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Abstract. Let µA be the singular measure on the Heisenberg group H
n supported on

the graph of the quadratic function ϕ(y) = ytAy, where A is a 2n × 2n real symmetric
matrix. If det(2A± J) 6= 0, we prove that the operator of convolution by µA on the right

is bounded from L(2n+2)/(2n+1)(Hn) to L2n+2(Hn). We also study the type set of the
measures dνγ(y, s) = η(y)|y|−γdµA(y, s), for 0 6 γ < 2n, where η is a cut-off function
around the origin on R

2n. Moreover, for γ = 0 we characterize the type set of ν0.
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1. Introduction

Let In be the n× n identity matrix and J be the 2n× 2n skew-symmetric matrix

given by

(1) J =

(
0 In

−In 0

)
.

The Heisenberg group is H
n = R

2n × R endowed with the group law (non-

commutative)

(x, t) · (y, s) = (x+ y, t+ s+ 〈x, y〉),

where 〈x, y〉 is the standard symplectic form on R
2n, i.e. 〈x, y〉 = xtJy with neutral

element (0, 0) and with inverse (x, t)−1 = (−x,−t). The topology in H
n is induced

by R
2n+1, so the borelian sets of Hn are identified with those of R2n+1. The Haar

measure in H
n is the Lebesgue measure of R2n+1, thus Lp(Hn) ≡ Lp(R2n+1). Given
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a borelian function f : H
n → C and a Borel measure µ on Hn, define the convolution

by µ on the right by

(2) (f ∗ µ)(x, t) =

∫

Hn

f((x, t) · (y, s)−1) dµ(y, s),

provided the integral exists.

A Borel measure µ on the Heisenberg group H
n is said to be Lp-improving if the

operator Tµ : f 7→ f∗µ is bounded from Lp(Hn) into Lq(Hn) for some 1 6 p < q < ∞.

A remarkable fact is that singular measures can be Lp-improving. If in (2) we replace

the Heisenberg group Hn by Rn with the ordinary convolution in Rn and considering

there µ = ησM , where σM is the surface measure on a given manifold M (in R
n)

and η is a smooth cut-off function, then the Lp-improving properties of a measure

of this type are closely related to the existence of a certain amount of curvature of

the manifold M (see [5], [6], [7]). A similar result holds on general Lie groups (see

Theorem 1.1, page 362 in [9]).

A more delicate problem consists in determining the exact range of pairs (p, q) for

which Lp ∗ µ ⊆ Lq embeds continuously. Given a manifold M (in H
n), define the

type set EησM
by

EησM
=

{(1
p
,
1

q

)
∈ [0, 1]× [0, 1] : ‖TησM

‖p,q < ∞
}
.

A very interesting survey of results concerning the type sets for convolution operators

with singular measures in R
n can be found in [8].

In the H
n setting, Secco in [10] and [11] obtained Lp-improving properties of

measures supported on curves in H
1, under certain assumptions. In [9], Ricci and

Stein showed that the type set of the measure given by (3) for the case ϕ ≡ 0,

γ = 0 and n = 1 is the triangle with vertices (0, 0), (1, 1) and (34 ,
1
4 ). In [3] and [4],

the author jointly with Godoy generalized the work of Ricci and Stein for the case

ϕ(w) = wtAw =
n∑

j=1

αj |wj |
2, where A is a 2n × 2n real diagonal matrix such that

aii = a(i+1)(i+1) for i = 2j − 1 with j = 1, 2, . . . , n, αj = a(2j−1)(2j−1), wj ∈ R
2,

0 6 γ < 2n and n ∈ N. There we also gave some examples of surfaces with degenerate

curvature at the origin.

Let ϕ : R
2n → R be the function defined by ϕ(y) = ytAy, where A is a 2n×2n real

symmetric matrix. It is well known that if A is an arbitrary matrix, then there exists

a symmetric matrix Ã such that ytAy = ytÃy for all y. We consider two borelian

measures on H
n supported on the graph of ϕ, µA and νγ , 0 6 γ < 2n, given by

µA(E) =

∫

R2n

χE(y, ϕ(y)) dy
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and

(3) νγ(E) =

∫

R2n

χE(y, ϕ(y))η(y)|y|
−γ dy,

where η : R2n → [0, 1] is a smooth cut-off function such that η(y) = 1 if |y| 6 1,

η(y) = 0 if |y| > 2, and E is a borelian set of Hn. Let TµA
f = f ∗µA and Tνγf = f ∗νγ

be the operators of convolution by µA and νγ on the right, respectively.

We are interested in studying the Lp-improving properties of the operator TµA
and

in the characterization of the type set Eνγ . We point out that our measure µA is not

the surface measure on the graph gr(ϕ) of ϕ, however the measures ηµA and ησgr(ϕ)

are equivalent, see Proposition 2 below, so EηµA
= Eησgr(ϕ)

.

The following restrictions for the type sets Eνγ , 0 6 γ < 2n, were proved in [3]

and [4] for the case ϕ(w1, . . . , wn) =
n∑

j=1

αj |wj |
2 with wj ∈ R

2. It is easy to

see that such an argument works as well for our function ϕ(y) = ytAy. Thus, if

(1/p, 1/q) ∈ Eνγ , 0 6 γ < 2n, then

(4) p 6 q,
1

q
>

2n+ 1

p
− 2n,

1

q
>

1

(2n+ 1)p
.

Another necessary condition for the pair (1/p, 1/q) to be in Eνγ is the following:

(5)
1

q
>

1

p
−

2n− γ

2n+ 2
.

This last condition is relevant only for the case 0 < γ < 2n. Let D be the point

of intersection, in the (1/p, 1/q) plane, of the lines 1/q = (2n+ 1)/p − 2n, 1/q =

1/p − (2n− γ)/(2n+ 2), and let D′ be its symmetric image with respect to the

symmetry axis 1/q = 1− 1/p. So

D =
(4n2 + 2n+ γ

2n(2n+ 2)
,
2n+ (2n+ 1)γ

2n(2n+ 2)

)
=

( 1

pD
,
1

qD

)
and D′ =

(
1−

1

qD
, 1−

1

pD

)
.

Since 0 6 γ < 2n, it is clear that ‖Tνγf‖p 6 c‖f‖p for all Borel functions f ∈

Lp(Hn) and all 1 6 p 6 ∞, so (1/p, 1/p) ∈ Eµγ
. Thus, for 0 < γ < 2n the

set Eνγ is contained in the closed trapezoid with vertices (0, 0), (1, 1), D and D′,

and the set Eν0 is contained in the closed triangle with vertices (0, 0), (1, 1) and

((2n+ 1)/(2n+ 2), 1/(2n+ 2)).

In Section 3, our main result appears. There we prove that the operator TµA
is

bounded from L(2n+2)/(2n+1)(Hn) to L2n+2(Hn), see Theorem 3 below. This result

allows us to characterize the type set Eν0 as well as the interior of Eνγ for 0 < γ < 2n.
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More precisely, we show that Eν0 is the closed triangle with vertices (0, 0), (1, 1) and

((2n+ 1)/(2n+ 2), 1/(2n+ 2)) and the interior of Eνγ coincides with the interior

of the closed trapezoid with vertices (0, 0), (1, 1), D and D′, see Theorem 4 and

Theorem 6 below.

Throughout this paper, c will denote a positive real constant not necessarily the

same at each occurrence. The symbol A . B stands for the inequality A 6 cB

for a constant c. We use the following convention for the Fourier transform in R
n

f̂(ξ) =
∫
f(x)e−iξ·x dx. The Fourier transform û of a distribution u on R

n is the

distribution defined by (û, ϕ) = (u, ϕ̂) for all rapidly decreasing functions ϕ on R
n.

2. Preliminaries

In the sequel J will denote the 2n× 2n skew-symmetric matrix defined in (1). It

is easy to check that

(a) J2 = −I,

(b) J t = −J ,

(c) xtJx = 0 for all x ∈ R
2n,

(d) xtJy = −ytJx for all x, y ∈ R
2n.

Lemma 1. Let A be a 2n× 2n real diagonal matrix. Then

det(A± J) = (a11a(n+1)(n+1) + 1) · (a22a(n+2)(n+2) + 1) . . . (anna(2n)(2n) + 1),

where the aii’s are the diagonal entries of A.

P r o o f. Since det(A+ J) = det((A+ J)t) = det(A− J), it is sufficient to prove

the statement of the lemma for det(A + J). Applying induction on n, the lemma

follows. �

Proposition 2. Let A be a 2n×2n real symmetric matrix. Then the graph of the

function ϕ(y) = ytAy generates all the group H
n. Moreover, the measure ν0 = ηµA

is equivalent to the measure ησ, where η is a cut-off function and σ is the surface

measure on the graph of ϕ.

P r o o f. The first statement will follow if we prove that (x, 0) and (0, t) belong

to the set Ggr(ϕ) generated by the graph gr(ϕ) of ϕ, since (x, t) = (x, 0) · (0, t). It is

clear that (x, ϕ(x)) ∈ Ggr(ϕ), so (−t1/2x, ϕ(t1/2x)) = (−t1/2x, ϕ(−t1/2x)) ∈ Ggr(ϕ)

for all x ∈ R
2n and all t > 0. From that it follows that (0, tϕ(x)) ∈ Ggr(ϕ) for all

t > 0 and all x. If A is a non-null matrix, then (0,−t) = (0, t)−1 ∈ Ggr(ϕ) and

(x, 0) = (x, ϕ(x)) · (0,−ϕ(x)) ∈ Ggr(ϕ). If A is the null matrix, it is sufficient to
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prove that (0, t) ∈ Ggr(ϕ) for all t. Indeed, for x and y such that 〈x, y〉 6= 0 we have

(0, t) = (x, 0) · (ty/〈x, y〉, 0) · (−x− ty/〈x, y〉, 0) ∈ Ggr(ϕ). So Ggr(ϕ) = H
n.

For the second part of the proposition, we have that the surface measure on the

graph of ϕ is given by

σ(E) =

∫

ϕ−1(E)

√
det[(∂xi

ϕ, ∂xj
ϕ)x] dx,

where ϕ(x) = (x, ϕ(x)) and E is a borelian set of R2n+1 (see pages 43–45 in [1]). A

computation gives

det[(∂xi
ϕ, ∂xj

ϕ)x] = 1 +

2n∑

j=1

(∂xj
ϕ(x))2 ∀x.

So

∫

R2n

χE(ϕ(x))η(x) dx 6

∫

ϕ−1(E)

√
det[(∂xi

ϕ, ∂xj
ϕ)x]η(x) dx .

∫

R2n

χE(ϕ(x))η(x) dx.

Then ν0 is equivalent to ησ. �

The λ-twisted convolution is defined by

(f ×λ g)(x) =

∫

R2n

f(x− y)g(y)e−iλxtJy dy.

Given a 2n× 2n real symmetric matrix A, we put

eA(x) = eix
tAx.

It is easy to check, using the properties (b) and (c) of the matrix J , that

(f ×λ eλA)(x) = eλA(x)(eλA(·)f(·))̂(λ(2A+ J)x),

where f̂(ξ) =
∫
R2n f(x)e−ix·ξ dx is the Fourier transform of f . Thus, for each f ∈

L1(R2n) ∩ L2(R2n) we have

(6) ‖f ×λ eλA‖L2(R2n) = (2π)n|λ|−n| det(2A± J)|−1/2‖f‖L2(R2n)

if det(2A± J) 6= 0.
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3. Main result

To prove the L(2n+2)/(2n+1)(Hn) − L2n+2(Hn) boundedness of the operator TµA

we embed our operator in an analytic family {Tz} of operators on the strip −n 6

ℜ(z) 6 1, and then we apply the complex interpolation theorem.

Theorem 3. If det(2A ± J) 6= 0, then the operator TµA
is bounded from

L(2n+2)/(2n+1)(Hn) to L2n+2(Hn).

P r o o f. To prove the statement of the theorem we consider the family {|s|z−1} of

functions initially defined when ℜ(z) > 0 and s ∈ R\{0}. This family of functions can

be extended in the z variable to an analytic family of distributions on C\{−2k : k ∈

N ∪ {0}}. By abuse of notation, we denote this extension by |s|z−1. The family

{|s|z−1} has simple poles in z = −2k for k ∈ N ∪ {0}. Since the meromorphic

continuation of the function Γ(12z) (we keep the notation for his continuation) has

simple poles at the same points (i.e. z = −2k), the family {Iz} of distributions

defined by

(7) Iz(s) =
2−z/2

Γ
(
1
2z

) |s|z−1

results in an entire family of distributions (see pages 55–56 in [2]).

From this construction and by taking the ratios of the corresponding residues at

z = 0, we have I0 = δ, where δ is the Dirac distribution at the origin on R (see

equation (3), page 57 in [2]), also Îz = cI1−z for a real constant c independent of z

(see equation (12′), page 173 in [2]).

For z ∈ C, we also define Uz as the distribution on H
n given by the tensor product

Uz = δR2n ⊗ Iz,

where δR2n is the Dirac distribution at the origin on R
2n and Iz is given by (7).

Let {Tz} be the analytic family of operators on the strip −n 6 ℜ(z) 6 1, given by

Tzf = f ∗ µA ∗ Uz.

It is clear that T0 = TµA
. For ℜ(z) = 1 we have

‖Tzf‖∞ = ‖f ∗ µA ∗ Uz‖∞ 6 ‖f‖1‖µA ∗ Uz‖∞.

Since µA ∗ U1+ib(x, t) = I1+ib(t − ϕ(x)) = (2−(1+ib)/2/Γ(12 (1 + ib)))|t − ϕ(x)|ib, it

follows that

‖T1+ib‖1,∞ 6
∣∣∣ 2−(1+ib)/2

Γ(12 (1 + ib))

∣∣∣ ∀ b ∈ R.
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For ℜ(z) = −n we will prove that the operator Tz is bounded on L2(Hn). This is

equivalent to showing that
∫

R2n

|(Tzf)
λ(x)|2 dx 6 c

∫

R2n

|fλ(x)|2 dx,

where hλ(x) :=
∫
R
h(x, t)e−iλt dt. A computation gives

(T−n+ibf)
λ(x) = Î−n+ib(λ)

∫

R2n

fλ(x− y)eλA(y)e
−iλxtJy dy

= Î−n+ib(λ)(f
λ ×λ eλA)(x).

From the identity in (6) and since Îz = cI1−z, we get

‖(T−n+ibf)
λ‖L2(R2n) =

∣∣∣ c2−(1+n−ib)/2

Γ
(
1
2 (1 + n− ib)

)
∣∣∣(2π)n| det(2A± J)|−1/2‖fλ‖L2(R2n)

for each b ∈ R. So T−n+ib is bounded on L2(Hn) if det(2A ± J) 6= 0. Finally, it is

easy to see, with the aid of the Stirling formula (see e.g. [12]), that the family {Tz}

satisfies, on the strip −n 6 ℜ(z) 6 1, the hypothesis of the complex interpolation

theorem (see [13], page 205) and so T0 = TµA
is bounded from L(2n+2)/(2n+1)(Hn)

into L2n+2(Hn). �

Theorem 4. Let ν0 be the measure defined by (3) with γ = 0. If det(2A±J) 6= 0,

then the type set Eν0 is the closed triangle with vertices (0, 0), (1, 1) and ((2n+ 1)/

(2n+ 2), 1/(2n+ 2)).

P r o o f. Since the inequality Tν0f 6 TµA
f holds for each borelian function

f > 0, the theorem follows from the restrictions that appear in (4), Theorem 3 and

the Riesz convexity theorem. �

Corollary 5. If det(2A±J) 6= 0, then the operator TµA
is bounded from Lp(Hn)

into Lp(Hn) if and only if p = (2n+ 2)/(2n+ 1) and q = 2n+ 2.

P r o o f. The “if ” part of the corollary is Theorem 3. To see the reciprocal we

introduce the action of the dilation group R>0 on Hn, i.e. δ · (x, t) = (δx, δ2t), δ > 0.

For a function f defined on Hn we put fδ(x, t) = f(δ · (x, t)). It is easy to check that

(TµA
f)δ = δ2n TµA

(fδ).

If ‖TµA
f‖q 6 cp,q‖f‖p, then

δ−(2n+2)/q‖TµA
f‖q = ‖(TµA

f)δ‖q = δ2n‖TµA
(fδ)‖q 6 δ2nc‖fδ‖p = δ2n−(2n+2)/pc‖f‖p

for all δ > 0. So 1/q = 1/p − 2n/(2n+ 2). Since Tν0f 6 TµA
f for f > 0, from

Theorem 4 it follows that p = (2n+ 2)/(2n+ 1) and q = 2n+ 2. �
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Theorem 6. Let νγ be the measure defined by equation (3) with 0 < γ < 2n.

If det(2A± J) 6= 0, then the type set Eνγ is contained in the closed trapezoid with

vertices (0, 0), (1, 1), D and D′, where

D =
(4n2 + 2n+ γ

2n(2n+ 2)
,
2n+ (2n+ 1)γ

2n(2n+ 2)

)
=

( 1

pD
,
1

qD

)
and D′ =

(
1−

1

qD
, 1−

1

pD

)

and with the only possible exception of the closed segment joining the two points D

and D′.

P r o o f. For each k ∈ N ∪ {0} we define the sets Ak ⊂ R
2n by

Ak = {y ∈ R
2n : 2−k < |y| 6 2−k+1}.

Let νγ,k be the fractional Borel measure given by

νγ,k(E) =

∫

Ak

χE(y, ϕ(y))η(y)|y|
−γ dy

and let Tνγ,k
be its corresponding convolution operator, i.e. Tνγ,k

f = f ∗ νγ,k. Now,

it is clear that νγ =
∑
k

νγ,k and ‖Tνγ‖p,q 6
∑
k

‖Tνγ,k
‖p,q. For f > 0 we have that

∫

Hn

f(y, s) dνγ,k(y, s) 6 2kγ
∫

R2n

f(y, ϕ(y))η(y) dy.

Thus ‖Tνγ,k
‖p,q 6 c2kγ‖Tν0‖p,q, from Theorem 4 it follows that

‖Tνγ,k
‖(2n+2)/(2n+1),2n+2 6 c2kγ .

It is easy to check that ‖Tνγ,k
‖1,1 6 |νγ,k(R

2n+1)| ∼
∫
Ak

|y|−γ dy = c2−k(2n−γ). For

0 < θ < 1 we define

( 1

pθ
,
1

qθ

)
=

(2n+ 1

2n+ 2
,

1

2n+ 2

)
(1− θ) + (1, 1)θ.

By the Riesz convexity theorem we have

‖Tνγ,k
‖pθ,qθ 6 c2kγ(1−θ)−k(2n−γ)θ.

Choosing θ such that kγ(1 − θ) − k(2n − γ)θ = 0 yields sup
k∈N

‖Tνγ,k
‖pθ,qθ 6 c < ∞.

A simple computation gives θ = (2n− γ)/(2n), then (1/pθ, 1/qθ) = (1/pD, 1/qD), so
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‖Tνγ,k
‖pD,qD 6 c, where c is independent of k. Interpolating once again, but now

between the points (1/pD, 1/qD) and (1, 1) we obtain for each 0 < τ < 1 fixed

‖Tνγ,k
‖pτ ,qτ 6 c2−k(2n−γ)τ .

Since ‖Tνγ‖p,q 6
∑
k

‖Tνγ,k
‖p,q and 0 < γ < 2n, it follows that

‖Tνγ‖pτ ,qτ 6 c
∑

k∈N

2−k(2n−γ)τ < ∞.

By duality we also have

‖Tνγ‖qτ/(qτ−1),pτ/(pτ−1) 6 cτ < ∞.

Finally, the theorem follows from the Riesz convexity theorem, and the restrictions

that appear in (4) and (5). �

We conclude this note with the following remarks.

R em a r k 7. Let ν0 be the measure of compact support defined by (3), but now

with det(2A± J) = 0. In this case, by Theorem 1.1 in [9] and Proposition 2, we can

be sure that the type set Eν0 has a nonempty interior.

R em a r k 8. Lemma 1 provides us with examples of diagonal matrices A such

that det(2A ± J) = 0. By the above remark we know that the interior of the

type set of measure ν0 = ηµA is nonempty. If n > 2 and A also satisfies that

ϕ(y) = ytAy =
n∑

j=1

αj |yj|
2 (αj ∈ R and yj ∈ R

2), then the type set of ν0 is the closed

triangle with vertices (0, 0), (1, 1) and ((2n+ 1)/(2n+ 2), 1/(2n+ 2)). This result is

independent of the value of det(2A± J) (see Theorem 1, page 102 in [3]).

These final comments illustrate the limits of the techniques used in this note as

well as of those developed in the works [3] and [4].

A c k n ow l e d g em e n t . I express my thanks to Prof. Fulvio Ricci for his numer-

ous useful suggestions. My thanks also go to the referee for the useful suggestions

and corrections which made the manuscript more readable.
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