if 42 < x < 46;
1
4 (50− x), if 46 ≤ x ≤ 50;

0, otherwise.

We change the fuzzy intervals of claims into classical intervals:

d
′
1 =

[∫ 1

0

[µD1
]λ−dλ,

∫ 1

0

[µD1
]λ+dλ

]
= [20, 24],

d
′
2 =

[∫ 1

0

[µD2
]λ−dλ,

∫ 1

0

[µD2
]λ+dλ

]
= [30, 32],

d
′
3 =

[∫ 1

0

[µD3 ]λ−dλ,

∫ 1

0

[µD3 ]λ+dλ

]
= [40, 48].

Then, an ID-problem is derived and we take

h(E;D) = g(E; d
′
) = g(100; ([20, 24], [30, 32], [40, 48])).

This division problem (E; d
′
) is exactly the NID-problem referred in the Example 3.18

and therefore the final division result is the same as the Table 1.

5. CONCLUSIONS

In real life, when faced with uncertainty of claims for bankruptcy problems, we need to
give each participant a certain money or entity in the final decision. So, it is necessary
to provide division schemes with definite values for division problems under uncertainty
of claims. In this paper, we study division problems under interval or fuzzy interval
uncertainty of claims. We propose a series of division schemes based on the classical
bankruptcy rules. After discussing the division problems under this kind of uncertainty,
we naturally imagine that whether we can dispose of extended division problems with
other forms of uncertainty, for instance, the claims of claimants may change with the
total estate or time variable. It needs further research.
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