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Abstract. We study the existence and nonexistence of positive solutions of the nonlinear
equation

(Q) −∆p(x)u = λk(x)uq ± h(x)ur in Ω, u = 0 on ∂Ω,

where Ω ⊂ R
N , N > 2, is a regular bounded open domain in R

N and the p(x)-Laplacian

∆p(x)u := div(|∇u|p(x)−2∇u)

is introduced for a continuous function p(x) > 1 defined on Ω. The positive parame-
ter λ induces the bifurcation phenomena. The study of the equation (Q) needs generalized
Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some
variational methods still work. We use them to prove the existence of positive solutions to

the problem (Q) in W
1,p(x)
0 (Ω). When we prove the existence of minimal solution, we use

the sub-super solutions method.

Keywords: variable exponent Sobolev space; p(x)-Laplace operator; concave-convex non-
linearities; variational method

MSC 2020 : 35J20, 35J60, 35K57, 35J62, 35J70

1. Introduction

Let Ω ⊂ R
N , N > 2, be a bounded regular open domain in R

N and consider the

following problem involving the p(x)-Laplace operator with the Dirichlet boundary

condition:

(1.1)











−∆p(x)u = λk(x)uq + h(x)ur in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,
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and

(1.2)











−∆p(x)u = λk(x)uq − h(x)ur in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where p(x) : Ω → R is a continuous function,

∆p(x)u := div(|∇u|p(x)−2∇u),

λ a positive parameter and, h and k are two functions in L∞(Ω). This type of partial

differential equations with p(x)-Laplacian attracted many and many researchers in

the last century because of their importance and their applications. They describe

various physical phenomena. For example, they model the electro-rheological fluids,

which is an important category of non-Newtonian fluids (see [18]). They are used in

image restoration (see [6]), elasticity (see [24]) and the process of filtration throughout

porous media (see [4]). The perception of such physical models has been made easier

by the deployment of many mathematics research such as [1], [2], [5], [7], [10], [15],

[20], [21], [22], [23] and the references therein.

The study of the problem (1.1) goes back to 1994 when Ambrosetti et al. in [3]

considered the problem

(1.3)











−∆u = λuq + ur in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

for

(1.4) 0 < q < 1 < r < 2∗ − 1,

where 2∗ is the critical Sobolev exponent given by

(1.5) 2∗ =







2N

N − 2
if N > 2,

∞ if N 6 2.

After that, the problem (1.3) was generalized by Rădulescu and Repovš in [17] for

concave-convex nonlinearities. They studied the solvability of the problem

(1.6)











−∆u = λk(x)uq ± h(x)ur in Ω,

u > 0 in Ω,

u = 0 on ∂Ω
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for q and r satisfying the condition (1.4) and, h(x) and k(x) being positive functions

verifying

(1.7) ess inf
x∈Ω

k(x) > 0 and ess inf
x∈Ω

h(x) > 0.

Later, Saoudi in [19] considered the problem (1.6) with the p-Laplace operator

−∆pu := −div(|∇u|p−2∇u)

for

(1.8) 0 6 q < p− 1 < r < p∗ − 1,

where

p∗ =







Np

N − p
if p < N,

∞ if p > N

was the corresponding critical Sobolev exponent.

In this paper, we consider (1.1) and (1.2) where p(x) is a function satisfying

min
x∈Ω

p(x) > 1.

In order to introduce our result, let

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x),

and through this paper, we suppose that

(1.9) 0 6 q < p− − 1 6 p+ − 1 < r < p∗(x)− 1,

where

(1.10) p∗(x) =







Np(x)

N − p(x)
if p(x) < N,

∞ otherwise

is the critical Sobolev exponent. We consider the following definition of solutions

(weak solution).

Definition 1.1. We say that u ∈ W
1,p(x)
0 (Ω) is a weak solution of (1.1) if

(1.11)

∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx = λ

∫

Ω

k(x)uqϕdx+

∫

Ω

h(x)urϕdx

for all ϕ ∈ C∞
c (Ω).
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C∞
c (Ω) denotes the space of all C∞ real functions with the compact support

included in Ω. In a similar way, we define the weak solution for the problem (1.2).

In the next section, we define the variable exponent Sobolev space W
1,p(x)
0 (Ω) and

we give some of its properties that will be used later. Our main results follow.

Theorem 1.1. Suppose that the positive functions h and k satisfy the condi-

tion (1.7) and q and r satisfy (1.9). Then there exists a positive number λ⋆ such that:

(i) If 0 < λ < λ⋆, then the problem (1.1) has a positive minimal solution uλ.

(ii) If λ = λ⋆, then the problem (1.1) has a positive solution.

(iii) If λ > λ⋆, then the problem (1.1) does not have a nontrivial solution.

For the problem (1.2), we will prove the following theorem.

Theorem 1.2. Assume that the positive functions h and k verify the condi-

tion (1.7) and q and r satisfy (1.9). Then there exists a positive real λ⋆ such that:

(i) If λ > λ⋆, then the problem (1.2) has a positive solution.

(ii) If λ < λ⋆, then the problem (1.2) does not have a nontrivial solution.

2. Preliminaries

Let Ω be an open bounded subset of RN , N > 2. When we have to deal with

equations involving p(x)-Laplace operator, we can use variable exponent Lebesgue

spaces Lp(x)(Ω) introduced by Orlicz, see [16]. Many studies were carried out, see

for example [24], [25] and the references therein. For further properties and details

on the space Lp(x)(Ω), we can refer to [3], [14]. For the variable exponent Sobolev

spaces W 1,p(x)(Ω), we refer to [8], [9], [11], [12], [14].

First, let

C+(Ω) = {p(x) ∈ C(Ω): p(x) > 1 for all x ∈ Ω}.

For p(x) ∈ C+(Ω), we define the generalized Lebesgue space L
p(x)(Ω) as

(2.1) Lp(x)(Ω) =

{

u : Ω → R : u is measurable and

∫

Ω

|u(x)|p(x) dx < ∞

}

,

endowed with the norm (Luxemburg norm)

(2.2) |u|p(x) = inf

{

λ > 0:

∫

Ω

∣

∣

∣

u(x)

λ

∣

∣

∣

p(x)

dx 6 1

}

.

The space Lp(x)(Ω) is a Banach space and it is reflexive if and only if 1 < p− 6

p+ < ∞. When p+ < ∞, Cc(Ω), the space of continuous real functions with compact

support included in Ω is dense in Lp(x)(Ω).
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Also, we have an important embedding result. If p1 and p2 are two functions in

C+(Ω) such that p1 6 p2 in Ω, then there exists a continuous embedding

Lp2(x)(Ω) →֒ Lp1(x)(Ω).

Now, for k being a positive integer number and p(x) ∈ C+(Ω), the generalized

Sobolev space is

(2.3) W k,p(x)(Ω) = {u ∈ Lp(x)(Ω): Dαu ∈ Lp(x)(Ω) for all |α| 6 k},

where α = (α1, . . . , αN ) is the multi-index, |α| =
N
∑

i=1

αi is the order of α and

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαN

N

is the derivative in the distribution sense.

On W k,p(x)(Ω), we consider the norm

‖u‖k,p(x) =
∑

|α|6k

|Dαu|Lp(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

c (Ω) in W 1,p(x)(Ω) and we endow it by

the norm

(2.4) ‖u‖p(x) := |∇u|p(x).

An important tool when we deal with variable exponent Sobolev spaces is the func-

tion ̺ : Lp(x)(Ω) → R defined by

̺(u) =

∫

Ω

|u|p(x) dx,

which possesses the following properties

|u|p(x) > 1 ⇒ |u|p
−

p(x) 6 ̺(u) 6 |u|p
+

p(x),(2.5)

|u|p(x) < 1 ⇒ |u|p
+

p(x) 6 ̺(u) 6 |u|p
−

p(x),(2.6)

|un − u|p(x) → 0 ⇔ ̺(un − u) → 0.(2.7)

The following result generalizes the Sobolev embedding theorem.

Theorem 2.1 ([14]). Let Ω ⊂ R
N , N > 2, be an open regular bounded domain

in RN and assume that p, r ∈ C+(Ω) are such that p(x) 6 r(x) 6 p∗(x) for all x ∈ Ω.

Then there exists a continuous embedding W
1,p(x)
0 (Ω) →֒ Lr(x).

Also, the embedding is compact if r(x) < p∗(x) for a.e. x ∈ Ω.
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3. Proof of Theorem 1.1

In Theorem 1.1 (i), we want to prove the existence of the minimal solution, for

this we use the sub-super-solutions method.

Definition 3.1. We say that u ∈ W
1,p(x)
0 (Ω) is a sub-solution of (1.1) if

(3.1) −∆p(x)u 6 λk(x)uq + ur.

In the same way, a function u ∈ W
k,p(x)
0 (Ω) is called a super-solution of (1.1) if

u > 0 in Ω and the reverse inequality holds in (3.1).

Let

(3.2) λ∗ := sup{λ > 0: (1.1) has a solution}

and the energy functional Eλ be given by

(3.3) Eλ(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx−

λ

q + 1

∫

Ω

k(x)uq+1 dx−
1

r + 1

∫

Ω

h(x)ur+1 dx

on the Sobolev space W
1,p(x)
0 (Ω).

P r o o f of Theorem 1.1. (i) The proof will be given in several steps.

Step 1. (There exists λ0 such that for all 0 < λ < λ0 the problem has a solution.)

Consider the eigenvalue Dirichlet problem

(3.4)

{

−∆p(x)ũ = λk(x)ũq in Ω,

ũ|∂Ω = 0, ũ > 0 in Ω.

For q satisfying (1.9), there exists λ0,1 such that for all 0 < λ < λ0,1, the problem (3.4)

has a positive solution ũλ, see [13]. Let uλ = εũλ, then

−∆p(x)uλ = λk(x)εp(x)−1ũ
q
λ.

For ε ∈ (0, 1) sufficiently small and q 6 p− − 1, we have

(3.5) λk(x)εp(x)−1ũ
q
λ 6 λk(x)εq ũq

λ 6 λk(x)εq ũq
λ + h(x)εr ũr

λ

and so uλ is a sub-solution of the problem (1.1).

Now, let v be the positive solution to the problem

(3.6)

{

−∆p(x)v = λ+ 1 in Ω,

v|∂Ω = 0, v > 0 in Ω.

Let

(3.7) F (u) = λk(x)uq + h(x)ur.
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Consider uλ = Tv(x), where T is a real number such that

(3.8) −∆p(x)uλ > F (TM) > F (uλ),

where M = max{1, ‖v‖∞}. We have −∆p(x)uλ = T p(x)−1(λ+ 1) and

(3.9) F (uλ) ≡ λk(x)T qvq + h(x)T rvr 6 λc1T
qM q + c2T

rM r

with c1 = ‖k‖L∞ and c2 = ‖h‖L∞. So, it is enough to look for T such that

λ+ 1 > λc1T
q+1−p−

M q + c2T
r+1−p−

M r when T > 1,(3.10)

λ+ 1 > λc1T
q+1−p+

M q + c2T
r+1−p+

M r when 1 > T,

because

T p(x)−1(λ+ 1) > T p−−1(λ+ 1) when T > 1,

T p(x)−1(λ+ 1) > T p+−1(λ + 1) when 1 > T.

Let

(3.11) ϕ(T ) =

{

λAT q+1−p−

+BT r+1−p−

when T > 1,

λAT q+1−p+

+BT r+1−p+

when 1 > T,

where A = c1M
q, B = c2M

r and ϕ(T ) is a continuous function.

(3.12) lim
T→0+

ϕ(T ) = lim
T→∞

ϕ(T ) = ∞,

since q + 1 − p− < 0 < r + 1 − p− and q + 1 − p+ < 0 < r + 1 − p+, so ϕ reaches

its a minimum in [0,∞). For λ small enough, an elementary computation points out

that the function ϕ reaches its minimum at T0 = Cλ1/(r−q) where C is a positive

constant and

C = (AB−1(r − p+ + 1)(p+ − q − 1)−1)1/(r−q).

Then, there exists λ0,2 such that for 0 < λ < λ0,2,

uλ(x) = T0v

is a super-solution of problem (1.1). Let λ0 = inf{λ0,1, λ0,2}. Consider λ ∈ (0, λ0). In

order to prove that uλ 6 uλ, we use the fact that ũ is bounded and for ε sufficiently

small, we have

(3.13) −∆p(x)uλ 6 λk(x)εp(x)−1ũq 6 λk(x)uq
λ 6 −∆p(x)uλ.
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By the weak comparison principle, we conclude that uλ 6 uλ and then (1.1)

has a solution u between the sub-solution and the super-solution. So, the set

Λ = {λ > 0: (1.1) has a weak solution} is not empty and λ⋆ := sup{λ > 0:

(1.1) has a weak solution} exists in (0,∞).

Step 2. (Λ is an interval containing (0, λ⋆).) Let λ ∈ Λ and λ′ be such that

0 < λ′ < λ. Since λ ∈ Λ, the problem (1.1) has a positive solution for this value λ

which is a super-solution for the equation (1.1) when λ is replaced by λ′. However,

uν = εũν is a sub-solution for some 0 < ν < λ0,1 for ε small enough. As in Step 1,

by the inequality (3.13) and the comparison principle, we have uν 6 uλ and so the

problem (1.1), when λ is replaced by λ′, has a positive solution and then λ′ ∈ Λ.

So Γ is an interval containing (0, λ⋆).

Step 3. (For λ ∈ (0, λ⋆), the equation (1.1) has a minimal solution.) Since λ ∈

(0, λ⋆), then the problem (1.1) has a positive solution U . U is a super-solution

to (1.1). Consider uν = εũν for some 0 < ν < λ and ε small enough such that uν is

a sub-solution for the problem (1.1) and uν 6 U .

Let u0 = uν and consider the monotone iterative scheme

(3.14)

{

−∆p(x)un = λk(x)uq
n−1 + h(x)ur

n−1 in Ω,

un = 0 on ∂Ω.

We obtain from the weak comparison principle that (un) is a nondecreasing sequence

and u0 6 u1 6 . . . 6 U. So the sequence (un) is uniformly bounded in W
1,p(x)
0 (Ω)

and converges to a solution uλ of (1.1). We remark that the construction of the

sequence (un) does not depend on the super-solution U and so any solution v of the

equation of (1.1) can be considered as a super-solution. We have u0 6 uλ 6 v and

then uλ is the minimal positive solution.

(ii) Step 1. (λ⋆ is a finite real.) Let λ ∈ (0, λ∗) and uλ be a minimal solution of

the problem (1.1). Put

Ω1 = {x ∈ Ω: uλ(x) > 1}, Ω2 = {x ∈ Ω: uλ(x) < 1}.

By density, we can take ϕ = u
−q
λ as a test function in the weak formulation of (1.1)

and we obtain

∫

Ω

|∇uλ|
p(x)−2∇uλ · ∇u

−q
λ dx = λ

∫

Ω

k(x)uq−q
λ dx+

∫

Ω

h(x)ur−q
λ dx(3.15)

> λ

∫

Ω

k(x)uq−q
λ dx > λC

∫

Ω

u
q−q
λ dx

= λC|Ω|N−1.

162



Using Poincaré inequality and by the Young inequality with γ ∈ (0, 1), the first term

on the left-hand side of (3.15) may be estimated as

∫

Ω

|∇uλ|
p(x)−2∇uλ · ∇u

−q
λ dx

= q

∫

Ω

|∇uλ|
p(x)u

−q−1
λ dx

6 q

(
∫

Ω

(γ−1/(p(x)−1)|∇uλ|
p(x))(p(x)−1)/p(x)(γu−q−1

λ )1/p(x) dx

)

6 q

(
∫

Ω

p(x)− 1

p(x)
γ−1/(p(x)−1)|∇uλ|

p(x) dx+

∫

Ω

γ

p(x)
u
−q−1
λ dx

)

6 C1

∫

Ω

|∇uλ|
p(x) dx+ C2

∫

Ω

u
−q−1
λ dx.

Moreover,

∫

Ω

|∇uλ|
p(x)−2∇uλ · ∇u

−q
λ dx 6 C1

∫

Ω1

|∇uλ|
p(x) dx+ C2

∫

Ω1

u
−q−1
λ dx

+ C1

∫

Ω2

|∇uλ|
p(x) dx+ C2

∫

Ω2

u
−q−1
λ dx

= I1,2 + II3,4.

On one hand, by using (2.5) we get

I1,2 6 C1‖uλ‖
p+

p(x) + C2

∫

Ω1

u
p(x)
λ dx 6 C1‖uλ‖

p+

p(x) + C2‖uλ‖
p+

p(x).

On the other hand, using (2.6)we obtain

II3,4 6 C1‖uλ‖
p−

p(x) + C2

∫

Ω2

u−r−1
λ dx (−r − 1 < −q − 1)

6 C1‖uλ‖
p−

p(x) + C2

(
∫

Ω2

u
p(x)
λ dx

)(−r−1)/p(x)

(−r − 1 < p(x))

6 C1‖uλ‖
p−

p(x) + C2‖uλ‖
−r−1
p(x) ,

where C1, C2 are positive constants. So, we have

∫

Ω

|∇uλ|
p(x)−2∇uλ · ∇u

−q
λ dx 6 c(‖uλ‖

p+

p(x) + ‖uλ‖
p−

p(x) + ‖uλ‖
−r−1
p(x) )

for some constant c > 0. From the inequality (3.15), we deduce that λ⋆ < ∞.
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Step 2. (The problem (1.1) has a solution when λ = λ⋆.) Let {λk}k∈N be a

sequence such that λk ↑ λ⋆ as k → ∞. Since λk ∈ (0, λ⋆), there exists uk = uλk
,

a weak positive solution to (1.1) for λ = λk, and uk > uλk
> 0. We claim that

the sequence (uk) is bounded in W
1,p(x)
0 (Ω). Indeed, if it is not bounded, then

‖u‖p(x) → ∞ up to a subsequence. So, we get

Eλ(u) >
1

p+
‖u‖p

−

p(x) − C1‖u‖
q+1
q+1 − C2‖u‖

r+1
r+1,

where C1 and C2 are positive constants. By using (1.9) and since the embeddings

W
1,p(x)
0 (Ω) →֒ Lr+1(Ω) →֒ Lq+1(Ω) are continuous, for ‖u‖p(x) > 1 we get

(3.16) Eλ(u) >
1

p+
‖u‖p

−

p(x) −K1‖u‖
q+1
p(x) −K2‖u‖

r+1
p(x),

where K1, K2 are positive constants. So, if ‖u‖p(x) → ∞, then Eλ(u) → ∞. Thus,

up to a subsequence,

(3.17) Eλk
(uk) → ∞ as k → ∞.

On the other hand, uk is a solution for the problem (1.1) with λ = λk. We know

that the equation (1.11) remains true for u ∈ W
1,p(x)
0 (Ω) by density. Taking uk as a

test function in (1.11), we obtain

(3.18)

∫

Ω

|∇uk|
p(x) dx = λk

∫

Ω

k(x)uq+1
k dx+

∫

Ω

h(x)ur+1
k dx.

And so,

Eλk
(uk) 6

1

p−

∫

Ω

|∇uk|
p(x) dx−

(

λk

∫

Ω

k(x)uq+1
k dx+

∫

Ω

h(x)ur+1
k dx

)

6 0,

which contradicts (3.17). Then the sequence (uk) is bounded in W
1,p(x)
0 (Ω). By the

generalized compactness Sobolev embedding, there exists an element u ∈ W
1,p(x)
0 (Ω)

such that

uk ⇀ u in W
1,p(x)
0 (Ω) (weakly) as k → ∞,(3.19)

uk → u in Lq(Ω) as k → ∞,(3.20)

uk → u a.e. in Ω as k → ∞.(3.21)

We get

(3.20)

∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx = λ∗

∫

Ω

k(x)uqϕdx+

∫

Ω

h(x)urϕdx
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for any ϕ ∈ W
1,p(x)
0 (Ω). If u is not nonnegative, we can take |u| and by the com-

parison principle, the solution is positive. So for λ = λ⋆, the problem (1.1) has a

positive solution.

(iii) By the definition of λ∗, there is no solution for the problem (1.1) for all λ > λ∗

and this accomplishes the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

Recall that the norm in Ls(Ω), when 1 6 s < ∞, is given by

‖u‖s :=

(
∫

Ω

|u|s ds

)1/s

.

Consider Jλ : W
1,p(x)
0 (Ω) → R given by

(4.1) Jλ(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx−

λ

q + 1

∫

Ω

k(x)uq+1 dx+
1

r + 1

∫

Ω

h(x)ur+1 dx.

Let

Λ := {λ > 0: (1.2) has a nontrivial solution}.

The proof of Theorem 1.2 will be also given in several steps.

(i) Step 1. (Λ is a nonempty set.) Let λ > 0. For u ∈ W
1,p(x)
0 (Ω) and for

‖u‖p(x) > 1, we have

Jλ(u) >
1

p+
‖u‖p

−

p(x) − C1‖u‖
q+1
q+1 + C2‖u‖

r+1
r+1,

where C1 and C2 are positive constants. From (1.9) and continuous embedding

theorems, we have

(4.2) Jλ(u) >
1

p+
‖u‖p

−

p(x) −K‖u‖q+1
p(x),

where K is a positive constant. Then Jλ(u) → ∞ as ‖u‖p(x) → ∞ and the func-

tional J is coercive. The lower semi-continuity of the norms induces the lower semi-

continuity of the functional J .

Let (un) be a minimizing sequence of Jλ in W
1,p(x)
0 (Ω), which is bounded in

W
1,p(x)
0 (Ω), since J is coercive. With no loss of generality, we can suppose that

(un) is nonnegative, converges pointwise and converges weakly to u in W
1,p(x)
0 (Ω).
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Furthermore, using the boundedness of (un) in W
1,p(x)
0 (Ω) and the weak lower semi-

continuity of the norm ‖·‖p(x), we obtain

Jλ(u) 6 lim
n→∞

inf Jλ(un).

Consequently, u is a global minimizer of Jλ in W
1,p(x)
0 (Ω) and u is nonnegative.

Step 2. (The function u introduced in Step 1 is a nontrivial solution of (1.2) for

some λ > 0.) We have Jλ(0) = 0 and we claim that J(u) < 0. To prove the claim,

consider

(4.3) M =

{

w ∈ W
1,p(x)
0 (Ω):

1

q + 1

∫

Ω

k(x)|w|q+1 dx = 1

}

and let I be the functional defined onM by

(4.4) I(w) =

∫

Ω

1

p(x)
|∇w|p(x) dx+

1

r + 1

∫

Ω

h(x)|w|r+1 dx.

SinceM is a weakly closed subset ofW
1,p(x)
0 (Ω), we have a minimizing sequence (vn)

of I inM. By the continuous embedding theorem and the condition (1.9), the func-

tional I is coercive. So the sequence (vn) is bounded inW
1,p(x)
0 (Ω). SinceW

1,p(x)
0 (Ω)

is reflexive, up to a subsequence, (vn) converges weakly to some v ∈ W
1,p(x)
0 (Ω).

But M is weakly closed in W
1,p(x)
0 (Ω), therefore v ∈ M, and by the weak lower

semi-continuity of J , we have I(v) 6 lim inf
n→∞

J(vn) and I(v) = min{I(w) : w ∈ M}.

That is

(4.5)
1

q + 1

∫

Ω

k(x)|v|q+1 dx = 1

and

(4.6) I(v) =

∫

Ω

1

p
|∇v|p dx+

1

r + 1

∫

Ω

h(x)|v|r+1 dx.

Let c := I(v). Then Jλ(v) = c−λ < 0 for any λ > c. So, there exists v ∈ W
1,p(x)
0 (Ω)

such that Jλ(v) < 0. Thus Jλ(u) < 0 and this completes the proof of Step 2.

Step 3. (There exists a positive real number λ⋆ such that the problem (1.2) has a

positive solution for all λ > λ⋆.) In the beginning, let λ⋆ := inf Λ. As a consequence

of Step 1, λ⋆ ∈ (0,∞). Let λ > λ⋆. λ is not a lower bound of Λ and so there exists

µ ∈ Λ such that λ⋆ 6 µ 6 λ. Since µ ∈ Λ, the functional Jµ has a nontrivial critical

point uµ ∈ W
1,p(x)
0 (Ω) and the function uµ is a sub-solution of the problem (1.2)

(i.e. (1.2)λ).

Let us consider the minimization problem

(4.7) inf{Jλ(w) : w ∈ W
1,p(x)
0 (Ω) and uµ 6 w}.
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As in Step 2, there exists a nonnegative function uλ, the critical point of the func-

tional Jλ such that uλ > uµ. Since uµ is nontrivial, the function uλ is a nonnegative,

nontrivial solution of the problem (1.2). By the maximum principle (see [10]), uλ is

positive.

(ii) This is due to the definition of λ⋆. �

5. Conclusion

Problems with the Laplace operator need many methods to be solved and this de-

pends on the nonlinearities of the problem. Since the p-Laplace operator is nonlinear,

when we deal with problems involving this operator, the study of the solvability be-

comes more difficult.

Here, with the p(x)-Laplace operator, it is not easy to investigate the existence

and the nonexistence of the positive solution and to perform one step, we can need

more than one method. As perspectives, we can study the problems (1.1) and (1.2)

when the growths of the solutions are variables.
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