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Abstract. We investigate the Cohen-Grosberg differential equations with mixed delays
and time-varying coefficient: Several useful results on the functional space of such functions
like completeness and composition theorems are established. By using the fixed-point the-
orem and some properties of the doubly measure pseudo almost automorphic functions, a
set of sufficient criteria are established to ensure the existence, uniqueness and global ex-
ponential stability of a (y, v)-pseudo almost automorphic solution. The theory of this work
generalizes the classical results on weighted pseudo almost automorphic functions. Finally,
a numerical example is provided to illustrate the validity of the proposed theoretical results.
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1. INTRODUCTION

Bochner was the first to introduce the concept of almost automorphy in [5]. As
a generalization of both the classical almost automorphy and the pseudo almost
periodicity introduced by Zhang [14], [15], the pseudo almost automorphy was de-
veloped by Liang et al. [9], [13]. Blot et al. have introduced a new approach dealing
with the weighted pseudo almost automorphic functions using measure theory noted
(u-pseudo almost automorphic functions) as a more general concept than classical
concept of weighted pseudo almost automorphy [1].

Lately, the authors of [4] have proposed the weighted pseudo almost automorphic
functions as an extension of pseudo almost automorphic functions. The authors
of [3] focused on the existence, uniqueness and global exponential stability of pseudo
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almost automorphic solutions of recurrent neural networks with time varying coeffi-
cients and mixed delays. The authors of [8] investigated the problem of almost auto-
morphic solutions of Cohen-Grosberg with time varying coeflicients. Regarding [2],
authors investigated the problem of global exponential stability of asymptotic almost
automorphic solutions.

More recently, in [1], [6], the notion of (u,v)-pseudo almost automorphic is intro-
duced as a generalization of p-pseudo almost automorphic and fundamental prop-
erties of measure pseudo almost automorphic functions established. Therefore, the
notions of pseudo almost automorphic functions and weighted pseudo almost auto-
morphic functions become particular cases of this theory. In [10], Miraoui and Yaak-
oubi studied the existence, uniqueness, and the exponential stability of the measure
pseudo almost periodic solution of shunting neural networks with mixed delays. The
existence of (u1, u2)-pseudo almost automorphic of fractional differential equations
was established in [7].

Motivated by the above discussion, in our article, we introduce the concept of
(1, v)-pseudo almost automorphic functions. Then we establish new approach deal-
ing with the existence, uniqueness and global exponential stability of (u,v)-pseudo
almost automorphic solutions of the following differential equations:

1) o) = —ai<xi<t>>[bi<xi<t)) =S oyt (15 (0)
j=1
= " wij (t)g; (t, @ (t — 735 (1))
j=1

—Zdij(t)/ kij(t — s)hj(s,xj(s))ds — Li(t)|, 1<i<m;
j=1 %

> n is the number of neurons,

> 2(-) = (21(-),...,2,(-)) T € R™ denotes the state of the neuron,

> a;(-) is the amplification function,

> b;(+) > 0 is the appropriately behaved function,

> the functions o0;;(-), w;;(-) and d;;(-) denote respectively the connection weights,
the discretely delayed connection weights and the distributively delayed connection
weights,

> fj, g; and h; are the activation functions of the jth neuron,

> L;(t) is the external bias on the ith neuron,

> for all 1 <4, j < n, 73;(-) € [0,77] corresponds to the transmission time varying
delay.
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The main object of this paper is to establish sufficient new conditions to ensure
the existence, uniqueness and global exponential stability of (u,r)-pseudo almost
automorphic solution. To our best knowledge, there are no works about (u,v)-
pseudo almost automorphic Cohen-Grosberg differential equations with time varying-
coefficients using the measure theory.

The rest of this paper is organized as follows: In Section 2, we present some
preliminary results. These results play an important role in Section 3, where we
give new conditions for the existence, uniqueness and global exponential stability of
doubly measure pseudo almost automorphic solutions of (1) in the suitable convex
set of (u, v)-pseudo almost automorphic solutions. In Section 4, a numerical example
is given to illustrate the feasibility of the results. In Section 5, we end up drawing
meaningful conclusions.

2. PRELIMINARIES

In this section, we introduce some basic notations, definitions, preliminary results

and assumptions.
> For a bounded and continuous function h defined on R, we notice

h* =sup |h(t)], h. = inf [h(t)].
sup [A(1)] inf |1 (t)]

> The set of bounded continuous functions from R to R™ is denoted by BC(R, R™).

> B is the Lebesgue o-field of R.

> M is the set of positive measures v on B such that ¥(R) = oo and v([e, ¢]) < oo
foralle,ce R, e <c.

> For pu,v € M, the ergodic space is defined as

" = ™); lim _t ’ =
R ) = {o € BORR™): Jim s [ o0l du(t) = 0}

where v([~0,0]) := [£, dv(t).
> A={1,...,n}.

Definition 1 ([6]). Let g € BC(R,R™). We say that ¢ is almost automorphic
if for any sequence of real numbers {s,, }5°; there exists a subsequence {¢,}22,; C
{sn}52 such that f(¢) := lim g¢(t + o,) is well defined for each real ¢ and

n—oo

lim f(t—o,) =g(t) VteR.

n—oo

Denote by AA(R, R™) the set of all almost automorphic functions from R to R™.
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Remark 1 ([11]). Definition 1 can be given in the following form:
Let g € BC(R,R™). We say that g is almost automorphic if for any sequence of
real numbers {s,}5; there exists a subsequence {0,}22; C {s,}%2; such that
lim lim g(t+ o0, —om) =g(t) VteR.
n—oo0 Mm—00
Remark 2. We observe that the function f in Definition 1 is from R into R™
measurable but not necessarily continuous. Moreover, if f is continuous, then g is
uniformly continuous. If the convergence in both limits in Definition 1 is uniform
on R, the function g is said to be almost periodic (in Bochner’s sense) [12], [16].

Definition 2 ([6]). Let u,v € M, a function g € C(R, R™) is said to be doubly
measure pseudo almost automorphic or (u, v)-pseudo almost automorphic if it can
be expressed as g = g1 + go, g1 € AA(R,R™) and gy € E(R,R™, u,v). Denote by
PAA(R, R™, i, v) the set of all such functions.

Definition 3 ([1]). A continuous function ¢: R x R — R is said to be almost
automorphic in ¢ uniformly with respect to the second variable z if the following
conditions are true:

(1) For all z € R, ¢(-,x) € AA(R,R).
(2) ¢ is uniformly continuous on each compact set K in R with respect to the second
variable .

Denote by AAU (R x R, R) the collection of such functions.

Definition 4 ([1]). Let u,v € M. The continuous function ¢: R x R — R is
said to be (p,v)-ergodic in t uniformly with respect to the second variable z € R if
the following conditions hold:

(1) For all Y€ Ra d)(ay) € E(Ra Rvua V)'
(2) ¢ is uniformly continuous on each compact set K in R with respect to the second

variable y.

Denote by EU(R x R, R, i, ) the space of all such functions.

Definition 5 ([1]). Let u,v € M. The continuous function ¢: RxR — R is said
to be (u,v)-pseudo almost automorphic if it can be expressed as ¢ = ¢ + 1, where
v € AAURXR,R) and ¢ € EU(RXR, R, i, v). We denote by PAAU(R x R, R, i, v)
the space of all such functions.

Example 1. Let u,v € M, the following function is a classical example of
(1, v)-pseudo almost automorphic function

1 1

h(s) = cos 7 cos(v/35) 1 sin(\/gs) + s e R.

14 52’
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Let us formulate the following conditions:

(H;) For all ¢ € R there exist v > 0 and a bounded interval U such that

p{c+s: ceC}) <yu(C); C e B satistiess CNU = 0.

(Hy) For all p,v € M, limsup u[—op, o]/v]—0, 0] < .

00— 00

Lemma 1 ([6]). If g,h € AA(R,R) and if w € R, then we have g + h, wg,
gh € AA(R,R).

Lemma 2 ([6]). Let u,v € M, under conditions (Hy) and (Hs) we have:
(a) PAA(R,RYN p,v) is translation invariant (ie., if f € PAA(R, RN, u,v), then

tes f(t+0) € PAA(R, RN u,v) for all 0 € R).
(b) The decomposition of a (u,v)-pseudo almost automorphic function is unique.

(c) The space (PAA(R,RYN 11, v),||||s) is a Banach space.

Lemma 3. If g,h € PAA(R, R, u,v), then gh € PAA(R, R, i, v).
Proof. From Definition 2 we have g = g1 + go and h = hy + hg, where
g17h1 S .A.A([R, [R),
g07h0 S 8(|Ra R7/'[/5 V)'

Then we have gh = g1h1 + g1ho + goh1 + goho.
By Lemma 1, g1h1 € AA(R, R). Since

Jim m / 191 (O)ho(t) + go()hr () + go(t)ho (1) du(t)

gl [
< sy [, P

Il [
+ lim e / Ian(®)]du()

- lgoll [* _
+ gll>nolo V([—Q, Q]) /—g |h0(t)| d‘LL(t) - Oa

g1ho + goh1 + goho is (i, v)-ergodic function. Therefore, hg € PAA(R, R, u,v). O

Lemma 4. Let u,v € M satisfy (Hs) and Fe PAAU(R x R, R, p, v) such that
|F(t,x) — F(t,y)] <It)|z —y|, 1 € L2(R, dp), 1< p< oo

Ifz € PAA(R, R, ji,v), then [t — F(t,z(t))] € PAAR,R, u,v).
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Proof. The function t — F(¢,(t)) is continuous. Since z € PAA(R, R, 11, ),
we can write © = x1 + xg, where 7 € AA(R,R) and 2y € £(R, R, u,v). Since
F e PAAUR x R, R, i, v), we have F = F, + F,, where F} € AAU(R x R, R) and
Fy € EU(R x R, R, u,v). The function F' can be written as

(t,21(t)] + [F(t, 21 (1) — Fi(t,21(2))]
(t,x1())] + Folt,z1(t)).

F(t,z(t)) = Fy(t,z1(t)) + [F(t,2(t)) — F
= Fy(t,z1(t)) + [F(t,x(t)) — F

From Theorem 8 in [1] we have [t — Fi(t,21(¢))] € AA(R,R). On the other hand,
we have two cases:
Case 1: p>1,

ey | Fea() — Pt )] dute)

1 o
3 = / Blizo(0]dutr)

<o (/ i |z<t>|pdu<t>>1/p (f |xo<t>|||xo<t>||ﬁ.a1)1/q

1/p 0 1/q
< Al [ aolan)] 0 as oo
14

= (o ) (e, d) -y
Case 2: p=1,
m/g |ﬁ(t,x(t)) _ﬁ(taiﬁ(t)ﬂdu(t)

i) ")l (0)] dut)

< -
v([-o,0]) J-,
120l 1lzol] oo

< — 0 asr — oo.
v([~o, 0])

The remains to show that the function [t — Fy(t,21(t))] € EU(R x R, R, u,v). By
using the fact that Fy is uniformly continuous on the compact to K = {z1(t),t € R}
with respect, the second variable, we deduce that for given ¢ > 0 there exists § > 0
such that for all ¢ € R and z1, 2o € K one has

|21 — 2| < & implies |Fy(t, z1(t)) — Fo(t, 22(t)| < e.

Using the compactness of K, there exists n(¢) € N* and a family {x; ;]51) C K such

n(e)
that £ C | B(xi,0). Then there exists ig € {1,...,n(¢)} such that for all t € R
i=1

|Fo(t, 21(1))] < &+ |Fo(t xio -

398



Since we have

) 1 ¢~ _
Jin s / Foltsxi)] du) =0,

we deduce that for all € > 0:

e gy [ V01900 < s S0
Therefore,
1 0 -
tim s [ ot ()] dutr) =0
which implies that [t — Fy(t,z1(t))] is (u, v)-ergodic. O

Throughout this manuscript, the following hypotheses are given:

(A1)

(A2)

(As)

For i € A, a;(-) are almost automorphic and there exist positive constants a;.
and af such that 0 < a; < a;(-) < a.
For i € A, b;(-) are almost automorphic and there exist positive constants b;.
and bf such that b, < (bi(x1) — bi(x2))/ (21 —x2) < bf for z1,22 € R and
b;(0) = 0.

The functions ¢ + 0, (t), t — w;;(t), t — d;;(t) and t — L,(t) are (u, v)-pseudo
almost automorphic and t — 7;;(t) is almost automorphic.

For p > 1 and j € A, the activation functions f;, g; and h; are (u,v)-pseudo
almost automorphic and there exist positive continuous functions M jf , M ].{1 ,

M} € LP(R, dp) N LP(R, dz) such that for all y, z € R

fi(ty) = Fit.2)] < M)y — 2,
l9;(t,y) — g(t, 2)| < M (t)]y — =],
hj(t,y) = hy(t, 2)] < Mty — =],

and for t € R, j € A we suppose that f;(¢,0) = ¢;(¢,0) = h;(¢,0) = 0.
For i,j € A, the delay kernels k;;: RT — R satisfy

/ kij(s) = kij.
0

(Ag) Assume that there exists § > 0 such that

1 . * * * *
0 = max 11 aj(oinMijp—l—wij”M]ng—|—dijk:inMthp) <
(a b ) /p
3% O x =1

N =

€A
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3. MAIN RESULT

In this section, we establish some results for the existence, uniqueness and the
global exponential stability of the (u,v)-pseudo almost automorphic solution of
system (1).

Now, using assumption (A;), the antiderivative of 1/a;(z;) exists. Then we choose
an antiderivative C;(z;) of 1/a;(x;) such that C;(0) = 0. Evidently, Ci(x;) =
1/a;(x;). Since a;(x;) > 0, we can see that C;(z;) is strictly monotone increasing
on z;. Using the inverse function theorem, there exists an inverse function C; Y(xi)
of C;(x;) which is continuous and differential. Then we have (C; *(x;))" = a;(x;).
Denote y;(t) = Ci(xi(t)), it is easy to see that C/(z;)x(t) = x(t)/ai(z:(t)) = yi(t)
and z;(t) = C; ' (y;(t)). As a result, system (1) can be expressed as

(2) yi(t) = = bi(C7 M (wit) + D 0i (8).f3(t, Oy (1))

Jj=1

+ Z wi; (8)g;(t, O (y (t — 73;(1))))

+ dij(t)/_ Fig (t — $)hs(5, M (y5(s))) ds + L),

=1

J
From assumption (As) and the mean value theorem, there exist a constant /; € [0, 1]
such that

bi(C7 (wi(1))) = (0:(C7 (Laya(1)))) wi(8) = bilyi())yi(2)-

Then system (2) can be rewritten as

3) yit) = = bilys()yi(t) + Y 0ij (1) f5(t, C;  (y; (1))

Jj=1
n

+ ) wij(t)g; (£, Cy  y (t = 735(1))))

J=1

£ (0 / Fig (t — $)hs(5, C(5(s))) ds + L),

Remark 3. Equation (1) has a unique (y,v)-pseudo almost automorphic so-
lution if and only if equation (3) has a unique (u,v)-pseudo almost automorphic
solution. Then we only need to consider the almost automorphic solution of sys-
tem (3), see [2], [8], [16].

By Lagrange theorem, we have

|G (u) = G ()| = (G (v + Li(u = ))) (u = )| = [(a5(v + li(u = v))[Ju = v].

(3
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From assumption (A;) we get

ai|u — v <|C7H(u) = €71 (V)] < @ |u —vl.

Combined with (Ay), we obtain
bixaix < (b:(C7H()) < bjaj.

Lemma 5. Under conditions (Hy), (Ha), (A1)—(As), if for all j € A, y; €
PAA(R,R, u, v), then for all i,j € A the function

v [ kit = )by, G5 () d

belongs to PAA(R, R, u, v).

Proof. From Lemma 3 and Assumption (A;), [t — h;(t, Cj_l(yj(s)))] €
PAA(R,R, p,v) for all j € A. Then it is bounded and there exists L;-L > 0 such that
for all ¢ € R we have

(¢, CF (y;(9)))] < L]

It follows that for all ¢, j € A, the functions 1);; are bounded and satisfy

t

o1 < [ k(= my(s.C s < 1 [y (9)ds < L1,

—o0
By the same arguments given in [3], we prove that 1);; is continuous and bounded.

Since [t — h;(t, Cj_l(yj 1)) € PAA(R, R, p,v) for all j € A, using the decompo-
sition theorem of (u, v)-pseudo almost automorphic functions, one has that

hy(t, C 7 (y; (1)) = hy() + h3(2),

where h} € AA(R,R) and h? € E(R, R, u,v). Consequently,

¢ ¢
ij(t) = / kij(t — s)hjl(s) ds + / ki (t — s)hg(s) ds := 1/)1'13‘ (t) + 1/1% (t).
Step 1: We will prove that 1;; € AA(R,R).
Let (0],) be a sequence of real numbers, we can extract a subsequence (0,,) of (d7,)
such that
. 1 o -1 . _1 _ 1
lim hj(t+o0,)=h;(t) and lim h;(t —0,) = h;(?)

n—oo n—oo

for all ¢t € R. Denote .
_ —1
bl () = / is (t — )T (s) ds.
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Then we have
t+on
WG4t + om) — 551 |_‘/ Fij(t + 0 — 5)h) ds—/ hij(t — )Tk (s) ds
7L
/ kig(t = 5) B (s + ) = By (s)] .
Applying the Lebesgue dominated convergence theorem, we get

lim ilj(t +op) = Q/Ji_jl(t) for each t € R.

n—oo

Similarly, we can obtain

lim ;' (t — 0,) = (t) for each t € R,

n—oo W Y

which implies that ¢}; € AA(R, R).
Step 2: We will show that w?j € E(R,R, u,v). Since

e [ 01 dutt) =~ [ (‘ / ; bt = 5| ) e
= Ted /Woo by (510 =) ds ) ity
i) / (/ ; by (IS —) sl auty

</tookij(s)<m /i|hg(t—s)ds|du(t)> ds

and since y satisfies (Hy), we have [t — h(t — s)] € E(R, R, p,v) for all s € R. By
the Lebesgue’s dominated convergence theorem, we have

tim s [ w0l u0 =0
which implies that ng € &(R, R, u,v). Consequently, ¢;; € PAA(R, R, p,v). O
Lemma 6. For p > 1 and h € C(R x R, R) such that
|n(t, ) = h(t,y)] < M™(B)|z — yl,

where M" € £P(R, du)NLP(R, dx), if C~1(p) € PAA(R, R, u,v) and a € AA(R, R),
then [t — h(t,C71(p(t — a(t)))] € PAA(R, R, i, v).
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Proof. Let C71(¢) = ¢1 + @0, where p1 € AA(R,R) and ¢y € E(R, R, 1, v).
Let us consider the following function:

O(t) = h(t, p1(t — a(t))) + h(t, e1(t — a(t)) + po(t — a(t)) — h(t, p1(t — a(t)))
= @1(t) + @o(t),

where ©1(t) = h(t,p1(t — a(t))) and O¢(t) = h(t,v1(t — a(t)) + ot — a(t))) —
h(t,¢1(t — a(t))). From Theorem 8 in [1] we have ©; € AA(R, R). Since

. 1 ¢
= Jim s / At 1t = t) + poft = 1) — h(t e~ a(0)] dutt)
<lim ———— [ MP@)lgolt — at) dpu(t)
o= v([—0,0]) J_,

and since ¢ € E(R, R, u,v), we get

i [ jeu(o)l dutt)

0—00 V([_Qv Q])
<g&ﬁ [ M Olgot — a(0)ldu(r)
<Mwnsaonoo / 250 du)

N

sl o) ([ ) -
i A2 el (f sty du(t)>1/p

_ h
o 202 Dllpoll o ML,

e=oo v([—o, d)u([-0. o])'/?

N

Then [t — Og(t)] € E(R,R,pu,v). Consequently, [t — h(t,C~1(p(t — a(t))))] €
PAAR, R, p, v). O

3.1. Existence and uniqueness of the (u,v)-pseudo almost automorphic
solution. In this subsection, we present some useful lemmas for the existence and
the uniqueness of the (u, v)-pseudo almost automorphic solution of system (3).
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Lemma 7. For each ¢ = (1,...,¢n) € PAA(R,R™, u,v), define the nonlinear

operator I as
t t
/ exp(—/ by (vi(u)) du)Fl(s) ds

and for all 1 € A

Z% 5)£i(s,C7 (4(5))) +Zwij(8)gj(s,C{1(s0j(s—Ti(S))))

n

+ 3 dule ) [ by (5,€; (s = ) dut L)

Suppose that the assumptions (Hy)—(Hz) and (A;1)—(A4) hold. Then T' maps
PAA(R, R™, u,v) into itself.

Proof. From Lemmas 2-6, for all ¢ € A, the function s — F;(s) is (u, v)-pseudo
almost automophic. Consequently, F; can be expressed as F; = F? + F!, where
FY(-) € E(R,R, p,v) and F}(-) € AA(R,R). It follows that

rot) = [ e~ [ bt an) A as
:/t eXp(— /tbi(v (u))du>1~;1(s)ds
[ eXp( /SB o (u )Fo(s)ds

= (D) +

On the one hand, by the same arguments as are given in [1], I';F}! € AA(R,R). On
the other hand, from Fubini’s theorem we have

. 1 ¢ 0
lim s / (T FO) (1) dpa(t)
< lim —— / / exp (= (t — 8)asebn)|FO(1)] ds du(t)

o—oo v([~0, 0
1

<glggo [ < JAIe Z*)m-%—yndy) au(t)
<[ exp(—ybm( i o [ FO(t — ) du(ﬂ) dy.

e—o0 v([~0, 0])
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From Lemma 1, t — F?(t —y) € (R, R, i, v). By the Lebesgue dominated conver-
gence theorem, we get

4
tin s [ IEP(0) du(t) = o
—0

e—o0 v([~0, 0])

consequently, I;FP(t) € E(R,R,u,v). As a conclusion, for all i € A, Typ €
PAAR,R, pu,v) and T'y, € PAA(R, R™, o1, v). O

Theorem 1. Suppose that (Hy), (Hz) and (A1)—(A4) are fulfilled. Then there
exists only one (u, v)-pseudo almost automorphic solution of the delayed differential
equations (1) in the region

0
3= {19 € PAA(R,R", p,v), || = ol < —1_§ }

L [ ew(-[ bt au) (o)

¢ = max i and S(t) = |
/_; exp (— /St b (v (1)) du> Lo(s) ds

i€A Lbjais
Proof. Firstly, it is easy to see that the function ¥y € L>(R,R™) and
[[90]|cc < &. Consider the set

>

where

= {19 S PAA(R; Rn,‘u,l/), ”19—190”00 < 19_56}

It is clear that S is a closed convex subset of PAA(R, R™, u,v). Moreover, for any
¥ € & we have

[T —olloo
_ %Xigg{ ‘ /_ ; exp (— / Bi(ws(w) du> (Fi(s) _ Li(s)) ds
< npnp{ [ oo (= [ B an)[3
+ 1 too exp (- / t Ei(yi(u))du> >
+/_too exp (— [ bi(yi(u))du> |

n (s OO’U,S fl (s —u uds
;dw( )/0 kij(uw)h;(s,C; (@i (s — u))) dud

|

Zou py(s)))| ds

()95, C; (il — n(s))))\ s

X

|

405



<maxsup{/t o (- / du>z|ow NI, (0() ds

1EA teR )

n

; / o (- / )Zm lg (5, C5 55 = i(s))))] ds

— 00

ol [

xZu” [ (5.5 st~ ) duds |

< maxsup Z{/ exp (— s)al*bz*)oz]a]Lf( s)|e;(s)|ds

1€A 4eR

+ / exp (—(t — s)ai*bi*)w”a;‘Lg( s)le;(s —7i(s))|ds

— 00

t
+/ exp (—(t — 8)aixbis )d}; j/ Eij(u |gaj(s—u)|duds}

—0o0

< |19||Oomaxsup2{/ exp (—(t — s)al*bl*)owa]L;( )ds
€A teR =

—00

¢
+/ exp (—(t — 8)aixbix)wi;a; LI (s) ds

—0o0

t
+/ exp (—(t — 5)aixbis )d}; j/ kij(u Lh( )duds}

190 (B2) 7 e 3 My s ATy T )
S oo P i€EN 4 (@inbix )t 1/p

j=1

n * * * 1. h *
O3 1M Nl + wi 1M + dikis | M) a 0¢
S W”“r?eafiz (@ixbix )1 1/P = 0l < 375

j=1

From (Ay), for any 9,9 € & we get

||F19 _Fﬁnoo
t

<0~ T mgsup S { [ exp (-G = b (9)]a; /()
4 c =

— 00

+ |wij(s)|a MY (s) + |dij (s)]af ki M (s)] dS}
n f g * T, h *
S (p— 1\ITp (05 1M {|p + wi ([ M7 ||p + di ki | M || p)a
< _ g -
< |9 19”00( » ) %%\XZ (@inbis ) 177

J=1
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19— S Gl M+ Ly + RN s
= ° eA = (ai*bi*)l—l/p >

That is, I' is contraction mapping from the region < into itself. Then using the
Banach fixed-point theorem, the mapping I' has a unique fixed point in <, which is
the (u,v)-pseudo almost automorphic solution of model (3). ([

3.2. Global exponential stability of weighted pseudo almost automor-
phic solution. In this subsection, we will look into the global exponential stability
of (u,v)-pseudo almost automorphic solutions of system (3) by using reduction to
absurdity.

Let us define the phase space C((—o0,0],R™) as a Banach space of continuous
mappings from (—oo, 0] to R™ equipped with the following norm:

[9]loc =max sup [9;(t)].
€A _50<t<0

For ¥ = (¥1,...,9n)" € C((—0o0,0],R™), the initial conditions associated with (3)
are given by
yi(s) = 0,(s), s€(—00,0], €A,

with 0 = (91, ...,0,)T € C((—o0,0], R™).

Definition 6. Let y = (y1,...,yn)' be a (u,v)-pseudo almost automorphic
solution of system (3) with initial value ¥ € C((—o0,0],R™) and ¥ an arbitrary
solution of equation (3) with initial value ¥ € C((—oc,0], R™). If there exist positive
constants w and M () such that

ly(t) = g()| < M) — Vljoc exp (—wt), >0,

then the (u,v)-pseudo almost automorphic solution = of system (3) is said to be
globally exponentially stable.

Theorem 2. Suppose that (Hy)—(Hz) and (A;)—(A4) are fulfilled and suppose
further that there exists wg > 0 such that

o)
/ kij(s) exp (wos) ds < oo.
0

Then equation (3) has a unique (u, v)-pseudo almost automorphic solution § which
is globally exponentially stable.
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Proof. By Theorem 1, equation (3) has a unique (u,v)-pseudo almost auto-
morphic solution 7. Let y be an arbitrary solution of equation (3) with initial value 9
and 7 be the (u,v)-pseudo almost automorphic solution of equation (3) with initial
value 9. Let z;(t) = y;(t) — :(t). Then for i € A we have

(4) 2(t) = —[bi(C_l( i) +75(1)) = bi(C7H(7;(1)))]
+20m )Fi (8, C7H (=) +75(1))) = f5(t,C7H(F;(1)))]

X [g5(t, C™ (2 (t = 735(1)) + 75 (¢ — 735(1)))) — g5(t, C~H (75 (t — 735 (1))))]
+ZdU / kij(t — s)

x [hj(t. C7 (z;(s) +75(s)) — hy(t,C (7 (s)))] ds.
Let IT be defined by

T0(C) = apebin — € — 2(aidin) /Py a?{orjqu Iy + w; exp (G| MY,
=1

AL kij<s>exp<<s>ds}7

where ¢ € [0, 00).
From (As3) and (A4) we have that for any ¢ € A,

n
I1i(0) = aibin — 2(ainbic) /P ai {0l M I+ wi | M| + dis | M) | Ki } > 0,
j=1

and II; is a continuous function on [0, c0) satisfying C1im IT;(¢) = —oo. Therefore,
—00

there exists n; > 0 such that II;(n) = 0 and IL;(n;) > 0 for 7; €]0,n;[. Let
n = min{ng,...,n:}. We obtain II;(n) > 0 for all i € A. Then we can take @ > 0
such that

0 < w < min{n, a14b14, - . ., Apabps, wo} and  I;(w) >0
with @ satisfying fo 55 () exp (wps) < 0o. So, we have

Z(Gi*bi*)l/p
a Tk

(5) bi*—wZ{ o5yt 1M [, + wiya exp (wr )| M2,

+d;;a; |M]h||p/0 kij(s)exp (ws) ds} <1.
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Multiplying (4) by exp (— fo )) du) and integrating [0, t], we obtain

(6) z(t) = 9:(0) exp <— /0 t Z_)i(zi(u))du) + /0 t exp(— / t Z_)i(zi(u))du>

X ZOU )[15(s,C™(z(s) + () — fi(s. €7 (7(s))] ds

t

_|_
S—

+7; S—Tu(S)))) 9i(s,C71(@j(s — 75(s))))] ds

t
exp ( / f_)l (zi(u du> Zd”
0

X +
— o

— 00

< exp( /b zi(u dU)+Z/ exp (—(t — 5)aixbix)0j;

X | fi(5,C7 (25 (s) +7(5)) = fi(s,C7 (T(s)))| ds
+Z/ exp (—(t = s)aubi)wijlg;(t, O (2 (s = 7i5(s))
+75(5 = 7i(5))) = g5 (s, C' (G (s — 735(s))))| ds
+]§_:1/0 exp (—(t — 8)aibi)d}; /m kij(s — o)

X [hj(s,C7H(zi(5) +75(5))) = hi(s,C™ (o)) do ds.

Then for all i € A we have

@ ol < ol (- i) )
+ z”:/t exp (—(t — $)ax )o”ajM] (s)|zj(s)| ds
+Z/ exp (—(t — s)az )w)jai M (s)]z(s — 7i;(s)| ds
+2 / exp (—(t — s)az.)d5ya;

/ kij(s — o) M} (s)|z(o)| do ds.

exp (— [ 5t du) ) 0 e = 7 4)

kw §—0) “H(zi(5) +7(5)) = hys, €T (F(0))] dods
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Let
N = max (ai*bi*)l_l/p
ieA &

2 (0] A N+ w17+ A I M J3™ Fij (s) exp (o) ds)as

J=

In view of (A4), we can deduce that M > 2 and

(8) % az* 1,*)

n
Z{%mw%mwwwp
1

Qs i

(o)
+d;; ||Mh||p/ kij(s) exp (ws) ds} < 0.

We can see that for all ¢ € (—00,0], ||2(t)]|cc = [|9]|cc < N||V] oo exp (—wt). In the
following, we suppose that

(9) [2(t)lloc < N|?|oc exp (=), &> 0.
To prove (9), we first show that for any J > 1 we have
[12:(t) |oo < IN||Y]| oo €xp (—wt), ¢t > 0.

Suppose that (8) is false, so there must be some ¢; > 0 and some i € A such that

(10) [2(t1)llso = llzi(t1) oo = IN[|V]| o0 exp (—wwt1)
and
(11) [2(0)]loc < IN|[I]|oc exp (—wwt1) Vit € (—00,t1).

From (5), (7), (8), (11) and assumption (Az) we have

|2i(t1)| < [9:(0)] exp (—t1(ainbix))

n

+z_:1/0 1eXp( (tl _5)(a1,*b1,*))0”a]Mf( )|Z](S)|d8

+]z_:1/0 exp (—(t1 — s)(aixbix) )wi;ai M7 (s)|2j(s — 75(s))| ds

— 00

n tlx_ — SN Qixbi v [ (s — o) MP(s)|z: (o) do ds
+]z_;/0 € p( (tl )( z*bz*))d” j/ k”( )M]( )| _]( )|d d

< [19]loo exp (=1 (ixbix))

n

tleX — S)la 0,4 f Zils S
30 [ o (-t = b ] ()15 (0l

j=
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+Z / exp (= (t1 — 8)asubie)ulyat M(5)[| 25 (5 — 753 (5)) o ds

+Z/ exp (—(t1 — 5)(aixbix))d;; j/ kij(s —o)M ()||zj( )| oo dods
< [loo exp (—t1(aixbix))

+Z/ exp (—(t1 — 8)(aibin))of;a; M (8)IN|[[9]|oc exp (—ws) ds

+Z:/0 exp (—(t1 — 8)(aibix))

x ;0 MY (8)IN ][9] oo exp (~ (s — 735(s)) s

+ ]2_:1/0 exp (—(t1 — s)(aixbix))d;;a;

X / kij(s — U)M;L(S)JNWHOO exp (—wo) do ds

< 910 exP (—t1(@bi)) + exp (—t (asbir))

n

tleX Qinbiy) — o.a Fra\~ s
X]z_:l/o p((( z*bz*) ) ) ij jM ( )JN”ﬁ”ood

+exp (—t1(aibi) 3 wial exp (wr)

=1

X / 1 exp (((aixbix) — @)s) M7 (s)IN[V] o0 ds
0

+ exp (—t1(aixbix) Zd” j/ Mh (s) exp ((ajubix — @)s)ds
j=1

y / ki (M) 3N | 9] exp (cwm) dm
0

[GXP (@ — aibis)th)

<INl exp (~ 1) —

+ exp ((w — (aixbix))t1) Z 0;;a5
t1 n
X / exp ((aixbix — @)s)M] (s) ds + exp (@ — aibi)t1) > w};aj
0 =
t1
x exp (w7 ™) / exp ((aixbix — @)s) M (s) ds + exp (@ — aibix)t1)
0
X de a; / Mh (s) exp ((Ginbix — w@)S) ds/ k;j(m) exp (cwm) dm] .
0
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Let ¢ > 1 such that 1/p+1/q = 1. It follows that for all 1 € A
[GXP ((ww — aibi)t1)

|2i(t1)] = IN|9] 0o exp (—wt1) IN

ty 1/q
+ exp ((@ — aicbix)t1) g 0” aj || M; |p</ exp(q(ai*bi*—w)s)ds>
0

+ exp (@ — aixbix)t1) sz}a; exp (TDTJF)HM;]HP
j=1

t1 1/q
X (/ exp (g(aixbix — @)s) ds)
0

+eXp(( _az* i tl Zdzj jHMhHP

x < / " exp (g(asebie — )s) ds>1/q / ™ ki () exp (cm) dim
[exp (@ — asbu)ts) I

< IN||¥Y| oo exp (—oty) +

IN [q(aisbix — w)]H/a

X Z% a; || M|, exp (@ — azubis)t1) (exp (q@inbin — @)tr) — 1)1/

1 n . N
i [q(@ixbis — w)]l/q jz::lwijaj exp (w7 )||M]9||p
x exp ((w — az*bz*)tl)(exp (q(aiubix — @)t1) — 1)1/(1
h
i [q(az* ix T 1/‘1 Zd” ]HM Hpexp(( — ai*bi*)tl)

% (exp (q(abi — @)t1) — 1)1/ / " iy (m) exp (som) dm
[exp ((w — aibix)ty) N 1

<IN exp (~0t)

IV [4(aisbi — )]/
n
x 3 o5 | M [l exp (@ = ainbi)t1) (1 — exp (q(asubie — @)t1))"/*
j=1
1 n
*aX Y WYE
" [q(aicbix — )] 4 ;w”a] exp (@) j I
x exp ((w — az*bz*)tl)(l — exp (q(aixbix — @)t1))?
h . .
+ [q(a“ ix — 1/‘1 Zd” JHM Hpexp(( az*bz*)tl)

X (1 — exp (q(ainbiv — w)t1))Y9 /000 kij(m) exp (wm) dm
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exp ((wo — @ bis )t aixbin — )P
< AVl xp ()| 22 ), ¢ )

IJN Qisbiw — @
(Z o ja]| M ||,,+Zw” a exp () | MY,

+de|\Mh||p e >exp<wm>dm)<2—exp<< awbmm)}

[GXP (= = aixbix)t1)

< IN||Y| oo exp (—oty) IN

(aibi) VP (SN, noo
o (Y olalIM] [, + Y wijaj exp (wr )M,

Ainhin —
2% Uik =1 =1

" z g Iy [ gt exp () dm) (2~ exp (= — ai*bmtl))}

N 1
< IN|[9]loe exp (—ot1) [exp«w b))+

az* 1,*
) (Z a0+ 3 wiya exp (=) [M7])

az* ik =

+de ot | M2), / Fis () exp <wm>dm)

2a* «)
1 Haisbin) ™ (Z a3 1+ 3 wial exp (wrt )AL,

(az* ik =
(oo}
+Zdu a3 1ML, / iy (m) exp <wm>dm)],

which means that for all i € A we get

~ 2(04* %
a0l < ANl e (- ta) | L2222 (Z%mmp
1k Yk

n
+ Zw;}a; exp (o) || M|

Zd” a; |Mh||p/ k;j(m) exp (wm) dm)]
< JN||19HOO exp (—wty),
which is contrary to (10). Then for any J > 1 we get
J®lle < IND]exp (—wt), ¢ >0.
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As J — 1, we get [|2(t)]lc < N||9||ocexp (—wt), t > 0. Thus, from Definition 2,
the (u, v)-pseudo almost automorphic solution of system (3) is globally exponentially
stable. 0

Remark 4. In light of Theorems 1-2, the existence, the uniqueness and the
global exponential stability of (u,v)-pseudo almost automorphic solution of system
in equation (1) are obtained.

4. NUMERICAL EXAMPLE

Consider the differential equations
2
12)  2i(t) = —ai(x:(t)) [bi (@i(t) = D 0i (1) f3(t,25(1))
j=1

2
_ Z wij (t)g;(t, z;(t — 735(1)))

N
o

2 t
—Zdij(t)/_ kij(t — s)hj(s,xj(s))ds — Li(t)|, 1<

with a1(-) = cos(+) + 3, az(-) = —sin(-) + 3, bi(x1(t)) = 3z1(¢), ba(za(t)) = 222(%),

xi(s) =9i(s), s€(—00,0]; i€A,

o cos(v/Bt) + oo exp (|t = exp (i)
oft) = (0(t)) = 1 1 1 ’
=0 sin(v/3t) 0 cos(v/3t) + Too &P (—It])
1. 1 1
% sin(t) 50 cos(t) + 100 &P (=It])
w(t) = (wi; (1) = | 7 1 1 ’
S sin(t) =5 cos(t) + 15 exp (= [t))
0.03cos(/3H) + T exp () T sin(vBE) + i exp ()

(1) = (dig (1)) =

1 1
1 —_exp(— . —_exp(—
0.1 cos(t) + 100 exp (—|t]) 0.03 cos(t) + 100 exp (—|t])

kij(t) = exp (—t),  7i5(t) = | cos(vV/3t)];
Li(t) = 0.6sin(V5t),  La(t) = 0.3 cos(v/ITE) + —— exp (—|t]),

100
o (b 2) = halt ) — cos 1 tanh(z(t))
Jilt,2) = g;(t,2) = hy(t, ) = <2+sin(t)+sin(x/§t)) V1412
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By computing, we have

=000 =g o0s)e " == 00 ool * =)= 005 o0n)
LY =06, Lj=0.31,
|f5(t, ) = £5(t,2)] < M ()] — 2],
lg;(t, ) — g5(t, Z>|<M;’(>Im—zl,
|ty @) = hy(t, 2)] < M} ()| — 2|
with 1
M]f(t):Mf(t):MJh(t):ﬁ.

Since || M|l c2r,dr) = M|l 2@, az) = M| 220, ae) = V/7/3 for all j = 1,2, then
Mjf, Mjg, Mjh € L%(R, dz). Now, we consider the measure y, where its Radon-
Nikodym derivative is 7, (t) = exp (¢) for all t € R. Then p € M. Since if g, (t) > 0,
then from [1], condition (H;) is equivalent to

hmsupM <o V7TeR.

[t|—oo 01 (t)
Then p satisfies hypothesis (H;) and M]f, M, M]h € L%(R, dp).
On the other hand, we take the measure v, where its Radon-Nikodym derivative

is 0, (t) = exp (sin(t)). Since

. nl—o0,0 JE, o) dt
lim sup = limsup ————
o—oo V[0, 0] 0—00 f_g 0o(t) dt

< 00,

condition (Hy) is satisfied.

Remark 5. Similarly to Theorem 7 in [1] let f: R — R be continuous such
that lim f(t) =0. Then f is (u,v)-ergodic for all u,v € M.

[t]—o0

From Remark 4.1 we have [t — exp (—|t|)] € E(R,H, u,v) for all p,v € M. Since

| l‘im exp (—[t|) = 0, it follows that (A3) holds. Then
t|—o0

1<i<2 ik )

= max{0.2026; 0.2245}

2
1 * * * * * \7.
0= o { >IN+ M+ (0 + 3 s 0411 |
2

1
=0.2245 < -
2

and .

&= max{ Li } = max{ 06, 0'31} =0.1.

1€EA L @ixDjx 6’ 4
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We have for any wg €]0, 1[:

1

/ kij(s) exp (wos) ds = / exp (—(1 —wo)s)ds = < 0.
0 0 1-— wo

As a conclusion, all conditions of Theorem 1 and Theorem 2 are satisfied. Then the
differential equation (12) has a unique (y,v)-pseudo almost automorphic solution
which is globally exponentially stable (as shown in Figs. 1-3) in the region

o

S = {0 € PAARR" pv), 19 = Doloo < 7=

< 0.0289}.

Remark 6. InFiguresl and 2, the initial conditions are random for s € (—o0, 0]

we take:

> x1(s) =U1(s) = —1, xa(s) = Ja(s) =1,

> x1(s) =91(s) =1, xa(s) = ¥a2(s) = —1,

> x1(s) =V1(s) = —0.8, z2(s) = J2(s) = 0.8,
> x1(s) =Y1(s) = 0.8, z2(s) = Ya2(s) = —0.8,
> x1(s) =U1(s) =2, z2(s) = Ja(s) = =2,

> x1(s) =91(s) = =2, x2(s) = Va(s) = 2,

> x1(s) = U1(s) = —1.5, xa(s) = Ja2(s) = 1.5,
> x1(s) = Y1(s) = —0.5, x3(s) = J2(s) = 0.5,
> x1(s) =V1(s) = 1.5, za(s) = Ya(s) = —1.5,
> 21(s) =Y1(s) = 0.5, z2(s) = Y2(s) = —0.5

5
time (t)

Figure 1. Curves of z1(t) with random initial conditions.
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5. CONCLUSION

In this paper, the Cohen-Grosberg differential equations with mixed delays and
time-varying coefficient have been investigated. Based on few properties of the dou-
bly measure pseudo-almost automorphic functions and the fixed-point theorem, we
established a new criterion for the existence, the uniqueness and the global exponen-
tial stability of the (u,v)-pseudo almost automorphic solutions. To the best of our
knowledge, this is the first time that the doubly measure pseudo almost automorphic
solution for differential equations with mixed delays and time varying coefficient is
studied. In future works, we would like to extend our results to more general neutral-
type of delayed differential equations, such as high-order neutral-type of differential
equations, second-order differential equations and third-order differential equations.

1 — 25(0)=—1 — 25(0)=08 — x5(0)=—0.8 22(0)=1.5
— ap(0)=2 22(0) =2 22(0)=0.5 — 25(0)=—1.5 — z,(0)=—0.5

T2 (t)
2.0 T T T T T T T T T =

5
time (t)

Figure 2. Curves of z2(t) with random initial conditions.

Figure 3. The orbits of z1(t) and z2(t).
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