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Abstract. We characterize the Choquet integrals associated to Bessel capacities in terms
of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local
Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and
the minimax theorem as the main tools for the characterizations.
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1. Introduction

Let α > 0, s > 1 be real numbers. We define the Sobolev spaceWα,s =Wα,s(Rn),

n > 1 to be the set of functions u of the type

u = Gα ∗ f

for some f ∈ Ls. Here Gα is the Bessel kernel of order α defined by

Gα(x) := F−1[(1 + |·|2)−α/2](x),

where F−1 is the inverse Fourier transform in Rn. The norm of u = Gα ∗f ∈ Wα,s is

defined as ‖u‖Wα,s = ‖f‖Ls. Recall also that the Bessel capacity Capα,s(·) associated

to Wα,s is defined as

Capα,s(E) := inf{‖f‖sLs : f > 0, Gα ∗ f > 1 on E}

for any set E ⊆ R
n. We say that a property holds quasi-everywhere (q.e.) if it holds

everywhere except for a set E with Capα,s(E) = 0. The notion of Choquet integrals
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associated to Bessel capacities will be important in this work. Assuming that f is

a q.e. defined function, the Choquet integral of f is meant to be

∫

Rn

|f | dC :=

∫ ∞

0

Capα,s({x ∈ R
n : |f(x)| > t}) dt.

We denote by L1(C) the set of all q.e. defined f with finite quantity ‖f‖L1(C) :=
∫

Rn |f | dC. On the other hand, let Mα,s
p (Rn), 1 < p < ∞ be the Sobolev multiplier

space which consists of all functions f ∈ Lp
loc(R

n) such that

‖f‖Mα,s
p

:= sup
K

(

∫

Rn |f(x)|p dx

Capα,s(K)

)p−1

<∞,

where the supremum is taken over all compact sets K with nonzero capacity, see [9]

and [7].

It has been argued in [10] that

(1.1) A−1‖f‖L1(C) 6 inf{‖ϕ‖Z′ : 0 6 ϕ ∈ Z ′, Gα ∗ ϕ > |f | q.e.} 6 A‖f‖L1(C)

for a constant A > 0, where Z ′ is the predual of the Sobolev multiplier space

Z :=Mα,s
t , s

−1 + t−1 = 1. We denote

‖f‖I := inf{‖ϕ‖Z′ : 0 6 ϕ ∈ Z ′, Gα ∗ ϕ > |f | q.e.}.

The proof of (1.1) presented in [10] is twofold. Firstly, it is proved that

(1.2) ‖f‖L1(C) . ‖f‖I . inf

{
∫

Rn

ϕs(Gα ∗ ϕ)1−s dx : 0 6 ϕ ∈ Z ′, Gα ∗ ϕ > |f | q.e.

}

,

where α . β denotes α 6 Aβ for a constant A > 0. Subsequently, it is proved that

(1.3) inf

{
∫

Rn

ϕs(Gα ∗ ϕ)1−s dx : 0 6 ϕ ∈ Z ′, Gα ∗ ϕ > |f | q.e.

}

. ‖f‖L1(C).

The proof of ‖·‖L1(C) . ‖·‖I is simple and goes through by the standard duality

argument. However, the proof of the second . in (1.2) is then somewhat technical,

one needs to interpret Z as the solution space of the integral equation

u = Gα ∗ (ut) +
|f |

M

for a fixed f and Z ′ as the Köthe dual of Z to finish the job, see [5]. The proof

of (1.3) is also technical, it uses the nontrivial “integration by parts” trick that

(Gα ∗ f)s . Gα ∗ [f(Gα ∗ f)s−1]
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for f = (Gα ∗µ)t−1, where µ > 0 is a compactly supported measure, see [4] and [10],

Lemma 3.1.

The main purpose of this paper is to give an entirely different proof of

(1.4) ‖·‖I . ‖·‖L1(C).

The proof that will be presented later uses some classical techniques in the standard

text of nonlinear potential theory (see, e.g. [2]) without recourse to the properties

of the complicated expression that

inf

{
∫

Rn

ϕs(Gα ∗ ϕ)1−s dx : 0 6 ϕ ∈ Z ′, Gα ∗ ϕ > |f | q.e.

}

as in (1.2) and (1.3).

Let us present all the statements that will be proved later. To begin with, we will

include the proof of the left-sided estimate of (1.1) for readers’ convenience:

Proposition 1.1. For any q.e. defined function f , it follows that

‖·‖L1(C) . ‖·‖I .

As a corollary, we have:

Corollary 1.2. The function Gα ∗ f is q.e. defined for f ∈ Z ′.

The following proposition extends Egorov’s theorem:

Proposition 1.3. Suppose that {fn}
∞
1 is a Cauchy sequence in Z ′ with limit f .

Then there is a subsequence {fni
}∞i=1 such that lim

i→∞
Gα ∗ fni

(x) = Gα ∗ f(x) q.e.,

uniformly outside an open set of arbitrarily small capacity.

Recall that a q.e. defined function f is said to be quasi-continuous if for every

ε > 0 there is an open set G such that Capα,s(G) < ε and the restriction of f
∣

∣

Gc to G
c

is continuous in the induced topology. We have the following important proposition:

Proposition 1.4. If f ∈ Z ′, then Gα ∗ f is quasi-continuous.

On the other hand, by locally Hardy-Littlewood maximal function we mean that

M loc(f) = sup
0<r<1

1

|Br(x)|

∫

Br(x)

|f(y)| dy

for a locally integrable function f . Then we have the following weak type (1, 1)

boundedness estimate, whose proof uses the boundedness of M loc on Z ′, see [9]:
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Lemma 1.5. Let f ∈ Z ′ be nonnegative. Set

Eλ = {x ∈ R
n : M loc(Gα ∗ f)(x) > λ}.

Then there is a constant A independent of f such that

Capα,s(Eλ) 6
A

λ
‖f‖Z′

for all λ > 0.

The main idea of the proof of (1.4) relies on the following proposition, which

resembles the classic Lebesgue’s differentiation theorem:

Proposition 1.6. Let f ∈ Z ′. Then the following convergence holds for q.e. x:

lim
r→0

1

|Br(x)|

∫

Br(x)

Gα ∗ f(y) dy = Gα ∗ f(x).

Moreover, the convergence is uniform outside an open set of arbitrarily small capacity.

For a technical reason, we need an auxiliary norm ‖·‖J defined by

(1.5) ‖f‖J = inf{‖ϕ‖Z′ : 0 6 ϕ ∈ Z ′, Gα ∗ ϕ > |f |},

where we drop the q.e. condition in the definition of ‖·‖I . By denoting

‖f‖M := sup

{
∫

Rn

f dµ : µ > 0, supp(µ) ⊆ supp(f), ‖Gα ∗ µ‖Z 6 1

}

for compactly supported function f , the following theorem extends the classical min-

imax theorem:

Theorem 1.7. For any function f with compact support supp f if f
∣

∣

supp f
is

continuous with min
supp f

f > 0, then

‖f‖J = ‖f‖M.

As a result for any compact set K it follows that ‖χK‖I ≈ Capα,s(K).

The above theorem shows that (1.4) holds for characteristic functions of compact

sets K. The following theorem addresses (1.4) for general cases:

Theorem 1.8. For any set E, the following estimate holds:

‖χE‖I . Capα,s(E).

As a result for any q.e. defined function f it follows that

‖f‖I . ‖f‖L1(C).
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Note that it is the Ls space which plays the main role in the standard nonlinear po-

tential theory. In a sense, the aforementioned propositions and theorems replace the

role of Ls with Z ′. For instance, in contrast to Proposition 1.4, the function Gα ∗ f

is quasi-continuous for f ∈ Ls (see [2], Proposition 6.1.2), meanwhile the Lebesgue’s

differentiation theorem holds for f ∈ Ls in Proposition 1.6, see [2], Theorem 6.2.1.

We refer the readers to the excellent text [2] for more details about the correspon-

dence. As a simple application, we may extend the trace inequalities presented in [2],

Theorem 7.2.1 and [6] to the following form:

Theorem 1.9. Let µ be a nonnegative measure on R
n. The following assertions

regarding µ are equivalent:

(a) There is a constant A1 such that

(
∫

Rn

|Gα ∗ f | dµ

)s−1

6 A1‖f‖
s−1

Z′

for all f ∈ Z ′.

(b) There is a constant A2 such that

(
∫

Rn

|Gα ∗ µK |t dx

)t−1

6 A2µ(K)t
−1

for all compact sets K.

(c) There is a constant A3 such that

sup
t>0

tµ({x ∈ R
n : |Gα ∗ f | > t}) 6 A3‖f‖Z′

for all f ∈ Z ′.

(d) There is a constant A4 such that

µ(K)s
−1

6 A4Capα,s(K)s
−1

for all compact sets K.

(e) There is a constant A5 such that

(
∫

K

|Gα ∗ µ|t dx

)t−1

6 A5Capα,s(K)t
−1

for all compact sets K.

The least possible values of constants Ai, i = 1, . . . , 5 are all equivalent to ‖Gα∗µ‖Z .
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We conclude this section with another application. The readers may have noticed

that the transition from Theorem 1.7 to Theorem 1.8 suggests that ‖·‖L1(C) and ‖·‖I
have the regularity property similar to measures. This observation is true to some

extent. First of all, let us denote by QLSC the class of functions that are both quasi-

continuous and lower semi-continuous. Let C be the operator defined successively in

the following way:

For any f ∈ C0, define

C(f) = ‖f‖L1(C).

For any f ∈ QLSC, define

C(f) = sup
06g6|f |
g∈C0

C(g).

For any f , define

C(f) = inf
h>|f |

h∈QLSC

C(h).

Therefore, the operator C is defined as having the inner and outer regularity. One

may expect that ‖·‖L1(C) is exactly C, unfortunately, it seems to us that they are

only equivalent but not identical:

Theorem 1.10. For any nonnegative f , C(f) ≈ ‖f‖L1(C).

The next section will provide the proofs for all aforementioned statements. In

what follows, the notation α ≈ β will denote both α . β and β . α for any two

quantities α and β.

2. Proofs

P r o o f of Proposition 1.1. Let us denote by L 1(C) the subspace of L1(C) which

consists of quasi-continuous functions. One can identify the dual of L 1(C) with the

space M which consists of measures µ such that

‖µ‖M := sup
K

|µ|(K)

Capα,s(K)
,

where the supremum is taken over all compact sets K ⊆ R
n with nonzero capacity,

see [6] and [9], Theorem 2.4. We note that L 1(C) is normable and thus it follows

from Hahn-Banach theorem that for any u ∈ L 1(C) we have

‖u‖L1(C) ≈ sup

{
∣

∣

∣

∣

∫

u dµ

∣

∣

∣

∣

: ‖µ‖M 6 1

}

.
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Let ϕ be a nonnegative compactly supported continuous function. Since Gα(x) =

O(e−x/2), it is not hard to see that Gα ∗ ϕ ∈ L 1(C) and hence,
∫

Rn

Gα ∗ ϕdC . sup
‖µ‖M61

∫

Gα ∗ ϕd|µ| = sup
‖µ‖M61

∫

(Gα ∗ |µ|)ϕdx

6 ‖ϕ‖Z′ sup
‖µ‖M61

‖Gα ∗ |µ|‖Z . ‖ϕ‖Z′ ,

where the last . follows from [8], Theorem 1.2.

Let ϕ ∈ Z ′ be a nonnegative function. By the density of C∞
0 in Z ′ (see [9], Re-

mark 3.3), we may choose a sequence {ϕn}
∞
i=1 of C

∞
0 that converges to ϕ in Z

′. Since

Z ′ →֒ L1(Rn) (see [9], Remark 2.1), we can further assume that ϕi(x) → ϕ(x) a.e.

Note that Gα ∗ ϕ(x) 6 lim inf
i→∞

Gα ∗ ϕi(x) everywhere and hence,

∫

Rn

Gα ∗ ϕdC 6 lim inf
i→∞

∫

Rn

Gα ∗ ϕi dC . lim inf
i→∞

‖ϕi‖Z′ = ‖ϕ‖Z′.

If we further let Gα ∗ ϕ > f q.e. for an arbitrary function f > 0, then
∫

Rn

f dC . ‖ϕ‖Z′

and hence the estimate ‖f‖L1(C) . ‖f‖I holds by definition. �

P r o o f of Corollary 1.2. Just note that by ‖·‖L1(C) 6 ‖·‖I , one has

Capα,s({x ∈ R
n : Gα ∗ f(x) > λ}) 6

1

λ
‖f‖Z′

for any λ > 0. �

P r o o f of Proposition 1.3. By Corollary 1.2, Gα ∗ fn(x) and Gα ∗ f(x) are

well-defined and finite on F c for a set F with Capα,s(F ) = 0. Choose {ni}
∞
i=1 such

that

‖fni
− f‖Z′ < 4−i.

Set Ei = {x : Gα ∗ |fni
− f | > 2−i} and Gm =

∞
⋃

i=m

Ei. We have

Capα,s(Ei) . ‖χEi
‖I 6 2i‖fni

− f‖Z′ 6 2−i, and Capα,s(Gm) 6
∞
∑

i=m

2−i,

so

Capα,s

( ∞
⋂

m=1

Gm

)

= 0.

Note that if x /∈ Gm ∪ F , then |Gα ∗ fni
(x) − Gα ∗ f(x)| 6 2−i for all i > m. The

proof is complete by noting that F is contained in an open set of arbitrarily small

capacity. �
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P r o o f of Proposition 1.4. By Corollary 1.2 we know that Gα ∗ f is well defined

and finite q.e. By the density of C∞
0 in Z ′ (see [9], Remark 3.3), we pick a se-

quence {fi} of C
∞
0 that converges to f in Z ′. Then Gα ∗ fi is a Schwartz function,

and by Proposition 1.3 there is a subsequence {ik}
∞
k=1 such that Gα∗fik(x) converges

to Gα ∗ f(x) q.e. and uniformly outside an open set of arbitrarily small capacity, the

proposition follows. �

P r o o f of Lemma 1.5. Let χ(x) = χB1(0)(x)/|B1(0)| and χr(x) = r−nχ(x/r) for

x ∈ R
n and r > 0. One may write

M loc(Gα ∗ f)(x) = sup
0<r<1

χr ∗Gα ∗ f(x)

and hence,

M loc(Gα ∗ f)(x) 6 Gα ∗M locf(x).

As a consequence, we have

{x ∈ R
n : M locf(x) > λ} ⊆ {x ∈ R

n : Gα ∗M locf(x) > λ}

and

Capα,s(Eλ) . ‖χEλ
‖I 6 λ−1‖M locf‖Z′

for all λ > 0. The lemma follows by the boundedness of M loc on Z ′, see [9]. �

P r o o f of Proposition 1.6. Let χr be as in the proof of Lemma 1.5. By the

density of C∞
0 in Z ′ (see [9], Remark 3.3), we can choose for every ε > 0 an f0 ∈ Z ′

such that ‖f−f0‖Z′ < ε. Then Gα∗f0 is a Schwartz function and thus lim
r→0

χr∗f0(x) =

f0(x) for all x ∈ R
n.

For δ > 0 we define

Ωδ(ϕ)(x) = sup
0<r<δ

(χr ∗ ϕ)(x) − inf
0<r<δ

(χr ∗ ϕ)(x)

for any suitable function ϕ. It follows that

Ωδ(Gα ∗ f)(x) 6 Ωδ(Gα ∗ f −Gα ∗ f0)(x) + Ωδ(Gα ∗ f0)(x).

By uniform continuity, we can choose a δ ∈ (0, 1) so small that

Ωδ(Gα ∗ f0)(x) < ε

for all x ∈ R
n. Moreover,

sup
0<r<1

|χr ∗Gα ∗ (f − f0)(x)| 6M loc(Gα ∗ (f − f0))(x),
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and hence,

Ωδ(Gα ∗ f)(x) 6 2M loc(Gα ∗ (f − f0))(x) + ε.

If ε < 1
2λ, this implies that

{x ∈ R
n : Ωδ(Gα ∗ f)(x) > λ} ⊆

{

x ∈ R
n : M loc(Gα ∗ (f − f0))(x) >

1

4
λ
}

,

and thus, we have by Lemma 1.5 that

Capα,s({x ∈ R
n : Ωδ(Gα ∗ f)(x) > λ}) .

1

λ
‖f − f0‖Z′ .

ε

λ
.

Now choose λ = 2−i and ε = 4−i for i = 1, 2, . . ., and denote the corresponding δ

by δi. Set

Ei = {x ∈ R
n : Ωδi(Gα ∗ f)(x) > 2−i},

then

Capα,s(Ei) . 2−i.

If Fm =
∞
⋃

i=m

Ei, it follows that

Capα,s(Em) .

∞
∑

i=m

2−i → 0

as m→ ∞, whence

Capα,s

( ∞
⋂

m=1

Fm

)

= 0.

If x /∈ Fm, we see that Ωδ(Gα ∗ f)(x) 6 2−i for δ 6 δi and i > m. It follows that

lim
r→0

χr ∗ Gα ∗ f(x) = Gα ∗ f(x) exists if x /∈
∞
⋂

m=1
Fm. On the other hand, for any

m = 1, 2, . . . , lim
r→0

χr ∗ Gα ∗ f(x) = Gα ∗ f(x) uniformly on F c
m, the proof is now

complete. �

P r o o f of Theorem 1.7. Let

Mf =

{

ν : ν > 0, supp(ν) ⊆ supp(f),

∫

Rn

f(x) dν = 1

}

and

F = {ϕ ∈ Z ′ : ϕ > 0, ‖ϕ‖Z′ 6 1}.

We also let

‖f‖J ,1 =

(

sup
F

inf
Mf

∫

Rn

Gα ∗ ϕ(x) dν

)−1
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and

‖f‖M,1 =

(

inf
Mf

sup
F

∫

Rn

Gα ∗ ϕ(x) dν

)−1

.

We claim that

(2.1) ‖f‖J ,1 = ‖f‖M,1.

The setsMϕ and F are convex. ViewingMf as a subset of the space M (supp(f))

of measures on supp(f), the set Mf is vaguely compact by the observation that

ν(supp(f)) 6 ( min
supp(f)

f)−1 for ν ∈ Mf and the Banach-Alaoglu theorem. The

linearity of the maps

ϕ→

∫

Rn

Gα ∗ ϕ(x) dν, ν →

∫

Rn

Gα ∗ ϕ(x) dν,

and the continuity of the second map allow us to invoke Fan’s minimax theorem

(see [2], Theorem 2.4.1), and hence (2.1) follows by the minimax theorem. We are

now to show that

(2.2) ‖f‖J = ‖f‖J ,1

and

(2.3) ‖f‖M = ‖f‖M,1.

We begin by showing that

(2.4) ‖f‖J ,1 6 ‖f‖J .

We could assume that ‖f‖J <∞. For any ε > 0 there is ϕε > 0 such that Gα∗ϕε > f

and

‖ϕε‖Z′ < ‖f‖J + ε.

As a result,
∥

∥

∥

ϕε

‖f‖J + ε

∥

∥

∥

Z′

6 1.

For any ν ∈ Mf we have

∫

Rn

Gα ∗
( ϕε

‖f‖J + ε

)

(x) dν >
1

‖f‖J + ε
.

Thus,

‖f‖J + ε >

(
∫

Rn

Gα ∗
( ϕε

‖f‖J + ε

)

(x) dν

)−1

,
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which implies that ‖f‖J + ε > ‖f‖J ,1, and thus (2.4) follows. We now show that

(2.5) ‖f‖J 6 ‖f‖J ,1.

We assume that ‖f‖J ,1 <∞. For any ε > 0 there is ψε ∈ F such that

(

inf
ν∈Mϕ

∫

Rn

Gα ∗ ψε(x) dν

)−1

< ‖f‖J ,1 + ε.

Thus,

1 6 inf
ν∈Mϕ

∫

Rn

Gα ∗ (ψε · (‖f‖J ,1 + ε))(x) dν.

Fix an x ∈ supp(f) and let dν = dδx/f(x), where dδx is the point mass measure

at x. Then
∫

Rn f(x) dν = 1 and hence,

1 6 Gα ∗ (ψε · (‖ϕ‖J ,1 + ε))(x) ·
1

f(x)
, f(x) 6 Gα ∗ (ψε · (‖f‖J ,1 + ε))(x).

Since ‖ψε‖Z′ 6 1, we get

‖f‖J 6 ‖ψε · (‖f‖J ,1 + ε)‖Z′ 6 ‖f‖J ,1 + ε,

so (2.5) follows and hence (2.2). We are now to show (2.3). As before, we will divide

the cases to

(2.6) ‖f‖M,1 6 ‖f‖M

and

(2.7) ‖f‖M 6 ‖f‖M,1.

We note that ‖f‖M,1 > 0 since 0 ∈ F . Assume at the moment that

(2.8) ‖f‖M,1 <∞,

we invoke the dual pair (Z,Z ′), then for every ε > 0 there is a measure ν ∈ Mf

satisfying

‖f‖M,1 <

(

sup
ϕ∈F

∫

Rn

Gα ∗ ϕ(x) dν

)−1

+ ε

=

(

sup
ϕ∈F

∫

Rn

ϕ(x)(Gα ∗ ν)(x) dx

)−1

+ ε = ‖Gα ∗ ν‖−1
Z + ε.

Set µ = ‖Gα ∗ ν‖−1
Z ν. We get

‖f‖M,1 − ε < ‖Gα ∗ ν‖−1
Z =

∫

Rn

‖Gα ∗ ν‖−1
Z f(x) dν =

∫

Rn

f(x) dµ 6 ‖f‖M,
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so (2.6) follows. Now we justify (2.7). For any ν > 0 and supp(ν) ⊆ supp(f) with

‖Gα ∗ ν‖Z 6 1 and ϕ ∈ F , set µ = (
∫

Rn f(x) dν)
−1ν we have

∫

Rn

Gα ∗ ϕ(x) dµ =

∫

Rn

(Gα ∗ µ)(x)ϕ(x) dx =

(
∫

Rn

f(x) dν

)−1∫

Rn

(Gα ∗ ν)(x)ϕ(x) dx

6

(
∫

Rn

f(x) dν

)−1

,

by the dual pair (Z,Z ′). Therefore,

∫

Rn

f(x) dν 6 ‖f‖M,1,

which implies (2.7), so (2.3) is established as well.

We now justify (2.8). Assume on the contrary that a sequence {νj} ⊆ Mf is such

that

sup
ϕ∈F

∫

Rn

Gα ∗ ϕ(x) dνj → 0.

By the dual pair (Z,Z ′), we get immediately that

‖Gα ∗ νj‖Z → 0.

It follows from [8], Theorem 1.2, that νj(K) → 0, and hence {νj(K)}∞j=1 is bounded.

By Banach-Alaoglu theorem, there exists a subnet {νjk} converging vaguely to a mea-

sure ν; this measure satisfies
∫

Rn f(x) dν = 1. On the other hand, we already had

νjk(K) → 0, so
∫

Rn f(x) dν = 0, we get a contradiction, so (2.8) follows.

In view of (1.5), we have apparently that ‖·‖I 6 ‖·‖J and hence

‖χK‖I 6 ‖χK‖M.

By [8], Theorem 1.2, it is easy to deduce that ‖χK‖M . Capα,s(K). The other

direction that Capα,s(K) . ‖χK‖I follows by Proposition 1.1. �

P r o o f of Theorem 1.8. We note that Fatou’s property of Z ′ entails the following

countable subaddivity:

‖χE‖I 6
∑

j

‖χE∩Rj
‖I ,

where Rj is the annulus {j − 1 6 |x| < j}. On the other hand, the quasi-additivity

of Capα,s (see [1]) implies that

∑

j

Capα,s(E ∩Rj) . Capα,s(E).
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Therefore, it suffices to prove the theorem under the assumption that E is a bounded

set. Besides that, since Capα,s is outer regular, we can further assume that E is

a bounded open set. With such an assumption, we can find a sequence {ϕj} of

continuous functions and a sequence {Kj} of compact sets such that

χK1
6 ϕ1 6 χK2

6 ϕ2 6 . . .

and χE(x) = sup
j
ϕj(x) = sup

j
χKj

(x).

Fix an N ∈ N and let j > N , ε > 0. We choose a nonnegative fj ∈ Z ′ such that

Gα ∗ fj(x) > ϕj(x) q.e., ‖fj‖Z′ 6 ‖ϕj‖I + ε.

Note that the sequence {‖fj‖Z′} is bounded by ‖χE‖+ ε. Using the C0
Z
-Z ′ duality

(see [9], Theorem 1.9) and the trivial fact that C0
Z
is separable, we may assume by

Banach-Alaoglu theorem that fj converges weak
∗ to an f ∈ Z ′. Since all the char-

acteristic functions of sets of finite measure belong to C0
Z
, by the usual Lebesgue’s

differentiation theorem, we may assume that f > 0. For any x ∈ R
n and r > 0 we

see that
∫

Br(x)

ϕN (y) dy 6

∫

Rn

χBr(x)(y)Gα ∗ fj(y) dy =

∫

Rn

fj(y)Gα ∗ χBr(x)(y) dy.

Since Gα ∗ χBr(x) ∈ C0
Z
, by the weak∗ convergence we have by taking j → ∞ that

∫

Br(x)

ϕN (y) dy 6

∫

Br(x)

Gα ∗ f(y) dy.

The continuity of ϕN implies for every x that

ϕN (x) = lim
r→0

1

|Br(x)|

∫

Br(x)

ϕN (y) dy,

then we use Proposition 1.6 to obtain

ϕN (x) 6 Gα ∗ f(x) q.e.

Taking N → ∞ yields

χE(x) 6 Gα ∗ f(x) q.e.

As a result, by a standard property of weak∗ convergence, the fact that ϕj 6 χKj+1
,

‖χKj
‖M ≈ Capα,s(Kj), and Theorem 1.7, we deduce that

‖χE‖I 6 ‖f‖Z′ . lim inf
j→∞

‖fj‖Z′ = sup
j

‖χKj
‖I + ε

≈ sup
j
Capα,s(Kj) + ε = Capα,s(E) + ε.
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The arbitrariness of ε > 0 finishes the proof of the first part of this theorem. For the

part that ‖f‖I . ‖f‖L1(C), we can argue as in the beginning of the proof that by

countably subadditivity of ‖·‖I that

‖f‖I 6
∑

j

‖fχ{2j−16|f |<2j}‖I 6
∑

j

2jCapα,s({|f | > 2j−1}) ≈ ‖f‖L1(C).

The proof of this theorem is now complete. �

P r o o f of Theorem 1.9. The equivalence between (b), (d), and (e) is known,

see [8], Theorem 1.2. The implication that (a) → (c) is trivial. Therefore, it suffices

to show the implications that (c) → (d) and (d) → (a).

(c) → (d): We choose an f such that Gα ∗ f > 1 on K. It follows from (c) that

µ(K) 6 A3‖f‖Z′, then by the definition of ‖·‖I , we have µ(K) 6 A3‖χK‖I . We

invoke Theorem 1.8 to finish the proof of this implication.

(d) → (a): We first assume that f ∈ C∞
0 . We have

∫

Rn

|Gα ∗ f | dµ =

∫ ∞

0

µ({x ∈ R
n : |Gα ∗ f | > t}) dt

6 sup
K

µ(K)

Capα,s(K)
· ‖Gα ∗ f‖L1(C) . sup

K

µ(K)

Capα,s(K)
· ‖f‖Z′,

the implication is proved by the density of C∞
0 in Z ′. �

P r o o f of Theorem 1.10. We first prove that C(f) . ‖f‖L1(C). Let

0 6 ϕ ∈ Z ′

be such that Gα ∗ ϕ > f . Define ϕn(x) = min{ϕ(x), n} for |x| 6 n and ϕn(x) = 0

for |x| > n, so Gα ∗ ϕn is continuous and

Gα ∗ ϕ(x) = sup
n
(Gα ∗ ϕn)(x).

It follows that Gα ∗ ϕ is lower semi-continuous. Together with Proposition 1.4, we

see that Gα ∗ ϕ ∈ QLSC, then

C(f) 6 C(Gα ∗ ϕ) = sup
06g6Gα∗ϕ

g∈C0

C(g) 6 ‖Gα ∗ ϕ‖L1(C) 6 ‖ϕ‖Z′ .

Hence, C(f) 6 ‖f‖I . ‖f‖L1(C).

For the other direction, we let h ∈ QLSC be such that h > f . Since h is lower

semi-continuous, the set {h 6 n} is closed. We choose an increasing sequence {ϕn}
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of continuous functions such that ϕn = 1 on the compact set {|x| 6 n} ∩ {h 6 n},

apparently, we have hϕn ∈ L1(C). Again, as h is lower semi-continuous, it is standard

that

h(x) = sup
06g6h
g∈C0

g(x),

and that ∫

hϕn dµ = sup
06g6h
g∈C0

∫

gϕn dµ

for any nonnegative measure µ, see [3], Proposition 16.1. As a result, we have

‖f‖L1(C) 6 sup
n>1

‖hϕn‖L1(C) ≈ sup
n>1

‖µ‖M61

∫

hϕn dµ = sup
06g6h
g∈C0

sup
n>1

‖µ‖M61

∫

gϕn dµ

. sup
06g6h
g∈C0

‖g‖L1(C) = C(h).

It follows from the definition of C that ‖f‖L1(C) . C(f), the proof is now complete.

�
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