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Abstract. Menon’s identity is a classical identity involving gcd sums and the Euler totient
function ϕ. A natural generalization of ϕ is the Klee’s function Φs. We derive a Menon-
type identity using Klee’s function and a generalization of the gcd function. This identity
generalizes an identity given by Y. Li and D.Kim (2017).
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1. Introduction

The Euler totient function ϕ appears in many interesting identities in number

theory. Probably because of its applications in various branches of number theory, it

has been generalized in many ways. The Jordan function Js(n), the von Sterneck’s

function Hs(n), the Cohen’s function ϕs (see [2]) and the Klee’s function Φs (see [8])

are some important extensions of ϕ (see the definitions in the next section). All these

functions share several common properties. For example, Euler totient function ϕ

holds a relation with the Möbius function. Similar relations are satisfied by all these

generalizations. All these generalizations have a product formulae in terms of the

prime factorization of their arguments. Hence, all these are multiplicative and behave

similarly to ϕ on prime powers.
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Note that Cohen has proved in [2] the equality of the functions Js, Hs and ϕs,

although they are all defined differently. Klee’s function Φs and Cohen’s ϕs are con-

nected by the relation ϕs(n) = Φs(n
s). Thus, Φs seems to be a natural generalization

of ϕ (as for s = 1, the former turns out to be equal to the latter).

The classical Menon’s identity which originally appeared in [7] is a gcd sum turning

out to be equivalent to a product of the Euler function and the number of divisors

function τ . If (m,n) denotes the gcd of m and n, the identity is precisely the

following:

(1.1)
n
∑

m=1
(m,n)=1

(m− 1, n) = ϕ(n)τ(n).

It has been generalized and extended by many authors. Many of the identities were

derived using elementary number theory techniques. For example, in a recent paper

(see [19]), Zhao and Kao suggested a generalization involving Dirichlet characters

modn using elementary number theoretic methods. Their identity is

n
∑

m=1
(m,n)=1

(m− 1, n)χ(m) = ϕ(n)τ
(n

d

)

,

where χ is a Dirichlet character modn with conductor d. When one takes χ as

the principal character modn, this identity turns to be equal to the Menon’s iden-

tity. After this, a similar type of identity in terms of even functions modn was

given by Tóth, see [17]. An arithmetical function f is n-even (or even modn) if

f(r) = f((r, n)). Tóth also used elementary number theory techniques and proper-

ties of arithmetical functions to prove his identity. Rao in [11] gave a generalization

of the form

∑

mi∈Uk(n)

(m1 − s1,m2 − s2, . . . ,mk − sk, n)
k = Jk(n)τ(n),

where Uk(n) is the unit goup modulo n and si ∈ Z. He used Cauchy composition

and finite Fourier representations to establish this result.

A different approach was used by Sury in [14]. He used the method of group

actions to derive the following identity:

(1.2)
∑

16m1,m2,...,mk6n
(m1,n)=1

(m1 − 1,m2, . . . ,mk, n) = ϕ(n)σk−1(n),
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where σk(n) =
∑

d|n

dk. Miguel in [10] extended this identity of Sury from Z to any

residually finite Dedekind domains. A further extension of Miguel’s result was given

by Li and Kim in [9], Theorem 1.1. For the case of Z, their result reads as follows [9],

Corollary 1.3:

(1.3)
∑

a1,a2,...,as∈U(Zn)
b1,b2,...,br∈Zn

(a1 − 1, . . . , as − 1, b1, . . . , br, n)

= ϕ(n)

m
∏

i=1

(ϕ(pki

i )s−1pkir
i − p

ki(s+r−1)
i + σs+r−1(p

ki

i )),

where n = pk1

1 pk2

2 . . . pkm
m is the prime factorization of n. Note that this identity

generalizes the classical Menon’s identity and Menon-Sury identity.

Various other generalizations of Menon’s identity were provided by many authors,

see for example [3], [5], [12], [16] and the more recent papers [4] and [18].

A natural question, arising if one considers a generalization of the usual gcd func-

tion (which we define in the next section) in the place of the gcd function appearing

in Menon’s identity (1.1), is what could be the possible change that can happen to

this identity as well as the other generalizations of it. We propose a very natural

generalization of the Li-Kim identity (1.3) involving generalized gcd function and

Klee’s function in this paper (which in turn generalizes Menon’s identity as well).

We prove it using elementary number theory techniques.

2. Notations and basic results

Most of the notations, functions, and identities we use in this paper are standard

and their definitions can be found in [1]. For a finite set A, by #A we mean the

number of elements in A.

The Jordan totient function Js(n) defined for positive integers s and n gives the

number of ordered sets of s elements from a complete residue system (modn) such

that the greatest common divisor of each set is prime to n, see [6], pages 95–97. Von

Sterneck’s function Hs is defined as

Hs(n) =
∑

n=[d1,d2,...,ds]

ϕ(d1)ϕ(d2) . . . ϕ(ds),

where the summation ranges over all ordered sets of s positive integers d1, d2, . . . , ds

with their least common multiple equal to n. Note that [a, b] denotes the lcm of

integers a, b.
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For m,n ∈ N, (m,n) will denote the gcd of m and n. Generalizing this notion, for

positive integer s, integers a, b, not both zero, the largest ls (where l ∈ N) dividing

both a and b will be denoted by (a, b)s. Following Cohen in [2] we call this function

on N×N as the generalized gcd function. When s = 1, this will be equal to the usual

gcd function. Like the gcd function, (a, b)s = (b, a)s, a ∈ N is said to be s-power free

or s-free if no ls, where l ∈ N, divides a.

Cohen’s function ϕs is defined as follows. If (a, b)s = 1, a, b are said to be relatively

s-prime. The subset N of a complete residue system M (modns) consisting of

all elements of M that are relatively s-prime to ns is called an s-reduced residue

system (modn). The number of elements of an s-reduced residue system is denoted

by ϕs(n).

The functions Js(n) and ϕs(n) are the same [2], Theorem 5, although their defi-

nitions look different.

Using the above generalization of the gcd function, for positive integers s and n

Klee’s function Φs(n) is defined to give the cardinality of the set {m ∈ N : 1 6 m 6 n,

(m,n)s = 1}.

Note that Φ1 = ϕ, the usual Euler totient function on N. Some interesting prop-

erties of Φs are the following.

(1) For n, s ∈ N, Φs(n) =
∑

ds|n

µ(d)n/ds.

(2) For n, s ∈ N, Φs(n) = n
∏

ps|n
p prime

(1 − 1/ps), where by convention, empty product

is taken to be equal to 1.

(3) Φs(p
a) =

{

pa − pa−s if a > s,

pa otherwise,
where p is prime and a ∈ N.

(4) Φs(n) is multiplicative in n.

(5) Φs(n) is not completely multiplicative in n.

(6) If a divides b and (a, b/a) = 1, then Φs(a) divides Φs(b).

(7) For a prime p, Φs(p) = p. So Φs(n) need not be even, whereas ϕ(n) is even for

n > 2.

(8) If 2s+1 divides n or 2s−1 | n and 2s ∤ n, then Φs(n) is even.

(9) If p is an odd prime such that ps divides n, then Φs(n) is even.

(10) If n = 2sa, where a is odd and a is s-free, then Φs is odd.

Many of the above properties are listed in [8]. The rest can be verified easily via

elementary techniques.

By τs(n), where s, n ∈ N, we mean the number of ls with l ∈ N dividing n. The

function τs(n) is multiplicative in n, because for (m,n) = 1, τs(mn) =
∑

ds|mn

1 =

∑

ds
1
|m

1
∑

ds
2
|n

1 = τs(m)τs(n). But τs(n) is not completely multiplicative as for ex-
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ample m = ps1p2 and n = ps−1
2 ps3 gives τs(mn) 6= τs(m)τs(n). The usual sum of

divisors function can be generalized as follows: for k, s, n ∈ N define σk,s(n) to be

the kth power sum of the sth power divisors of n. That is, σk,s(n) =
∑

ds|n

(ds)k. Note

that σk,s(n) 6= σks(n).

The principle of cross-classification lies in counting the number of elements in

certain sets. Since we use it in our proofs, we state it below.

Theorem 2.1 ([1], Theorem 5.31). If A1, A2, . . . , An are given subsets of a finite

set A, then

#

(

A−

n
⋃

i=1

Ai

)

= #A−
∑

16i6n

#Ai +
∑

16i<j6n

#(Ai ∩ Aj)

−
∑

16i<j<k6n

#(Ai ∩Aj ∩ Ak) + . . .+ (−1)n#(A1 ∩ A2 ∩ . . . ∩ An).

3. Main results and proofs

We state below the main results we prove in this paper and provide the proof after

that.

As a consequence of the principle of cross-classification, we prove the following.

Theorem 3.1. Let n, d, s, r ∈ N, ds | n. Let (r, ds)s = 1. Number of elements in

A = {r + tds : t = 1, 2, . . . , n/ds} such that (r + tds, n)s = 1 is Φs(n)/Φs(d
s).

Theorem 3.2 (Generalization of Li-Kim identity (1.3)). Let m1,m2, . . . ,mk,

b1, b2, . . . , br, n, s ∈ N and a1, a2, . . . , ak ∈ Z such that (ai, n
s)s = 1, i = 1, 2, . . . , k.

Then

∑

16m1,m2,...,mk6ns

(m1,n
s)s=1

(m2,n
s)s=1

...
(mk,n

s)s=1
16b1,b2,...,br6ns

(m1 − a1,m2 − a2, . . . ,mk − ak, b1, b2, . . . , br, n
s)s(3.1)

= Φs(n
s)k

∑

ds|ns

(ds)r

Φs(ns/ds)k−1
.

Note that the Menon-Sury identity (1.2) is a special case of the above generaliza-

tion with k = 1, a1 = 1 and s = 1.

We proceed to prove our results. First we prove Theorem 3.1, which is essential

in the proof of our generalization.
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P r o o f of Theorem 3.1. This result is a generalization of Theorem 5.32 appearing

in [1]. We use the same techniques used there to justify our claim.

We have to find the number of elements r+ tds such that (n, r+ tds)s = 1. Hence,

we need to remove elements fromA that have (r+tds, n)s > 1. If for an element r+tds

of A, ps | n and ps | r + tds, then since (r, n)s = 1, ps ∤ ds. Therefore, the number

we require is the number of elements in A with ps | n and ps ∤ ds for some prime p.

Let these primes be p1, p2, . . . , pm. Write l = ps1p
s
2 . . . p

s
m. Let Ai = {x : x ∈ A and

psi | x}, i = 1, 2, . . . ,m. If x ∈ Ai and x = r + tds, then r + tds ≡ 0 (mod psi ).

This means that tds ≡ −r (mod psi ). Since p
s
i ∤ ds (which is if and only if pi ∤ d),

there is a unique t mod psi satisfying this congruence equation. Therefore, there exists

exactly one t in each of the intervals [1, psi ], [p
s
i +1, 2psi ], . . . , [(q−1)psi +1, qpsi ], where

qpsi = n/ds. Therefore

#(Ai) = q =
n/ds

psi
.

Similarly,

#(Ai ∩ Aj) =
n/ds

psip
s
j

, . . . ,#(A1 ∩ A2 ∩ . . . ∩ Am) =
n/ds

ps1p
s
2 . . . p

s
m

.

Hence, by cross classification principle, the number of elements we seek is equal to

#

(

A−

m
⋃

i=1

Ai

)

= #(A)−

m
∑

i=1

#(Ai) +
∑

16i<j6m

#(Ai ∩ Aj)

− . . .+ (−1)m#(A1 ∩A2 ∩ . . . ∩Am)

=
n

ds
−
∑ n/ds

psi
+
∑ n/ds

psip
s
j

+ . . .+ (−1)m
n/ds

ps1p
s
2 . . . p

s
m

=
n

ds

(

1−
∑ 1

psi
+
∑ 1

psip
s
j

+ . . .+
(−1)m

ps1p
s
2 . . . p

s
m

)

=
n

ds

(

1−
1

ps1

)(

1−
1

ps2

)

. . .
(

1−
1

psm

)

=
n

ds

∏

ps|l

(

1−
1

ps

)

=
n

ds

∏

ps|n(1 − 1/ps)
∏

ps|ds(1− 1/ps)
=

Φs(n)

Φs(ds)
.

�

Next we prove the generalization we proposed. Here we use elementary number

theoretic techniques in the proof. Li and Kim used direct computations involving

Dedekind domains to derive their identity.
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P r o o f of Theorem 3.2. We know that [13], Section V.3, ns =
∑

d|n

Js(d) and

Js(n) = Φs(n
s). Hence,

ns =
∑

d|n

Φs(d
s) =

∑

ds|ns

Φs(d
s).

Now (m1 − a1,m2 − a2, . . . ,mk − ak, b1, b2, . . . , br, n
s)s is the sth power of some

natural number. So

∑

16m1,m2,...,mk6ns

(m1,n
s)s=1

(m2,n
s)s=1

...
(mk,n

s)s=1
16b1,b2,...,br6ns

(m1 − a1,m2 − a2, . . . ,mk − ak, b1, b2, . . . , br, n
s)s

=

ns

∑

m1=1
(m1,n

s)s=1

. . .

ns

∑

mk=1
(mk,n

s)s=1

ns

∑

b1=1

. . .

ns

∑

br=1

(m1 − a1,m2 − a2, . . . ,mk − ak, b1, b2, . . . , br, n
s)s

=

ns

∑

m1=1
(m1,n

s)s=1

. . .

ns

∑

mk=1
(mk,n)s=1

ns

∑

b1=1

. . .

ns

∑

br=1

∑

ds|(m1−a1,m2−a2,...,mk−ak,b1,b2,...,br,n
s)s

Φs(d
s)

=
∑

dS |ns

Φs(d
s)

ns

∑

b1=1
ds|b1

. . .

ns

∑

br=1
ds|br

ns

∑

m1=1
(m1,n)s=1

m1≡1(mod ds)

. . .

ns

∑

mk=1
(mk,n

s)=1
mk≡1(mod ds)

1

=
∑

ds|ns

Φs(d
s)

ns

∑

b1=1
ds|b1

. . .

ns

∑

br=1
ds|br

(Φs(n
s)

Φs(ds)

)k

(using Theorem 3.1)

= Φs(n
s)k

∑

ds|ns

1

Φs(ds)k−1

ns

∑

b1=1
ds|b1

. . .
ns

∑

br=1
ds|br

1 = Φs(n
s)k

∑

ds|ns

1

Φs(ds)k−1

(ns

ds

)r

= Φs(n
s)k

∑

ds|ns

(ds)r

Φs(
ns

ds )k−1
,

which completes the proof. �

We will now show that the above identity is indeed the same as Li-Kim iden-

tity (1.3) when s = ai = 1. For that we need to show that the RHS of identities (3.1)

and (1.3) are equal to the LHS of our identity, which can be quickly seen to be equal

to the LHS of (1.3) when s = ai = 1. To prove that the RHS are also equal, we

require the following identity.
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Lemma 3.1.

∑

d|pt

dr
( ϕ(pt)

ϕ(pt/d)

)k

=
t−1
∑

j=0

pj(k+r) + pt(k+r)
(

1−
1

p

)k

.

P r o o f.

∑

d|pt

dr
( ϕ(pt)

ϕ(pt/d)

)k

=

t
∑

j=0

(pj)r
( ϕ(pt)

ϕ(pt−j)

)k

=
t−1
∑

j=0

pjr
( pt(1− 1/p)

pt−j(1− 1/p)

)k

+ ptrptk
(

1−
1

p

)k

=

t−1
∑

j=0

pj(k+r) + pt(k+r)
(

1−
1

p

)k

.

�

Now we show what we claimed, that is

∑

d|n

dr
( ϕ(n)

ϕ(n/d)

)k−1

=

q
∏

i=1

(ϕ(ptii )
k−1ptiri − p

ti(k+r−1)
i + σk+r−1(p

ti
i )),

where n = pt11 pt22 . . . p
tq
q .

Starting from the RHS, we have

q
∏

i=1

(ϕ(ptii )
k−1ptiri − p

ti(k+r−1)
i + σk+r−1(p

ti
i ))

=

q
∏

i=1

(

p
ti(k−1)
i

(

1−
1

pi

)k−1

ptiri − p
ti(k+r−1)
i + 1 + pk+r−1

i

+ p
2(k+r−1)
i + . . .+ p

(ti−1)(k+r−1)
i + p

ti(k+r−1)
i

)

=

q
∏

i=1

(

1 + pk+r−1
i + p

2(k+r−1)
i + . . .+ p

(ti−1)(k+r−1)
i

+ p
ti(k+r−1)
i

(

1−
1

pi

)k−1)

=

q
∏

i=1

(ti−1
∑

j=0

p
j(k+r−1)
i + p

ti(k+r−1)
i

(

1−
1

pi

)k−1
)

=

q
∏

i=1

∑

di|p
ti
i

dri

( ϕ(ptii )

ϕ(ptii /di)

)k−1

(by Lemma 3.1)
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=
∑

d1|p
t1
1

dr1

( ϕ(pt11 )

ϕ(pt11 /d1)

)k−1 ∑

d2|p
t2
2

dr2

( ϕ(pt22 )

ϕ(pt22 /d2)

)k−1

. . .
∑

dq|p
tq
q

drq

( ϕ(p
tq
q )

ϕ(p
tq
q /dq)

)k−1

=
∑

d1d2...dq|p
t1
1

p
t2
2

...p
tq
q

(d1d2 . . . dq)
r
( ϕ(pt11 pt22 . . . p

tq
q )

ϕ(pt11 pt22 . . . p
tq
q /d1d2 . . . dq)

)k−1

=
∑

d|n

dr
( ϕ(n)

ϕ(n/d)

)k−1

.

Therefore we get the Li-Kim identity (1.3) as a special case of our identity (3.1) when

s = 1 and ai = 1. Hence, our identity also gives a generalization of the Menon-Sury

identity which in turn is a generalization of Menon’s identity.

The following identities can be easily deduced from our result by giving special

values to ai, bi and si and may be of independent interest. Note that the first one

gives another generalization of the Li-Kim identity and it involves the usual gcd

function.

Corollary 3.1.

∑

16m1,m2,...,mk6n
(m1,n)=1
(m2,n)=1

...
(mk,n)=1

16b1,b2,...,br6n

(m1 − a1,m2 − a2, . . . ,mk − ak, b1, b2, . . . , br, n)(1)

= ϕ(n)k
∑

d|n

(d)r

ϕ(n/d)k−1
,

∑

16m1,m2,...,mk6ns

(m1,n
s)s=1

(m2,n
s)s=1

...
(mk,n

s)s=1

(m1 − a1,m2 − a2, . . . ,mk − ak, n
s)s = Φs(n

s)k
∑

ds|ns

1

Φs(ds)k−1
,(2)

ns

∑

m=1
(m,ns)s=1

(m− 1, ns)s = Φs(n
s)τs(n

s).(3)
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4. An alternating way of defining Φs and extending it further

In [15] Tărnăuceanu suggested a new generalization of ϕ using elementary concepts

in group theory. His generalization was based on the following idea. An element

m ∈ Zn is a generator of the group (Zn,+) if and only if (m,n) = 1, which is if and

only if o(m) = n = exp(Zn), where o(m) is the order of the elementm and exp(Zn) is

the exponent of the group (Zn,+). Thus, ϕ(n) is the number of elements of order n

in Zn. That is, ϕ(n) = #{m ∈ Zn : o(m) = exp(Zn)}. Tărnăuceanu extended ϕ to

an arbitrary finite group G by defining ϕ(G) = #{m ∈ G : o(m) = exp(G)}.

We may adapt this technique for defining the generalization Φs as follows. An

m ∈ N can be counted in Φs(n) if and only if 1 6 m 6 n and (m,n)s = 1. Now

o(m) = n/(m,n), and (m,n)s = 1 if and only if m and n do not share any prime

factor with power greater than or equal to s. That is, (m,n) = pa1

1 pa2

2 . . . par
r with

0 6 ai < s. Here pi are prime divisors of n. Therefore

o(m) =
n

(m,n)
=

n

pa1

1 pa2

2 . . . par
r

, 0 6 ai < s.

By using this fact, we may observe that

Φs(n) = #
{

m ∈ Zn : o(m) =
n

pa1

1 pa2

2 . . . par
r

, pai

i | n and 0 6 ai < s, i = 1, 2, . . . , r
}

.

Now the extension of Φs can be defined as follows. For any arbitrary finite groupG,

define

Φs(G) =#
{

a∈G : o(a) =
exp(G)

pa1

1 pa2

2 . . . par
r

, pai

i | exp(G) and 06 ai < s, i= 1, 2, . . . r
}

.

With this definition we have the following quick observations. For any finite cyclic

group G, Φs(G) = Φs(#G). For relatively prime integers m and n, we have

Φs(Zm × Zn) = Φs(Zmn) = Φs(mn). For s-free integers m and n, Φs(Zm × Zn) =

Φs(Zm)Φs(Zn). The last statement follows because

Φs(Zm × Zn) = #
{

a ∈ Zm × Zn : o(a) =
exp(Zm × Zn)

pa1

1 pa2

2 . . . pak

k

,

pai

i | exp(Zm × Zn) and 0 6 ai < s, i = 1, 2, . . . , k
}

= #
{

a ∈ Zm × Zn : o(a) =
lcm(m,n)

pa1

1 pa2

2 . . . pak

k

,

pai

i | lcm(m,n) and 0 6 ai < s, i = 1, 2, . . . , k
}

.

Note that if m and n are s-free, then lcm(m,n) is also an s-free integer. We

have Φs(Zm × Zn) = #{a ∈ Zm × Zn : o(a) = d, where d | lcm(m,n)} =
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mn = Φs(Zm) × Φs(Zn). It is not very difficult to deduce the following gen-

eral statement. For s-free integers m1,m2, . . . ,mk, Φs(Zm1
× Zm2

× Zmk
) =

Φs(Zm1
)Φs(Zm2

) . . .Φs(Zmk
).

5. Further directions

Since we feel that this is the first time Menon’s identity is revisited through the

generalized gcd concept, it would be interesting to see what possible results can be

obtained if one tries to apply our techniques to other generalizations of the iden-

tity. We note that we have investigated how does the identity of Zhao and Cao

in [19] change if one uses the generalized gcd, Φs and τs in a recent (unpublished)

work. We expect our generalization to have interesting consequences in group theory

considering the definition of Φs we gave in the previous section.

Acknowledgements. We would like to thank the reviewer for suggesting the

possible generalization of Li-Kim identity before which our attention was restricted

to giving a generalization of the Menon-Sury identity alone.
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