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KYBERNET IKA — VOLUME 5 7 ( 2 0 2 1 ) , NUMBER 6 , PAGES 9 2 2 – 9 3 8

CONTROLLABLE AND TOLERABLE GENERALIZED
EIGENVECTORS OF INTERVAL MAX-PLUS MATRICES

Matej Gazda and Ján Plavka

By max-plus algebra we mean the set of reals R equipped with the operations a ⊕ b =
max{a, b} and a ⊗ b = a + b for a, b ∈ R. A vector x is said to be a generalized eigenvector of
max-plus matrices A, B ∈ R(m,n) if A ⊗ x = λ ⊗ B ⊗ x for some λ ∈ R. The investigation
of properties of generalized eigenvectors is important for the applications. The values of vector
or matrix inputs in practice are usually not exact numbers and they can be rather considered
as values in some intervals. In this paper the properties of matrices and vectors with inexact
(interval) entries are studied and complete solutions of the controllable, the tolerable and the
strong generalized eigenproblem in max-plus algebra are presented.

As a consequence of the obtained results, efficient algorithms for checking equivalent condi-
tions are introduced.

Keywords: interval generalized eigenvector, fuzzy matrix

Classification: 15A80, 15A18, 08A72

1. INTRODUCTION

Max-plus algebra (the addition and the multiplication are formally replaced by oper-
ations of maximum and plus) can be used in a range of practical problems related to
scheduling, optimization, modeling of discrete dynamic systems, graph theory, knowl-
edge engineering, cluster analysis.

The research of max-plus algebra can be motivated by max-plus multi-processor in-
teraction systems [3, 4, 10]. In these generalized systems we have m entities E1, . . . , Em
(processors, servers, machines, etc.) producing entity outputs O1, . . . , On (data, prod-
ucts, etc) working in stages whereby each entity is contributing to the completion of
each entity output and working for all outputs simultaneously. In the algebraic model of
their interactive work, entry xi(k) of a vector x(k), represents the state of entity Ei after
some stage k, and the entry aij of a matrix A encodes the influence of the work of entity
Ej in the previous stage on the work of entity Ei in the current stage to complete the
partial entity output Oi. Summing up all the influence effects multiplied by the results of
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previous stages, we have
⊕

j aij ⊗xj(k). The summation is often interpreted as waiting
till all works of the system are finished and all the necessary influence constraints are
satisfied. Moreover, similarly as in [4], suppose that m other entities F1, . . . , Fm prepare
partial entity outputs for entity outputs U1, . . . , Un, whereby bij and yj , alike as above,
encode the influence of the work and the state of the corresponding entity, respectively.
If the entities are linked then it may be required that yj = λ ⊗ xj , where λ is some
constant from R. Consider a synchronization problem: to find λ and states of all 2m
entities so that each pair (Oi, Ui) is completed at the same state. Algebraically, we have
to solve the generalized eigenproblem, A⊗ x = λ⊗B ⊗ x.

The aim of this paper is to characterize a generalized eigenvector and present equiva-
lent conditions for vectors with inexact (interval) entries. Moreover, this paper describes
polynomial algorithms recognizing whether a given interval vector is a generalized eigen-
vector of a given interval matrices, for three types of interval generalized eigenvectors
(the controllable, the tolerable and the strong generalized eigenvectors).

Let us give more details on the organization of the paper and on the obtained results.
The next section will be occupied by definitions and notation of generalized eigenprob-
lem, leading to the discussion of conditions for the existence of a generalized eigenvector.
Sections 3, 4 deals with definitions of various versions of interval generalized eigenvec-
tors. Sections 5, 6, 7 are devoted to the characterization of the equivalent conditions for
the controllable, the tolerable and the strong generalized eigenvectors. Based on the re-
sults we also analyze the computational complexity of checking the conditions obtained
in Theorem 5.3, Theorem 6.4 and Theorem 7.3.

Let us conclude with a brief overview of the works on max-plus algebra to which
this paper is related. The concept of a generalized eigenproblem was studied for the
first time independently in [2] and [7]. Some characteristics for the spectrum of the
system A ⊗ x = λ ⊗ B ⊗ x were presented in [8, 22]. In particular, see [2] for some
necessary or sufficient conditions for a solvability of the system. A special method for
finding a generalized eigenvalue is given in [3]. The iteration method for the search
whole spectrum is presented in [8]. In the paper [22] is shown that any union of closed
intervals is the spectrum for some generalized eigenproblem. The paper [4] is devoted
to a generalized eigenproblem for the special matrix B.

2. PRELIMINARIES

Denote the set of real numbers by R and the set of all natural numbers by N. The symbol
R will stand for R ∪ {−∞}. For two elements a, b ∈ R we set a ⊕ b = max(a; b) and
a⊗b = a+b. Throughout the paper we denote −∞, the neutral element with respect to
⊕, by ε and the neutral element 0 with respect to ⊗, by e. Suppose that n ≥ 1,m ≥ 1
are given integers. The set of n×m matrices over R is denoted by R(n,m), specially the
set of n × 1 vectors over R is denoted by R(n). The triple (R,⊕,⊗) is called max-plus
algebra. The operations ⊕,⊗ are extended to the matrix-vector algebra over R by the
direct analogy to the conventional linear algebra. If each entry of a matrix A ∈ R(n, n)
(a vector x ∈ R(n)) is equal to ε we shall denote this as A = ε (x = ε).

For A ∈ R(m,n), C ∈ R(m,n) we write A ≤ C if aij ≤ cij holds true for all i, j ∈ N .
Similarly, for x = (x1, . . . , xn)T ∈ R(n) and y = (y1, . . . , yn)T ∈ R(n) we write x ≤ y if
xi ≤ yi for each i ∈ N .
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Let N = {1, 2, . . . , n} and Cn be the set of all cyclic permutations defined on non-
empty subsets of N . For a cyclic permutation σ = (i1, i2, . . . , il) ∈ Cn and for A ∈
R(n, n) we denote the length of σ by l(σ) and define

wA(σ) = ai1i2 + ai2i3 + · · ·+ aili1 , µA(σ) =
wA(σ)

l(σ)
.

The eigenproblem in max-plus algebra is formulated as follows: Given A ∈ R(n, n),
find x ∈ R(n) and λ ∈ R satisfying

A⊗ x = λ⊗ x.

A digraph is a pair D = (V,E), where V , called the node set, is a finite set, and E,
called the edge set, is a subset of V × V . A digraph D′ = (V ′, E′) is a subdigraph of
the digraph D (for brevity D′ ⊆ D), if V ′ ⊆ V and E′ ⊆ E.

A sequence p = (v1, . . . , vk) of nodes in D is called a path (in D) if k = 1 or k > 1
and (vi, vi+1) ∈ E for all i = 1, . . . , k − 1. A path (v1, . . . , vk) is called a cycle if
v1 = vk and k > 1, and it is called an elementary path (cycle) if, moreover, vi 6= vj
for i, j = 1, ..., k, i 6= j (i, j = 1, ..., k − 1, i 6= j). The number k is the length of the
path p (cycle c) and is denoted by l(p) (l(c)). By a strongly connected component of a
digraph D = (V,E) we mean a subdigraph K = (VK, EK) generated by a non-empty
subset VK ⊆ V such that any two distinct nodes i, j ∈ VK are contained in a common
cycle, EK = E ∩ (VK×VK) and VK is the maximal subset with this property. A strongly
connected component K of a digraph is called non-trivial, if there is a cycle of positive
length in K.

The symbol DA = (V,E) stands for a complete, edge-weighted digraph associated
with A. The node set of DA is N , the edge set E of DA is the set {(i, j); aij > ε} and
the weight of any edge (i, j) is aij . Throughout the paper, by a cycle in the digraph we
mean an elementary cycle or a loop, and by path we mean a nontrivial elementary path,
i. e., an elementary path containing at least one edge. Evidently, we will use the same
notation, as well as the concept of weight, both for cycles and cyclic permutations.

The matrix A is called irreducible if DA is strongly connected, reducible otherwise.

Theorem 2.1. (Cuninghame-Green [6]) Each square irreducibile matrix has exactly
one eigenvalue (denoted as λ(A)). This unique eigenvalue is equal to the maximal
average weight of cycles in DA (λ(A) = max

σ∈Cn

µA(σ)).

A cycle σ ∈ Cn is critical, if µA(σ) = λ(A), a node in DA is called critical if it is
contained in at least one critical cycle; N c

A stands for the set of all critical nodes in DA

and EcA denotes the set of all edges of all critical cycles in DA. If i, j ∈ N c
A belong

to the same critical cycle then i and j are called equivalent otherwise they are called
nonequivalent.

The critical digraph of A is the digraph C(A) with the set of nodes N c
A and the set

of edges EcA.

Theorem 2.2. (Cuninghame-Green [6]) Let A ∈ R(n, n) and α ∈ R. Then λ(α⊗A) =
α⊗ λ(A).
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The problem of finding the eigenvalue λ(A) is also called the maximum cycle mean
problem whereby various algorithms for solving this problem are known, that of Karp
[12] having the worst-case performance O(n3) and Howard’s algorithm [11] of unproven
computational complexity showing excellent algorithmic performance.

For B ∈ R(n, n) we denote by ∆(B) the matrix B ⊕B2 ⊕ . . .⊕Bn where Bs stands
for the s-fold iterated product B ⊗B ⊗ . . .⊗B.
Let Aλ = λ(A)−1 ⊗A. (The upper index −1 denotes the inverse element of λ(A) in the
sense of the group operation ⊗). It was shown in [6] that the matrix ∆(Aλ) contains at
least one column, the diagonal element of which is e. Every such column is an eigenvector
of the matrix A, it is called a fundamental eigenvector of the matrix A. The set of all
fundamental eigenvectors is denoted by FA. We say that two fundamental eigenvectors
gi and gj are equivalent if gi = α⊗ gj for some α ∈ R and nonequivalent otherwise.

Theorem 2.3. (Cuninghame-Green [6]) Let g1, g2, . . . , gn denote the columns of the
matrix ∆(Aλ). Then

(i) j ∈ N c
A if and only if gj ∈ FA;

(ii) gi, gj are equivalent members of FA if and only if the nodes i, j are contained in a
common critical cycle.

For a given irreducible matrix A ∈ R(n, n), the eigenspace V (A, λ(A)) is defined as
the set of all eigenvectors of A with associated eigenvalue λ(A), i. e.,

V (A, λ(A)) = {x ∈ R(n); A⊗ x = λ(A)⊗ x}.

Theorem 2.4. (Cuninghame-Green [6]) Let g1, g2, . . . , gn denote the columns of the
matrix ∆(Aλ). Then

V (A, λ(A)) =

 ⊕
j∈Nc,∗

A

αj ⊗ gj ; αj ∈ R, j ∈ N c,∗
A

 ,

where N c,∗
A is any maximal set of nonequivalent eigennodes of A.

Notice that V (A, λ(A)) creates a max cone, i. e., α ⊗ u⊕ β ⊗ v ∈ V (A, λ(A)) for all
α ∈ R and u, v ∈ V (A, λ(A)).

Definition 2.5. Let N c,∗
A = {j1, . . . , jk} be any maximal set of nonequivalent eigenn-

odes of A. Define the generating matrix of V (A, λ(A)) as the matrix resulting from
stacking the columns (∆(Aλ))·j1 , . . . , (∆(Aλ))·jk together:

GA,λ = [(∆(Aλ))·j1 , . . . , (∆(Aλ))·jk ] (1)

3. INTERVAL EIGENVECTORS

In this section we will consider interval versions of the eigenvectors and define the great-
est eigenvector which exists for bounded case in contrast with the unlimited case, the
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greatest eigenvector does not exist.
Similarly to [13] – [21], we define interval vector with bounds x, x ∈ R(n) as follows

X = [x, x] = {x ∈ R(n); x ≤ x ≤ x } .

For a given A ∈ R(n, n) and X ⊆ R(n) define the greatest interval eigenvector x⊕(A,X)
corresponding to a matrix A and an interval vector X as

x⊕(A,X) =
⊕

x∈V (A,λ(A))∩X

x.

If X = R(n) then the max cone V (A, λ(A)) is not bounded and hence x⊕(A,X) does
not exist. This is in a contrast with the case that X ⊂ R(n) for which x⊕(A,X) exists
if only if V (A) ∩X 6= ∅.

Theorem 3.1. (Zimmermann [24]) Suppose given A ∈ R(m,n) and b ∈ R(m). Then
the system A ⊗ x = b is solvable if and only if x∗(A, b) ∈ R(n) is its solution, where
x∗j (A, b) = min

i∈M
{bi − aij} for j ∈ N .

Theorem 3.2. (Cechlárová [5]) Suppose given B,C ∈ R(m,n) and b, c ∈ R(m). Then
the system of inequalities

B ⊗ x ≤ b,

C ⊗ x ≥ c

has a solution if and only if C ⊗ x∗(B, b) ≥ c.

According to the last theorem we can formulate the following lemma.

Lemma 3.3. Suppose given A ∈ R(n, n) and X. Then the system of inequalities

GA,λ ⊗ x ≤ x,
GA,λ ⊗ x ≥ x

is solvable if and only if GA,λ ⊗ x∗(GA,λ, x) ≥ x.

P r o o f . Suppose that y ∈X is a solution of the system (GA,λ⊗x ≤ x)∧(GA,λ⊗x ≥ x).
Then y ≤ x∗(GA,λ, x) and hence we obtain

GA,λ ⊗ x∗(GA,λ, x) ≥ GA,λ ⊗ y ≥ x⇒ GA,λ ⊗ x∗(GA,λ, x) ≥ x.

The reverse implication trivially follows. �

Notice that the vector GA,λ⊗x∗(GA,λ, x) is the greatest eigenvector of A lying in X if
it exists and is a max-plus linear combination of fundamental nonequivalent eigenvectors.
Then we can state that

x⊕(A,X) = GA,λ ⊗ x∗(GA,λ, x),
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where x⊕(A,X) can be computed in O(n3) elementary operations.

Suppose that matrices A, B ∈ R(m,n) are given. The generalized eigenproblem for
the couple (A,B) is the task of finding x ∈ R(n), x 6= ε (generalized eigenvector) and
λ ∈ R (generalized eigenvalue or just eigenvalue) such that

A⊗ x = λ⊗B ⊗ x. (2)

We denote the set of all generalized eigenvectors of (A,B) corresponding to λ ∈ R and
the set of generalized eigenvalues, called the spectrum of (A,B), by

V (A,B, λ) = {x ∈ R(n); A⊗ x = λ⊗B ⊗ x},

Λ(A,B) = {λ ∈ R; V (A,B, λ) 6= ∅},

respectively. The next statement provides useful information about the spectrum.

Lemma 3.4. (Butkovič [3]) Λ(A,B) ⊆ [max
i∈M

min
j∈N

(aij − bij),min
i∈M

max
j∈N

(aij − bij)] holds

for any A,B ∈ R(m,n).

Define the greatest generalized interval eigenvector x⊕(A,B, λ,X) corresponding to
matrices (A,B), eigenvalue λ and an interval vector X as

x⊕(A,B, λ,X) =
⊕

x∈V (A,B,λ)∩X

x.

The task to find the greatest generalized interval eigenvector corresponding to (A,B),
eigenvalue λ and an interval vector X if it exists, is hard problem since the solvability
of the system A ⊗ x = B ⊗ x was generally shown to be polynomially equivalent to
solving a mean-payoff game [1], for which efficient pseudopolynomial algorithms and an
alternating method for computing A⊗x = B⊗x ([3]) exist, but existence of a polynomial
algorithm has been a long-standing open question.

4. CLASSIFICATION OF INTERVAL GENERALIZED EIGENVECTORS

Analogously as above define interval matrices with bounds A,A ∈ R(m,n) and B,B ∈
R(m,n) as follows

A = [A,A] =
{
A ∈ R(m,n); A ≤ A ≤ A

}
,

B = [B,B] =
{
B ∈ R(m,n); B ≤ B ≤ B

}
,

respectively. We consider the following three types of interval generalized eigenvectors.

Definition 4.1. If A, B and interval vector X are given, then X is called

• a controllable generalized eigenvector of (A,B)
if (∃λ ∈ R)(∃A ∈ A)(∀B ∈ B)(∀x ∈X) x ∈ V (A,B, λ),
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• a tolerable generalized eigenvector of (A,B)
if (∃λ ∈ R)(∀A ∈ A)(∃B ∈ B)(∀x ∈X) x ∈ V (A,B, λ),

• a strong generalized eigenvector of (A,B)
if (∃λ ∈ R)(∀A ∈ A)(∀B ∈ B)(∀x ∈X) x ∈ V (A,B, λ).

For given indices i ∈ M, j ∈ N we define matrix Ã(ij) ∈ R(m,n) and vector x̃(i) by
putting for every k ∈M, l ∈ N

ã
(ij)
kl =

{
aij , for k = i, l = j

akl, otherwise
, x̃

(i)
k =

{
xi, for k = i

xk, otherwise
.

Lemma 4.2. Suppose given x ∈ R(n) and A ∈ R(m,n). Then

(i) x ∈X if and only if x =
⊕
i∈N

γi⊗ x̃(i) for some values γi ∈ R with xi−xi ≤ γi ≤ 0 ,

(ii) A ∈ A if and only if A =
⊕

i∈M,j∈N
αij ⊗ Ã(ij) for some values αij ∈ R with

aij − aij ≤ αij ≤ 0 .

P r o o f . For the proof of assertion (i), let us suppose that x ∈X, i. e. the inequalities
xi ≤ xi ≤ xi hold for every i ∈ N . This implies xi − xi ≤ xi − xi ≤ 0. Denoting
γi = xi − xi we get γi ⊗ xi = γi + xi = xi and γi ⊗ xj = γi + xj = xi − xi + xj ≤ xj for
every i 6= j. Since xj ≤ xj , we obtain that⊕

i∈N
γi ⊗ x̃(i)j = γj ⊗ x̃(j)j ⊕

⊕
i∈N, i6=j

γi ⊗ x̃(i)j = γj ⊗ xj ⊕
⊕

i∈N, j 6=i

γi ⊗ xj = xj

for all j ∈ N. Thus x can be expressed as a max-linear combination of x̃(i) for i ∈ N .
The proof of assertion (ii) is analogous. �

5. CONTROLLABLE GENERALIZED EIGENVECTOR

Theorem 5.1. Suppose given A, B and X. Then X is controllable generalized eigen-
vector of (A,B) if and only if there exist λ ∈ R and A ∈ A such that (∀B ∈ B)(∀k ∈
N)[A⊗ x̃(k) = λ⊗B ⊗ x̃(k)].

P r o o f . Assume that there are λ ∈ R and A ∈ A such that (∀B ∈ B)(∀k ∈ N)[A ⊗
x̃(k) = λ⊗B ⊗ x̃(k)]. Then by Lemma 4.2(i) for arbitrary x ∈X we get

A⊗ x = A⊗
n⊕
k=1

γk ⊗ x̃(k) =

n⊕
k=1

γk ⊗ (A⊗ x̃(k))

=

n⊕
k=1

γk ⊗ (λ⊗B ⊗ x̃(k)) = λ⊗B ⊗ x.

The converse implication trivially follows. �
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Theorem 5.2. Suppose given A, B and X. Then X is controllable generalized eigen-
vector of (A,B) if and only if there exist λ ∈ R and A ∈ A such that A ⊗ x̃(k) =
λ⊗B ⊗ x̃(k) and A⊗ x̃(k) = λ⊗B ⊗ x̃(k) for all k ∈ N .

P r o o f . Assume that there are λ ∈ R and A ∈ A such that A ⊗ x̃(k) = λ ⊗ B ⊗ x̃(k)
and A⊗ x̃(k) = λ⊗B ⊗ x̃(k) for all k ∈ N . Then for arbitrary x ∈X we get

A⊗ x = A⊗
n⊕
k=1

γk ⊗ x̃(k) =

n⊕
k=1

γk ⊗ (A⊗ x̃(k))

=

n⊕
k=1

γk ⊗ (λ⊗B ⊗ x̃(k)) = λ⊗B ⊗
n⊕
k=1

γk ⊗ x̃(k) = λ⊗B ⊗ x

and

A⊗ x = A⊗
n⊕
k=1

γk ⊗ x̃(k) =

n⊕
k=1

γk ⊗ (A⊗ x̃(k))

=

n⊕
k=1

γk ⊗ (λ⊗B ⊗ x̃(k)) = λ⊗B ⊗
n⊕
k=1

γk ⊗ x̃(k) = λ⊗B ⊗ x.

By monotonicity of the operations ⊕, ⊗ we obtain

A⊗ x = λ⊗B ⊗ x ≤ λ⊗B ⊗ x ≤ λ⊗B ⊗ x = A⊗ x,

i. e. the equality λ⊗B ⊗ x = A⊗ x holds for each B ∈ B and each x ∈X.
The converse implication trivially follows. �

To recognize the existence of A ∈ A in Theorem 5.2, we define the vector C̃ ∈ R(2mn)
and the matrix D̃ ∈ R(2mn,mn) as follows:

C̃ =



B ⊗ x̃(1)
...

B ⊗ x̃(n)
B ⊗ x̃(1)

...
B ⊗ x̃(n)


, D̃ =



Ã(11) ⊗ x̃(1) Ã(12) ⊗ x̃(1) . . . Ã(mn) ⊗ x̃(1)
...

Ã(11) ⊗ x̃(n) Ã(12) ⊗ x̃(n) . . . Ã(mn) ⊗ x̃(n)
Ã(11) ⊗ x̃(1) Ã(12) ⊗ x̃(1) . . . Ã(mn) ⊗ x̃(1)

...

Ã(11) ⊗ x̃(n) Ã(12) ⊗ x̃(n) . . . Ã(mn) ⊗ x̃(n)


. (3)

Consider the following max-plus linear system

D̃ ⊗ y = λ⊗ C̃ (4)

where the vector y ∈ R(mn) consists of the variables yij ∈ R.

Theorem 5.3. Suppose given A, B and X. Then X is controllable generalized eigen-
vector of (A,B) if and only if there is λ ∈ R such that the max-plus linear system
D̃⊗y = λ⊗C̃ has a solution y satisfying the condition aij−aij ≤ yij ≤ 0, for every i ∈
M, j ∈ N .
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P r o o f . Suppose that y is a solution of the linear system D̃⊗ y = λ⊗ C̃ satisfying the
condition aij − aij ≤ yij ≤ 0, for every i ∈ M, j ∈ N . Then the matrix A ∈ R(m,n)
defined as the max-plus linear combination

A =
⊕

i∈M,j∈N
yij ⊗ Ã(ij) (5)

belongs to the interval matrix [A,A] in view of Lemma 4.2(ii).
Moreover, from the equality D̃ ⊗ y = λ ⊗ C̃, we have the following block equations

for every fixed i ∈ N⊕
k∈M,l∈N

(
Ã(kl) ⊗ x̃(i)

)
⊗ ykl = λ⊗B ⊗ x̃(i)

⇔
⊕

k∈M,l∈N

(
ykl ⊗ Ã(kl)

)
⊗ x̃(i) = λ⊗B ⊗ x̃(i) ⇔ A⊗ x̃(i) = λ⊗B ⊗ x̃(i)

and ⊕
k∈M,l∈N

(
Ã(kl) ⊗ x̃(i)

)
⊗ ykl = λ⊗B ⊗ x̃(i)

⇔
⊕

k∈M,l∈N

(
ykl ⊗ Ã(kl)

)
⊗ x̃(i) = λ⊗B ⊗ x̃(i) ⇔ A⊗ x̃(i) = λ⊗B ⊗ x̃(i).

Thus, in view of Theorem 5.2, X is controllable generalized eigenvector of (A,B).
For the converse implication, let us assume that X is controllable generalized eigen-

vector of (A,B), i. e. that there exist λ ∈ R and A ∈ A such that for each B ∈ [B,B])
and each x ∈ [x, x]) the equality A ⊗ x = λ ⊗ B ⊗ x holds true. By Lemma 4.2(ii),
there exist coefficients αij ∈ R, i ∈ M, j ∈ N such that A =

⊕
i∈M,j∈N αij ⊗ Ã(ij) and

aij − aij ≤ αij ≤ 0. It is easy to verify that y ∈ R(mn, 1), where yij = αij for every

i ∈M, j ∈ N , satisfy the conditions of the equality D̃ ⊗ y = λ⊗ C̃. �

Theorem 5.3 reduces the recognition problem whether X is controllable generalized
eigenvector of (A,B) to the solvability problem of the system D̃ ⊗ y = λ ⊗ C̃ with
aij − aij ≤ yij ≤ 0.

Theorem 5.4. (Gavalec et al. [9]) Suppose given C ∈ R(r, t), b ∈ R(r) and y, y ∈ R(t).
The problem of recognizing the solvability of bounded parametric max-plus linear system
C ⊗ y = λ⊗ b with bounds y ≤ y ≤ y, for some value of parameter λ ∈ R, can be solved
in O(rt) time.

Theorem 5.5. The recognition problem whether a given interval vector X is control-
lable generalized eigenvector of (A,B) is solvable in O(m2n3) time.

P r o o f . According to Theorem 5.3, the recognition problem on controllable generalized
eigenvector of (A,B) is equivalent to recognizing whether the max-plus linear system
D̃ ⊗ y = λ⊗ C̃ with aij − aij ≤ yij ≤ 0 is solvable for fixed λ ∈ R. The computation of
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C̃ needs O(mn2) time and the computation of D̃ requires to compute products A(ij) ⊗
x̃(k) for all i ∈ M, j, k ∈ N , while each of them needs O(mn) time. Therefore, the
computation of D̃ is done in O(m2n3) steps. By Theorem 5.4 the computation of a
parametric system A⊗ y = λ⊗ b needs O(rt) time, where A ∈ R(r, t) and b ∈ R(r) ([9]).
Finally, when all entries have been computed, then the solvability of D̃⊗y = λ⊗ C̃ with
aij − aij ≤ yij ≤ 0 can be recognized in O(mn2) +O(m2n3) = O(m2n3) time. �

Example 5.6. Consider interval matrices A, B and interval vector X which have the
forms

A =

 0 2
0 1
1 2

 , A =

 1 2
1 1
2 2

 ,

B =

 −2 1
−1 0
−1 1

 , B =

 1 1
0 0
1 1

 ,

x =

(
−3

1

)
, x =

(
1
1

)
.

Task: Check whether X is controllable generalized eigenvector of (A, B).

Solution: Denote X̃ = (x̃(1), x̃(2)). Then for

x̃(1) =

(
1
1

)
, x̃(2) =

(
−3

1

)
and

Ã(11) =

 1 2
0 1
1 2

 , Ã(21) =

 0 2
1 1
1 2

 , Ã(31) =

 0 2
0 1
2 2

 ,

Ã(12) = Ã(22) = Ã(32) =

 0 2
0 1
1 2

 ,

we have

Ã(ij) ⊗ X̃ =

 3 3
2 2
3 3

 for any i ∈ {1, 2, 3}, j ∈ {1, 2}

and

B ⊗ X̃ = B ⊗ X̃ =

 2 2
1 1
2 2

 .

The system D̃ ⊗ y = λ⊗ C̃ has the following form
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

3 3 3 3 3 3
2 2 2 2 2 2
3 3 3 3 3 3
3 3 3 3 3 3
2 2 2 2 2 2
3 3 3 3 3 3
3 3 3 3 3 3
2 2 2 2 2 2
3 3 3 3 3 3
3 3 3 3 3 3
2 2 2 2 2 2
3 3 3 3 3 3



⊗


y1
y2
y3
y4
y5
y6

 = λ⊗



2
1
2
2
1
2
2
1
2
2
1
2



(6)

whereby y, y are created from the entries of A,A as follows y = (0− 1, 2− 2, 0− 1, 1−
1, 1− 2, 2− 2)T = (−1, 0,−1, 0,−1, 0)T and y = (0, 0, 0, 0, 0, 0)T . By Theorem A.5 of [9]
system D̃ ⊗ y = λ ⊗ C̃ is solvable if and only if D̃ ⊗ y∗(λmin) = λmin ⊗ C̃ is solvable,
where

mj = min
1≤i≤12

(c̃i − d̃ij) for 1 ≤ j ≤ 6, (7)

λmin = max
1≤j≤6

(y
j
−mj), (8)

y∗j (λmin) =

{
λmin +mj if λmin +mj ≤ yj ,

yj otherwise.
(9)

It is easy to show that λmin = 1 and vector y∗(λmin) = (0, 0, 0, 0, 0, 0)T is the solution
of the system. Now we can create the matrix A as follows:

A = 0⊗A(11) ⊕ 0⊗A(12) ⊕ 0⊗A(21) ⊕ 0⊗A(22) ⊕ 0⊗A(31) ⊕ 0⊗A(32) = A.

Thus, we conclude that X is controllable generalized eigenvector of (A, B).

6. TOLERABLE GENERALIZED EIGENVECTOR

Lemma 6.1. Suppose given A, B and X. Then X is a tolerable generalized eigenvector
of (A,B) if and only if

(∃λ ∈ R)(∀A ∈ A)(∃B ∈ B)(∀k ∈ N)[A⊗ x̃(k) = λ⊗B ⊗ x̃(k)].

P r o o f . Suppose that there is λ ∈ R such that (∀A ∈ A)(∃B ∈ B)[A ⊗ x̃(k) =
λ ⊗ B ⊗ x̃(k)] holds for all k ∈ N and x ∈ R(n) is an arbitrary vector in X. Then in
view of Lemma 4.2(i) we get x =

⊕
k∈N γk ⊗ x̃(k). Therefore,

A⊗ x = A⊗
⊕
k∈N

γk ⊗ x̃(k) =
⊕
k∈N

γk ⊗ (A⊗ x̃(k))

=
⊕
k∈N

γk ⊗ (λ⊗B ⊗ x̃(k)) = λ⊗B ⊗
⊕
k∈N

γk ⊗ x̃(k) = λ⊗B ⊗ x.

The converse implication is trivial. �
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Theorem 6.2. Suppose given A, B, X. Then X is a tolerable generalized eigenvector
of (A,B) if and only if

(∃λ ∈ R)(∀(k, l) ∈M ×N)(∃B ∈ B)(∀x ∈X)[Ã(kl) ⊗ x = λ⊗B ⊗ x].

P r o o f . We use the proof by contrapositive. Suppose that for each λ ∈ R there is A ∈ A
such that for any B ∈ B there are x ∈X and i ∈ N such that (A⊗ x)i 6= λ⊗ (B ⊗ x)i.
We shall prove that for each λ ∈ R there is (k, l) ∈ M × N such that for any B ∈ B
there are x ∈X and i ∈ N such that (Ã(kl) ⊗ x)i 6= λ⊗ (B ⊗ x)i.
Consider two cases:
Case 1: (A⊗ x)i > λ⊗ (B ⊗ x)i. Suppose that ais ⊗ xs =

⊕
j∈N

aij ⊗ xj . Then we have

(Ã(is) ⊗ x)i = ais ⊗ xs ⊕
⊕
j 6=s

aij ⊗ xj

≥ ais ⊗ xs =
⊕
j∈N

aij ⊗ xj = (A⊗ x)i > λ⊗ (B ⊗ x)i.

Case 2: (A⊗ x)i < λ⊗ (B ⊗ x)i. If ais ⊗ xs =
⊕
j∈N

aij ⊗ xj then for r 6= i we have

(Ã(rs) ⊗ x)i =
⊕
j∈N

aij ⊗ xj ≤
⊕
j∈N

aij ⊗ xj = (A⊗ x)i < λ⊗ (B ⊗ x)i.

In both cases we have obtained a contradiction.
The converse implication trivially follows. �

Theorem 6.3. Suppose given A, B, X. Then X is a tolerable generalized eigenvector
of (A,B) if and only if

(∃λ ∈ R)(∀(k, l) ∈M ×N)(∃B(k, l) ∈ B)(∀r ∈ N)Ã(kl) ⊗ x̃(r) = λ⊗B(k, l)⊗ x̃(r).

P r o o f . The assertion follows from Lemma 6.1 and Theorem 6.2. �

Let k ∈M, l, r ∈ N be given and B(k, l) ∈ B. Then in view of Lemma 4.2(ii) we get
B(k, l) =

⊕
i∈M,j∈N

βklij ⊗ B̃(ij) for bij − bij ≤ βij ≤ 0 and hence

Ã(kl) ⊗ x̃(r) = λ⊗B(k, l)⊗ x̃(r)

⇔ (−λ)⊗ Ã(kl) ⊗ x̃(r) = B(k, l)⊗ x̃(r)

⇔ (−λ)⊗ Ã(kl) ⊗ x̃(r) =
⊕

i∈M,j∈N
βklij ⊗ B̃(ij) ⊗ x̃(r)

⇔ (−λ)⊗ Ã(kl) ⊗ x̃(r) =
⊕

i∈M,j∈N
(B̃(ij) ⊗ x̃(r))⊗ βklij .
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To recognize the existence of B(k, l) ∈ B for each k ∈M , l ∈ N in Theorem 6.3, we
define the matrices C̃ ∈ R(m2n2, 1), D(r) ∈ R(m,mn) and the block-diagonal matrix
D̃ ∈ R(m2n2,m2n3) as follows:

C̃ =



Ã(11) ⊗ x̃(1)
Ã(12) ⊗ x̃(1)

...

Ã(mn) ⊗ x̃(1)
Ã(11) ⊗ x̃(2)
Ã(12) ⊗ x̃(2)

...

Ã(mn) ⊗ x̃(2)
...

Ã(11) ⊗ x̃(n)
...

Ã(mn) ⊗ x̃(n)



, D̃ =



D(1) ε ε ε ε . . . ε
...
ε ε D(1) ε ε . . . ε
ε ε ε D(2) ε . . . ε
...
ε ε . . . ε D(2) . . . ε
...
ε ε ε ε . . . D(n) ε
...
ε ε ε ε . . . ε D(n)



,

(10)
where

D(r) =
(
B̃(11) ⊗ x̃(r) . . . B̃(1n) ⊗ x̃(r) B̃(21) ⊗ x̃(r) . . . B̃(mn) ⊗ x̃(r)

)
. (11)

Consider the following max-plus linear system

D̃ ⊗ y = (−λ)⊗ C̃ (12)

where the vector y ∈ R(m2n3) consists of the variables yklij ∈ R.

Theorem 6.4. Suppose given A, B and X. Then X is tolerable generalized eigenvector
of (A,B) if and only if there is λ ∈ R such that the max-plus linear system D̃⊗y = λ⊗C̃
has a solution y satisfying the condition bij − bij ≤ yklij ≤ 0, for every (i, j), (k, l) ∈
M ×N .

P r o o f . Suppose that y is a solution of the linear system D̃⊗ y = (−λ)⊗ C̃ satisfying
the condition bij − bij ≤ yklij ≤ 0, for every (i, j), (k, l) ∈ M × N . Then the matrix
B(k, l) ∈ R(m,n) defined as the max-plus linear combination

B(k, l) =
⊕

i∈M,j∈N
yklij ⊗ B̃(ij) (13)

belongs to the interval matrix [B,B] in view of Lemma 4.2(ii).

Moreover, from the equality D̃⊗y = (−λ)⊗ C̃, we have the following block equations
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for every fixed k, r ∈M, l ∈ N⊕
i∈M,j∈N

(
B̃(ij) ⊗ x̃(r)

)
⊗ yklij = (−λ)⊗ Ã(k,l) ⊗ x̃(r)

⇔
⊕

i∈M,j∈N

(
yklij ⊗ B̃(ij)

)
⊗ x̃(r) = (−λ)⊗ Ã(k,l) ⊗ x̃(r)

⇔ B(k, l)⊗ x̃(r) = (−λ)⊗ Ã(k,l) ⊗ x̃(r)

Thus, in view of Theorem 6.3, X is tolerable generalized eigenvector of (A,B).
For the converse implication, let us assume that X is tolerable generalized eigenvector

of (A,B). By Theorem 6.3 there exists λ ∈ R such that

(∀k ∈M ; l ∈ N)(∃B(k, l) ∈ B)(∀r ∈ N)Ã(kl) ⊗ x̃(r) = λ⊗B(k, l)⊗ x̃(r)

and according to Lemma 4.2(ii), there exist coefficients βklij ∈ R, (i, j), (k, l) ∈ M × N
such that B(k, l) =

⊕
i∈M,j∈N β

kl
ij ⊗B̃(ij) and bij−bij ≤ βklij ≤ 0. It is easy to verify that

y ∈ R(m2n3, 1), where yklij = βklij satisfy the conditions of the equality D̃⊗y = (−λ)⊗ C̃.
�

Theorem 6.4 reduces the recognition problem whether X is tolerable generalized
eigenvector of (A,B) to the solvability problem of the system D̃ ⊗ y = (−λ) ⊗ C̃ with
bij − bij ≤ yklij ≤ 0.

Theorem 6.5. Suppose given A, B and X. The recognition problem whether a given
interval vector X is controllable generalized eigenvector of (A,B) is solvable in O(m4n5)
time.

P r o o f . According to Theorem 6.4, the recognition problem on tolerable generalized
eigenvector of (A,B) is equivalent to recognizing whether the max-plus linear system
D̃⊗ y = (−λ)⊗ C̃ with bij − bij ≤ yklij ≤ 0 is solvable for fixed λ ∈ R. The computation

of C̃ needs O(m2n3) time and the computation of D̃ requires to compute products D(r)
for all r ∈ N , while each of them needs O(m2n2) time. Therefore, the computation
of D̃ is done in O(m3n4) steps. By Theorem 5.4 the computation of a parametric
system A ⊗ y = λ ⊗ b needs O(rt) time, where A ∈ R(r, t) and b ∈ R(r) ([9]). Finally,
when all entries have been computed, then the solvability of D̃ ⊗ y = (−λ) ⊗ C̃ with
bij − bij ≤ yklij ≤ 0 can be recognized in O(m2n3) + O(m3n4) + O(m4n5) = O(m4n5)
time. �

7. STRONG GENERALIZED EIGENVECTOR

Lemma 7.1. Suppose given A, B and X. Then X is a strong generalized eigenvector
of (A,B) if and only if (∃λ ∈ R)(∀A ∈ A)(∀B ∈ B)(∀k ∈ N)[A⊗ x̃(k) = λ⊗B ⊗ x̃(k)].

P r o o f . Suppose that there is λ ∈ R such that (∀A ∈ A)(∀B ∈ B)[A ⊗ x̃(k) =
λ ⊗ B ⊗ x̃(k)] holds for all k ∈ N and x ∈ R(n) is an arbitrary vector in X. Then in
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view of Lemma 4.2(i) we get x =
⊕

k∈N γk ⊗ x̃(k). Therefore,

A⊗ x = A⊗
⊕
k∈N

γk ⊗ x̃(k) =
⊕
k∈N

γk ⊗ (A⊗ x̃(k))

=
⊕
k∈N

γk ⊗ (λ⊗B ⊗ x̃(k)) = λ⊗B ⊗
⊕
k∈N

γk ⊗ x̃(k) = λ⊗B ⊗ x.

The converse implication is trivial. �

Theorem 7.2. Suppose given A = [A,A], B = [B,B] and X. Then X is a strong
generalized eigenvector of (A,B) if and only if there is λ ∈ R such that A⊗x = λ⊗B⊗x
and A⊗ x = λ⊗B ⊗ x.

P r o o f . Suppose that A⊗ x = λ⊗B ⊗ x, A⊗ x = λ⊗B ⊗ x and A ∈ A, B ∈ B are
arbitrary but fixed matrices. Then the inequalities λ⊗B⊗x = A⊗x ≤ A⊗x ≤ A⊗x =
λ⊗B⊗x and the monotonicity of the operations imply the following A⊗x = λ⊗B⊗x.

The reverse implications trivially follows. �

Theorem 7.3. Suppose given A, B and X. Then X is a strong generalized eigenvector
of (A,B) if and only if there is λ ∈ R such that A⊗ x̃(t) = λ⊗B ⊗ x̃(t) and A⊗ x̃(t) =
λ⊗B ⊗ x̃(t) for any t ∈ N .

P r o o f . The equivalence follows from Lemma 7.1 and Theorem 7.2. �

Theorem 7.3 reduces the recognition problem whether X is a strong generalized
eigenvector of (A,B) to the solvability of max-plus linear systems.

Theorem 7.4. The recognition problem whether a given interval vector X is a strong
generalized eigenvector of (A,B) is solvable in O(mn2) time.

P r o o f . According to Theorem 7.3, the recognition problem of strong generalized eigen-
problem of (A,B) is equivalent to recognizing whether the systems A⊗x̃(t) = λ⊗B⊗x̃(t)
and A⊗ x̃(t) = λ⊗B⊗ x̃(t) for each t ∈ N are solvable for some λ ∈ R. The computation
of these systems requires to compute products A⊗x̃(t), λ⊗B⊗x̃(t), A⊗x̃(t), λ⊗B⊗x̃(t)
for any t ∈ N , while each of them needs O(mn) time. Therefore, the computation is
done in 4n ·O(mn) = O(mn2) time for a given λ ∈ R, whereby λ can be computed from
the first equality of the system A ⊗ x̃(t) = λ ⊗ B ⊗ x̃(t). Finally, when all entries have
been computed, then the solvability of A⊗ x̃(t) = λ⊗B⊗ x̃(t) and A⊗ x̃(t) = λ⊗B⊗ x̃(t)
for each t ∈ N can be recognized in O(mn2) time. �

8. CONCLUSION

In this paper we have presented a generalized eigenproblem and equivalent conditions
for three types of an interval generalized eigenproblem in max-plus algebra. All results
have been formally analyzed with a target to suggest the computational complexity of
checking the obtained equivalent conditions. These results are illustrated by a numerical
example.
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