
Zpravodaj Československého sdružení uživatelů TeXu

Peter Wilson
The sudoku bundle

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 20 (2010), No. 3, 227–241

Persistent URL: http://dml.cz/dmlcz/150129

Terms of use:
© Československé sdružení uživatelů TeXu, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150129
http://dml.cz

Balíček sudokubundle
Peter Wilson

Abstrakt
Zdrojové kódy v balíku sudoku bundle poskytují sadu maker pro zobrazování,
řešení a generování her Sudoku. Tento článek popisuje některé pohledy na
algoritmy a fungování těchto maker.
Klíčová slova: Sudoku, balíček sudokubundle.
doi: 10.5300/2010-3/227

Introduction

I developed the sudoku bundle in response to a challenge presented in the
PracTEX journal. It is available from ctan.org with a complete User Manual [8]
and is also described in the LATEX Graphics Companion [3, Chapter 10].

In December 2005 the PracTEX Journal [2] set a competition about Sudoku
puzzles. Depending on their experience with TEX, contestants were asked to (a)
typeset a particular puzzle, (b) typeset a puzzle described in a ‘Sudoku’ file, (c)
create a solver for Sudoku puzzles. I entered the competition with a printer and
solver. Following from this it was no great effort to develop a matching Sudoku
puzzle generator. These form the sudoku bundle.

A Sudoku puzzle consists of a 9 by 9 grid of cells with some of the cells
containing a number between 1 and 9, such as is shown in Figure 1. The problem
is to place a number between 1 and 9 in each cell such that no number appears
more than once in each row and in each column and in each minor 3 by 3 grid.
The solution to the example puzzle is shown later in Figure 4 on page 237. The
puzzle and answer have been typeset using the printsudoku package.

Among many other sources the Sudoku Online [5] website provides much
information on Sudoku puzzles and their solutions, as does the Sudoku Solver by
logic website [6].

A Sudoku puzzle may be represented as a simple text file consisting of nine
rows of numbers and dots, nine numbers and dots in each row. The numbers are
the clues to the puzzle and the dots represent blanks in the grid. A Sudoku file
for the example puzzle is given in Figure 2.

A harder puzzle is in Figure 3. You may like to try and solve it. Whether you
do or not, the solution as determined and displayed by the sudoku bundle is
towards the end of the article in Figure 6 on page 240.

227

4 8 3 7 2
1 2 8

5 2 1 3
6 2 9 1

7 5 9 3
9 4 7 8

3 9 7 4
5 6 1
8 4 6 9

Figure 1: Example of simpler Sudoku puzzle

..483..72

.12....8.

..52.13..

....62.91
7..5.9..3
94.78....
..39.74..
.5....61.
.8..469..

Example of simpler puzzle
(anything can come after the nine puzzle lines)

Figure 2: A Sudoku file for the example simpler puzzle (centered)

3 7 2 9
2 5 8 1 7

5
9 8

4 2 3
2 3

8
5 6 9 3 7

9 6 4 8

Figure 3: A harder puzzle

228

The sudoku bundle only handles sudoku puzzles that consist of 9 by 9
arrays of the numbers 1 through 9. Other puzzles, such as those consisting of 16
by 16 arrays of numbers and letters are outside the scope of this paper.

The sudoku bundle consists of three packages:
1. printsudoku which prints a puzzle that is contained in an external file or

writes out a file that is specifed by a macro in the document.
2. solvesudoku which solves puzzles up to a certain level of difficulty; it

requires the printsudoku package to read the puzzle from a file and print
it and also to print the solution and write it out to an external file.

3. createsudoku which generates puzzles that can be solved by solve-
sudoku; it requires the solvesudoku package.

I am not going to describe the packages in detail as you can find that else-
where [8]. Rather, I shall discuss some of the algorithms that I used in the
packages and how I implemented them in LATEX.

Typesetting

This is the province of the printsudoku package, which provides two basic
functions:

1. The \sudoku{〈file〉} macro reads a Sudoku game from 〈file〉 and typesets
the grid and clues;

2. The \writepuzzle{〈line1 〉}{〈line2 〉}...{〈line9 〉}[〈text〉] macro writes the
nine lines of a puzzle to the \puzzlefile external file, where the default
file is: \newcommand*{\puzzlefile}{puzz.sud}

The code for \writepuzzle is pretty simple, just opening an output file and
writing the 9 arguments to the file a line at a time:
\newwrite\s@dwrite
\newcommand*{\writepuzzle}[9]{%

\immediate\closeout\s@dwrite
\immediate\openout\s@dwrite=\puzzlefile
\immediate\write\s@dwrite{#1}%
...
\immediate\write\s@dwrite{#9}%
\writes@dpuzzend}

\writes@dpuzzend provides an option to write text after the puzzle data is
written, with \sudpuzznewline as a new line macro (\\ will not work here).
\newcommand*{\writes@dpuzzend}[1][\@empty]{%

\ifx\@empty #1\else
\immediate\write\s@dwrite{ }% a blank line
\immediate\write\s@dwrite{#1}%

\fi

229

\immediate\closeout\s@dwrite}
\newcommand*{\sudpuzznewline}{^^J}

The \writepuzzle and \writes@dpuzzend pair of macros is a particular
instance of a general technique for making it appear that a macro takes more
than the 9 argument limit imposed by TEX.

More complicated is the code for the \sudoku{〈file〉} macro, which reads a
puzzle from the 〈file〉 and typesets it.
\newcommand*{\sudoku}[1]{%

\reads@dgame{#1}% open the file for reading
\s@dgame}

The macro \s@dgame uses the picture environment to draw the grid. It then
inserts the clues into the grid.
\newcommand*{\s@dgame}{%

\setlength\unitlength\halfs@dcell % units of half cell size
\begin{picture}(18,18)(0,-18)

%% code to draw the grid
\adds@dclues
\end{picture}}

The macro \adds@dclues (not shown) reads the puzzle file line by line, each time
setting \firsts@dcluetrue, and then for each line calls \dos@dcols to insert
its clues into the grid.
\newcommand*{\dos@dcols}{%
\bgroup

\loop% over the 9 clues
\ifnum\s@dncol<10\relax

%% calculate grid location coordinates (\s@dcolpos,-\s@drowpos)
% put the clue into the grid
\put(\s@dcolpos,-\s@drowpos){\makebox(0,0){\gets@dclue}}%
\advance\s@dncol 1\relax% increment clue/column count

\repeat
\egroup}

The macro \gets@dclue retrieves the next clue (character) from the line of
clues and presents it for printing. To do this it uses \splitoff{〈string〉}, which
gets the next character in a string, making it available as \istchar and leaves
the remainder of the string as \restchars. The technique is based on TEX’s
delimited arguments [4, chapter 10]. I have talked about this in more detail in
two of my Glisterings columns [7, 9], the second of which also contains a long
example of using the \loop...\repeat construct.
\def\gettwo#1#2\nowt{%

\gdef\istchar{#1}\gdef\restchars{#2}}
\def\splitoff#1{\gettwo#1\nowt}

230

Finally, this is the code for \gets@dclue. If the clue is a number, \gets@dclue
provides it for printing or if it is a ‘ . ’ then \gets@dclue skips on. At the
beginning the string is the line as read from the file (\s@dline); after that the
string is \restchars.

\gdef\s@dfstop{.}
\newcommand*{\gets@dclue}{%

\iffirsts@dclue% initially set by \adds@dclues
\expandafter\splitoff\expandafter{\s@dline}%
\global\firsts@dcluefalse

\else
\expandafter\splitoff\expandafter{\restchars}%

\fi
\ifx\s@dfstop\istchar% a ‘.’ return nothing
\else% return clue number

\istchar
\fi}

Solving

The \sudokusolve{〈file〉} macro in the solvesudoku package attempts to solve
the puzzle contained in the 〈file〉. It first prints the puzzle as specified in 〈file〉,
then solves it as best it can, and lastly typesets the (partial) solution.
The following facts are used to generate a solution.

1. Initially the potential solution for any cell is in the set of digits 1. . . 9.
2. In a solved puzzle a digit must be unique within its row, its column, and

its 3 by 3 block. So, if a solution, say N , is known for a cell, then N can be
deleted from all the potential solutions in the other cells of the row, column
and block. I have called this a simple reduction.

3. If among all the cells in a row (column, block) there is a digit that occurs
only once among all the potential solutions, then that digit is the solution
for its cell. I have termed this a loner.

4. If among all the cells in a row (column, block) there are two digits which
occur only twice in the potential solutions, each time as a pair (e.g., 39
and 39), then one or other of the two digits must be a solution for a cell
in which the pairs occur. This means that the two digits cannot occur
anywhere else in the row (column, block) and thus can be eliminated from
all the other potential solutions. I call this pair reduction.

5. There are other facts which are more difficult to apply and I have not con-
sidered them because of their complications and the difficulty of embodying
them in LATEX code.

231

The solution procedure is:
1. Populate the puzzle grid by assigning to each cell either the clue (digit)

given in the puzzle 〈file〉 or the set of potential solutions when the puzzle
provides no value.

2. For each clue perform a simple reduction, which may produce loners.
3. Continue the simple reductions until there is no change in the solution

state. This is either because the full solution has been obtained or that
more sophisticated methods are needed.

4. Examine the partial solution for pairs and if one is found perform the
pair reduction. After a pair reduction go back and look for loners (and
subsequent simple reductions (and subsequent pair reductions). At the end
either a complete solution is found or the solver gives up.

5. The process stops when either all 81 cells have been solved or there is no
change in any potential solution after going through all the reductions.

The major problem was in deciding on a convenient datastructure for the
problem. In the end I used a 9 digit ‘binary solution set’ for the representation
of a cell’s potential solution (e.g., [111111111] ⇔ 123456789 and [101010101] ⇔
13579). The solution, say N , for a cell is represented as the ‘set’ [−N]; that is,
for example, a potential solution ‘3’ is represented as [001000000] and the actual
solution ‘3’ is represented as [−3]. I will use the term 9-set to indicate a set with
a maximum of 9 members, where a member is a digit d in the range 1 ≤ d ≤ 9.

Following from this was the question of how to implement the datastructure?
There are 81 cells in the Sudoku grid and I needed to maintain a potential or
actual solution for each cell. It was convenient to use a \count for each cell’s
solution set which was accessible via the cell’s number (1. . . 81).
\newcommand*{\newknt}[1]{\expandafter\newcount\csname #1\endcsname}
\newcommand*{\useknt}[1]{\csname #1\endcsname}

\newknt{〈id〉} creates a new \count called 〈id〉, where 〈id〉 can include analpha-
betic characters (like digits), and \useknt{〈id〉} expands to the 〈id〉 \count
created previously by \newknt.
% make the potential solution sets
\newcommand*{\makesudsets}{%

\global\s@lcnta=1\relax
\loop

\ifnum\s@lcnta<82\relax
\newknt{s@lans\the\s@lcnta}%
\global\useknt{s@lans\the\s@lcnta}=111111111\relax
\advance\s@lcnta 1\relax

\repeat}

\makesudsets creates 81 \counts named \s@lans1 through \s@lans81 and sets
them all to 111111111.

232

Now some macros are needed to manipulate a 9-set. These are principally
based on the fact that TEX only provides integer arithmetic. For instance, with
integer arithmetic

19/10 = 1, 20/10 = 2 and 21/10 = 2,

which is a method for getting the first digit of a two-digit number (and similarly
for numbers with more digits). Further,

(19/10)× 10 = 10 while 19− (19/10)× 10 = 9

which provides a method for obtaining the last digit of a two-digit number. As a
more complicated example, to determine the number of thousands in a number,
say 13247546 where the answer is 7,

(13247546/1000) = 13247
(13247/10)× 10 = 13240

13247− 13240 = 7

\settonum{〈set〉}{〈cnt〉} converts a potential binary solution 9-set 〈set〉 to
the corresponding list of digits, e.g., [11...1] -> 12...9. The result is assigned
to the \count 〈cnt〉 which must be supplied by the calling macro. If the set is
negative then the result is that number (e.g., [-3] -> -3). If the set contains
only a single non-zero entry, that is converted to the negative of the corresponding
digit (e.g., [100] -> -7).
\newcommand*{\settonum}[2]{%

\settonumcnt=#1\relax
\tempcnty=0\relax
\tenscnt=1\relax
\ifnum\settonumcnt<0\relax % just return the number

\tempcnty=\settonumcnt
#2=\tempcnty

\else
\ifodd\settonumcnt % set is [dddddddd1] so 9 flagged

\tempcntz=9\relax
\multiply\tempcntz \tenscnt
\advance\tempcnty by \tempcntz
\multiply\tenscnt 10\relax

\fi
\divide\settonumcnt by 10\relax % set reduced to [dddddddd]
\ifodd\settonumcnt % reduced set is [ddddddd1] so 8 flagged

\tempcntz=8\relax
\multiply\tempcntz \tenscnt
\advance\tempcnty by \tempcntz

233

\multiply\tenscnt 10\relax
\fi
\divide\settonumcnt by 10\relax % set reduced to [ddddddd]
\ifodd\settonumcnt % reduced set is [dddddd1] so 7 flagged

...
\ifodd\settonumcnt % reduced set is [1] so 1 flagged

\tempcntz=1\relax
\multiply\tempcntz \tenscnt
\advance\tempcnty by \tempcntz

\fi
\ifnum\tempcnty<10\relax

\ifnum\tempcnty>0\relax % single digit
\tempcnty = -\tempcnty

\fi
\fi
#2=\tempcnty

\fi}

\numofnuminset{〈dig〉}{〈set〉}{〈cnt〉} sets the \count 〈cnt〉 to the number
of times the digit 〈dig〉 is represented in the 9-set 〈set〉. For example the number
of the digits in the 9-set [200000013] are 1->2, 2->0, ..., 8->1 and 9->3.
\newcommand*{\numofnuminset}[3]{%

\tempsetctr=#2\relax
\tempsetansrctr=\tempsetctr
\ifnum\tempsetctr<0\relax % a solution, not a set

\tempsetansctr=0\relax
\else

\ifcase #1\relax
\or % 1

\divide\tempsetansctr by 100000000\relax
\or % 2

\divide\tempsetansctr by 10000000\relax
\tmpsetctr=\tempsetansctr
\divide\tmpsetctr 10\relax \multiply\tempsetctr 10\relax
\advance\tmpsetansctr -\tmpsetctr

\or % 3
\divide\tempsetansctr by 1000000\relax
\tmpsetctr=\tempsetansctr
\divide\tmpsetctr 10\relax \multiply\tempsetctr 10\relax
\advance\tmpsetansctr -\tmpsetctr

\or
...

\or % 9
\tmpsetctr=\tempsetansctr
\divide\tmpsetctr 10\relax \multiply\tempsetctr 10\relax

234

\advance\tmpsetansctr -\tmpsetctr
\else % error

\tmpsetansctr=0\relax
\fi

\fi
#3=\tmpsetansctr}

The macro \deletenumfromset{〈dig〉}{〈set〉}{〈cnt〉} removes the digit 〈dig〉
from the potential binary solution 9-set, putting the modified set in \count 〈cnt〉.
If the digit was removed then the boolean \ifsetchanged is set true.
\newcommand*{\deletenumfromset}[3]{%

\global\setchangedfalse
\tmpsetctr=#2\relax
\tmpsetansctr=#2\relax
\ifnum\tmpsetctr<0\relax% represents a solved number, do nothing
\else

\ifcase #1\relax
\or% 1

\divide\tmpsetctr by 100000000\relax
\ifodd\tmpsetctr% it’s there

\advance\temsetansrctr -100000000\relax
\global\setchangedtrue

\fi
\or% 2

\divide\tmpsetctr by 10000000\relax
\ifodd\tmpsetctr% it’s there

\advance\temsetansrctr -10000000\relax
\global\setchangedtrue

\fi
\or

...
\or% 8

\divide\tmpsetctr by 10\relax
\ifodd\tmpsetctr% it’s there

\advance\temsetansrctr -10\relax
\global\setchangedtrue

\fi
\or% 9

\ifodd\tmpsetctr% it’s there
\advance\temsetansrctr -1\relax
\global\setchangedtrue

\fi
\fi

\fi
#3=\tmpsetansctr}

235

Given these macros it is now just a case of using them in a lot of tedious code
to solve the puzzle using the procedure described earlier.

Going through the puzzle as presented, for any cell for which a clue is given,
its potential binary solution set is replaced by the actual solution. After this
initialisation, \deletenumfromset is used for the simple reductions.

The macro \numofnuminset is used to find loners — the potential binary
solution 9-sets for the cells in a row (column, block) are added together and the
result is then searched for a loner, which is a digit that occurs only once in the
resulting 9-set summation.

The macro \numofnuminset is also used to search for pairs in a row (column,
block) following a similar summation of the potential binary solution 9-sets.

\settonum is used to determine if a cell’s 9-set has been reduced to a single
digit, which is then a solution. It can alo be used in printing out the current
status at any point during the solution process, showing for each cell either the
solution or the list of potential solutions for that cell.

For further details look at the documented code — there’s only about 1400
lines of it — for the solvesudoku package.

Towards the end of this article the solution to the puzzle presented in Figure 3
found by \sudokusolve is provided as Figure 6 on page 240. The figure is
produced by the following code:
\begin{figure}
\centering
\cluefont{\normalsize}\cellsize{1.5\baselineskip}
\sudokusolve{cal4s4.sud}
\caption{The puzzle from \fref{fig:puz2} together with its solution

as found and presented by \cs{sudokusolve}}
\label{fig:ans2}

\end{figure}
where the \cs macro is defined as
\DeclareRobustCommand\cs[1]{\texttt{\char‘\\#1}}
which is most useful if you ever need to typeset the name of a macro.

Generating

The createsudoku package lets you automatically create Sudoku puzzles of
the kind that the solvesudoku package, which it uses, can solve. It also uses
Donald Arseneau’s random.tex for generating random numbers [1].

The package requires a completely solved puzzle to start with, which can be
either from a file that you provide, or it uses a default solved puzzle.

The starting grid is modified in a random manner. Within one of the three
columns of blocks exchanging any two of the three cell columns alters the puzzle

236

6 9 4 8 3 5 1 7 2
3 1 2 6 7 4 5 8 9
8 7 5 2 9 1 3 6 4
5 3 8 4 6 2 7 9 1
7 2 6 5 1 9 8 4 3
9 4 1 7 8 3 2 5 6
1 6 3 9 5 7 4 2 8
4 5 9 3 2 8 6 1 7
2 8 7 1 4 6 9 3 5

Figure 4: Solution to the simpler example puzzle in Figure 1

but leaves it still as a valid result. For example columns 1 and 3 (in the first
column of blocks) may be exchanged and columns 8 and 9 (in the third column
of blocks) be exchanged and the result is still a solved grid. Similarly, within a
row of blocks, exchanging any two of the three rows of cells changes the puzzle
but leaves it as a valid result.

The default starting grid is shown in Figure 5. Check that it is a valid Sudoku
solution and then try exchanging pairs of rows and columns, as described above,
to check that the result, although different, is still a valid solution.

Row pairs and column pairs are exchanged in a random fashion a random
number of times. At this point the grid is a complete solution. There is a macro
that will randomly eliminate 17 numbers from the grid; a puzzle is ambiguous,
that is it has more than one solution, if two numbers are completely absent
from the grid. You can then get the package to delete particular numbers, rows,
columns, blocks, or diagonals from this grid.

When given its head the package writes the puzzle to an external file \prevfile
and then uses \sudokusolve to try and solve the puzzle. If it can not find a
solution then you would have to go back and try again, eliminating fewer and/or
different clues. If \sudokusolve can solve the puzzle the package randomly
eliminates a clue, writes the revised puzzle to another external file (\currfile)
and uses \sudokusolve to try and solve the new puzzle. If it can then the

237

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7
3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8
Figure 5: Default initial puzzle for generation

\currfile puzzle is written into the \prevfile, another clue is randomly elimi-
nated, and the process continues on. At the point where \sudokusolve fails, the
last succesfully solved puzzle is that in the \prevfile. This is the puzzle that is
presented as the newly created puzzle.

An interactive program

For checking how well the \sudokusolver was working I wrote a small interactive
LATEX program that asked for a Sudoku puzzle file to solve, tried to solve it, and
kept on asking for more files until I effectively said ‘no more’.

Here is a version of it, which I have called ‘solvem’. To use it simply call:
pdflatex solvem
and a session will look like this, where, for exposition purposes, the user’s com-
mands/responses are typeset in this font and solvem’s are in this font, and the
user wants solutions to the puzzles in the puzzle files cal4s4.sud and st123.sud:

pdflatex solvem
New file? y/n
\getans=y
Enter the file name

238

\sudfile=cal4s4.sud
...progress report on the solution...
New file? y/n
\getans=y
Enter the file name
\sudfile=st123.sud
...progress report on the solution...
New file? y/n
\getans=n
Output written on solvem.pdf

Here is the program:
% solvem.tex Solve Sudoku
% author Peter Wilson
\documentclass{article}
\usepackage{solvesudoku}
\newcommand*{\solvefile}[1]{%
\begingroup

\sudokusolve{#1}%
\par
\vspace{\baselineskip}%
Number of clues = \the\numcluesctr\ and difficulty = \the\difficultyctr.

\endgroup}
\def\yesans{y}
\begin{document}
\loop

\typein[\getans]{New file? y/n}
\ifx\yesans\getans

\typein[\sudfile]{Enter the file name}r
\IfFileExists{\sudfile}{%
\clearpage
\begin{center}\huge \sudfile\end{center}
\solvefile{\sudfile}%
}{\typeout{I can’t find file \sudfile}}

\repeat
\end{document}

The command \typein[〈csname〉]{〈text〉} is a LATEX macro that outputs
〈text〉 to the terminal and .log file and waits for some response text which it
assigns to the command 〈csname〉 and you can then do something with \csname.
It is an extended version of \typeout{〈text〉} which just outputs 〈text〉 to the
terminal and the .log file.

Basically solvem.tex goes round a loop asking for a puzzle file and calls
\sudokusolve to try and solve it. There is code to catch if a file specified by the

239

3 7 2 9
2 5 8 1 7

5
9 8

4 2 3
2 3

8
5 6 9 3 7

9 6 4 8
THE ANSWER

6 3 1 7 4 8 2 9 5
2 5 8 9 6 1 7 4 3
9 7 4 2 3 5 6 1 8
3 4 9 5 7 6 8 2 1
8 1 7 4 2 3 5 6 9
5 6 2 1 8 9 3 7 4
1 2 3 8 9 7 4 5 6
4 8 5 6 1 2 9 3 7
7 9 6 3 5 4 1 8 2

Figure 6: The puzzle from Figure 3 on page 228
together with its solution as found and pre-
sented by \sudokusolve (design of the output
is slightly modified for the sake of the article)

240

user does not exist, in which case it asks for another one. After each solution it
gives some information about how hard it was to solve (or not as the case may
be) the puzzle. The puzzles and their solutions are written to the output file
from solvem.tex, either solvem.dvi or solvem.pdf, depending on how solvem
is called.

References
[1] Donald Arseneau. Generating random numbers in TEX, 1995. Available on

ctan.org in macros/generic/misc/random.tex.
[2] The Editors. Distractions: Sudoku. In The PracTEX Journal, Volume 1,

Number 4, 2005. ISSN 1556-6994. Available at http://tug.org/pracjourn/
2005-4/distract/.

[3] Michel Goossens, Frank Mittelbach, et al. The LATEX Graphics Companion.
Addison-Wesley, 2nd edition, 2008. ISBN 0-321-50892-0.

[4] Donald Knuth. The TEXbook. Addison-Wesley, 1986. ISBN 0-201-13448-0.
[5] Sudoku Online: Home of the Sudokulist. http://www.sudoku.org.uk/
[6] Sudoku Solver . . . by logic. http://www.sudokusolver.co.uk/
[7] Peter Wilson. Glisterings. In TUGboat, Volume 26, Number 3, pp. 253–255,

2005. ISSN 0896-3207. Available at http://tug.org/TUGboat/Articles/
tb26-3/tb84glister.pdf.

[8] Peter Wilson. The sudoku bundle for displaying, solving and generating
Sudoku puzzles, 2006. Available on ctan.org in macros/latex/contrib/
sudokubundle/.

[9] Peter Wilson. Glisterings: stringing along, loops. In TUGboat, Volume 28,
Number 1, pp. 12–14, 2007. ISSN 0896-3207. Available at http://tug.org/
TUGboat/Articles/tb28-1/tb88glister.pdf.

Summary: The sudoku bundle
The sudoku bundle provides a coordinated set of packages for displaying,
solving, and generating Sudoku puzzles. This article describes some of the
internal aspects of the packages.
Keywords: Sudoku, sudokubundle package.

Peter Wilson, herries.press@earthlink.net
CSTUG c/o FEL ČVUT, Technická 2
Prague, CZ-166 27, Czech Republic

241

