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Abstract. Applying the method of normalized systems of functions we construct solutions
of the generalized Dirichlet problem for the iterated slice Dirac operator in Clifford analysis.
This problem is a natural generalization of the Dirichlet problem.
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1. Introduction

The problem of finding a solution of a second-order elliptic equation which is

regular in the domain of definition was studied by Dirichlet (see [11]) and is known

as the Dirichlet or first boundary value problem. In this paper, we mainly consider

a generalized Dirichlet problem of the following form.

Let Ω = {x ∈ R
m+1 : |x| < 1} denote the unit ball. Find a function u satisfying

(1.1)





D4
0u(x) = P (x), x ∈ Ω,

u|∂Ω = Q(x),
∂u

∂n

∣∣∣
∂Ω

= R(x),

where D0 is the slice Dirac operator, n is the outward normal to ∂Ω, and P (x),

Q(x), R(x) are Clifford-valued polynomials.

The slice Dirac operator is an extension of the well-known Dirac operator. The

Dirac operator introduced in the Clifford algebra setting by the work of Romanian

mathematicians Moisil and Teodorescu and Swiss mathematician Fueter (see [12])
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was later developed by Delanghe et al., see [2], [9], [10]. The null-solutions of the

Dirac operator are called monogenic functions. The study of properties of mono-

genic functions is a very well-established research field, usually called the Clifford

analysis. A disappointment about monogenic functions is that the identity function

or the powers of a variable are not monogenic functions. Gentili et al. in [13] offer

a new definition of monogenicity for functions (or slice monogenic functions) based on

a generalized Cauchy-Riemann operator (or slice Cauchy-Riemann operator). This

new class of monogenic functions contains polynomials (and, more in general, power

series) with coefficients in the Clifford algebra Cln. However, when taking the step

from general Clifford analysis based on the Dirac operator (see e.g. [2], [9], [10], [15])

to slice Clifford analysis (see e.g. [1], [6], [7], [8], [13], [14], [20], [21]), some important

properties are lost as well, such as the Fourier transforms based on the differential

operator. Cnudde et al. in [5] introduced a particular representation of the slice

Dirac operator, which allows to establish the Lie superalgebra structure behind slice

Clifford analysis. Furthermore, they studied integral transforms related to the slice

Dirac operator, such as the slice Fourier transform and slice Segal-Bargmann trans-

form, see [3], [4]. As far as we know, up till now, Dirichlet type problems for the

iterated slice Dirac equations have not been considered. In this paper, we construct

solutions of generalized Dirichlet problems for iterated slice Dirac equations by means

of the method of normalized systems of functions rather than Poisson formulas.

The method of normalized systems of functions was studied by the second author

in [16], [17], [18], [19] to construct and investigate polynomial solutions of initial and

boundary value problems for partial differential equations in real analysis, such as

Dirichlet problems, Neumann problems, Riqurie problems, etc. However, the study

of boundary value problems for partial differential equations in the slice Clifford

analysis is different from that in real analysis. Functions in the slice Clifford analysis

are not mutually commuting with respect to the pointwise product, see [3], [4], [5].

To overcome the noncommutative properties between functions, we exploit the in-

tertwining relations of differential operators (i.e., differential operators satisfy the

defining relations of the Lie superalgebra, see [5]). Applying these relations, we

construct the normalized system of functions for the iterated slice Dirac operator.

Then we get the Almansi representation for null solutions to the iterated slice Dirac

equations by the normalized system. Furthermore, we obtain solutions of inhomoge-

neous iterated slice Dirac equations. These results help us to investigate generalized

Dirichlet problems for the iterated slice Dirac equation. In Section 4 of this pa-

per, we consider the homogeneous boundary value problem for the inhomogeneous

iterated slice Dirac equation. Furthermore, we study the inhomogeneous boundary

value problem for the inhomogeneous iterated slice Dirac equation. These problems

are related to Dirichlet problems.
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2. Preliminaries

For the basic facts on Clifford algebras, Clifford analysis and slice Clifford analysis,

see, for example, [2], [3], [4], [5], [9], [10], [15]. One of the main aims of the slice Clif-

ford analysis is to construct a first order operator, the so-called slice Dirac operator,

factorizing the Laplace operator and to study the function-theoretical properties of

the null-solutions of this operator.

Let us identify the (m + 1)-tuple (x0, x1, . . . , xm) ∈ R
m+1 with the 1-vector

x ∈ Clm+1. The vector x is defined as x = x0e0 + x1e1 + . . . + xmem = x0e0 + x,

where e0, e1, . . . , em are the basis elements of the Clifford algebra Clm+1 satisfying

the relations

eiej + ejei = −2δi,j, i, j = 0, 1, . . . ,m.

Here δi,j denotes the Kronecker symbol. In particular, e
2
i = −1 for i = 0, . . . ,m.

One thus has x2 =
m∑
i=0

x2
i = −|x|2 = −(x2

0 + |x|2) = −(x2
0 + r2).

A first generalization of the classical Cauchy-Riemann operator is given by the

Dirac operator defined as

D =

m∑

i=0

ei∂xi
.

A second generalization of the classical Cauchy-Riemann operator is based on the

polar form of the vector. This is given by the slice Dirac operator defined as

D0 = e0∂x0
+ ω∂r = e0∂x0

+
x

|x|2

m∑

i=1

xi∂xi
,

where r =
√
x2
1 + . . .+ x2

m and ω = x/r.

The square of the slice Dirac operator is

D2
0 = −(∂2

x0
+ ∂2

r ).

The Euler operator in slice Clifford analysis is given by

E =

m∑

i=0

xi∂xi
.

The operators x, D0, E constitute the Lie superalgebra osp(1|2), see [20]. In

particular, the operators x2, D2
0 and E satisfy the intertwining relations

D2
0x

2 − x2D2
0 = 4E + 4,(2.1)

Ex2 − x2E = 2x2.(2.2)
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3. Solutions of iterated slice Dirac equations

In this section, we discuss properties of the Euler operator. Then by these proper-

ties and the intertwining relations of differential operators, we construct a normalized

system of functions with respect to the operator D2
0 . Applying the system, we get

the Almansi expression for null solutions to the iterated slice Dirac equation. Fur-

thermore, the solution of the equations D2
0u(x) = f(x) and D4

0u(x) = f(x) can

be obtained in this context. These results will help us to investigate generalized

Dirichlet problems for iterated slice Dirac equations in the next section.

From now on Ω = {x ∈ R
m+1 : |x| < 1} denotes the unit ball in R

m+1.

Lemma 3.1. If f ∈ C1(Ω,Clm+1), then

(E + s)

∫ 1

0

(1− t)s−1f(tx) dt = (s− 1)

∫ 1

0

(1− t)s−2f(tx) dt, s = 2, 3, . . . ,(3.1)

(E + s)

∫ 1

0

f(tx) dt = f(x), s = 1,(3.2)

(E + s)

∫ 1

0

(1− t)q

q!
ts−1f(tx) dt =

∫ 1

0

(1− t)q−1

(q − 1)!
tsf(tx) dt, q, s ∈ N.(3.3)

P r o o f. By direct calculation, we have

E

∫ 1

0

(1 − t)s−1f(tx) dt =
m∑

i=0

xi∂xi

∫ 1

0

(1− t)s−1f(tx) dt =

∫ 1

0

(1− t)s−1t
d

dt
f(tx)

= −

∫ 1

0

[(1 − t)s−1 − (s− 1)t(1− t)s−2]f(tx) dt

= (s− 1)

∫ 1

0

(1− t)s−2f(tx) dt− s

∫ 1

0

(1− t)s−1f(tx) dt,

which proves (3.1). In a similar way, one can obtain the formulas (3.2) and (3.3). �

Lemma 3.2. Let f ∈ C2(Ω,Clm+1) be such that D
2
0f(x) = 0. Let s > 0 and

Fs : Ω → Clm+1 be defined as

(3.4) Fs(x) =
x2s

4ss! (s− 1)!

∫ 1

0

(1− α)s−1f(αx) dα,

and F0(x) = f(x). Then D2
0Fs(x) = Fs−1(x).
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P r o o f. As the first step, we prove that

(3.5) D2
0 [x

2sf(x)] = x2sD2
0f(x) + 4sx2s−2(E + s)f(x).

Using the formulas (2.1) and (2.2), we obtain

D2
0[x

2sf(x)] = [x2D2
0 + 4E + 4][x2s−2f(x)]

= x2D2
0x

2s−2f(x) + 4Ex2s−2f(x) + 4x2s−2f(x)

= x2[x2D2
0 + 4E + 4]x2s−4f(x) + 4(x2E + 2x2)x2s−4f(x) + 4x2s−2f(x).

By iterating this computation, we get

D2
0[x

2sf(x)] = x2sD2
0f(x) + 4sx2s−2Ef(x) + 4sx2s−2f(x)

+ [8(s− 1) + . . .+ 8]x2s−2f(x)

= x2sD2
0f(x) + 4sx2s−2(E + s)f(x).

Let now f ∈ C2(Ω,Clm+1) be such that D
2
0f(x) = 0. Then we let the operator D2

0

act on the right side of the equation (3.4): for s > 1, it follows by Lemma 3.1 that

D2
0[Fs(x)] = D2

0

[
x2s

4ss! (s− 1)!

∫ 1

0

(1− α)s−1f(αx) dα

]

=
x2s

4ss! (s− 1)!
D2

0

∫ 1

0

(1 − α)s−1f(αx) dα

+
x2(s−1)(E + s)

4s−1(s− 1)! (s− 1)!

∫ 1

0

(1− α)s−1f(αx) dα

=
x2(s−1)

4s−1(s− 1)! (s− 1)!

×

[
E

∫ 1

0

(1− α)s−1f(αx) dα+ s

∫ 1

0

(1 − α)s−1f(αx) dα

]

=
x2(s−1)

4s−1(s− 1)! (s− 1)!

×

[∫ 1

0

(1− α)s−1α df(αx) + s

∫ 1

0

(1− α)s−1f(αx) dα

]

=
x2(s−1)

4s−1(s− 1)! (s− 1)!

×

∫ 1

0

[−(1− α)s−1 + (s− 1)α(1− α)s−2 + s(1− α)s−1]f(αx) dα

=
x2(s−1)

4s−1(s− 1)! (s− 2)!

∫ 1

0

(1− α)s−2f(αx) dα = Fs−1f(x).
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For s = 1, it follows by Lemma 3.1 that

D2
0[F1(x)] = (E + 1)

∫ 1

0

f(αx) dα = f(x) = F0(x),

which completes the proof. �

Remark 3.3. The sequence of functions {Fs, s = 0, 1, . . .} defined in the previous

lemma is the normalized system of functions with respect to the operator D2
0 , that is

D2
0F0(x) = 0, D2

0Fs(x) = Fs−1(x).

From Lemma 3.2, it is easy to obtain

D2k
0

[
f0(x) +

k−1∑

s=1

x2s

4ss! (s− 1)!

∫ 1

0

(1 − α)s−1fs(αx) dα

]
= 0,

where D2
0fs(x) = 0, s = 0, 1, . . . , k − 1.

Theorem 3.4. Let G ∈ C2k(Ω,Clm+1). If D
2k
0 G(x) = 0, then

(3.6) G(x) = f0(x) +
k−1∑

s=1

x2s

4ss! (s− 1)!

∫ 1

0

(1− α)s−1fs(αx) dα,

where fs(x), s = 0, 1, 2, . . . , k − 1, satisfy the equation D2
0f(x) = 0 and

(3.7) fs(x) = D2s
0 G(x) +

k−s−1∑

l=1

(−1)lx2l

4ll! (l− 1)!

∫ 1

0

(1− β)l−1βl−1D
2(s+l)
0 G(βx) dβ.

P r o o f. We first prove that D2
0fs(x) = 0. Applying Lemma 3.1, we see that

D2
0fs(x) = D

2(s+1)
0 G(x)

+
k−s−1∑

l=1

(−1)l

4ll! (l− 1)!
D2

0

[
x2l

∫ 1

0

(1− β)l−1βl−1D
2(s+l)
0 G(βx) dβ

]

= D
2(s+1)
0 G(x)

+
k−s−2∑

l=1

(−1)l

4ll! (l− 1)!

[
x2l

∫ 1

0

(1 − β)l−1βl+1D
2(s+l+1)
0 G(βx) dβ

]

+

k−s−1∑

l=1

(−1)lx2l−2

4l−1(l − 1)! (l − 1)!
(E + l)

∫ 1

0

(1 − β)l−1βl−1D
2(s+l)
0 G(βx) dβ

= D
2(s+1)
0 G(x)
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+
k−s−2∑

l=1

(−1)l

4ll! (l− 1)!

[
x2l

∫ 1

0

(1 − β)l−1βl+1D
2(s+l+1)
0 G(βx) dβ

]

− (E + 1)

∫ 1

0

D
2(s+1)
0 G(βx) dβ

+

k−j−1∑

l=2

(−1)lx2l−2

4l−1(l − 1)! (l − 2)!

∫ 1

0

(1 − β)l−2βlD
2(j+l)
0 G(βx) dβ

= D
2(s+1)
0 G(x)

+

k−s−2∑

l=1

(−1)l

4ll! (l− 1)!

[
x2l

∫ 1

0

(1 − β)l−1βl+1D
2(s+l+1)
0 G(βx) dβ

]

−D
2(s+1)
0 G(x)

+

k−s−2∑

l=1

(−1)l+1x2l

4ll! (l− 1)!

∫ 1

0

(1 − β)l−1βl+1D
2(s+l+1)
0 G(βx) dβ = 0.

Let us now prove the formula (3.6), where fs(x) are given as in (3.7). To do this, we

substitute the expression for fs(x) into (3.6). Then we find

f0(x) +

k−1∑

s=1

x2s

4ss! (s− 1)!

∫ 1

0

(1− α)s−1fs(αx) dα

= G(x) +

k−1∑

s=1

(−1)sx2s

4ss!

∫ 1

0

(1− α)s−1αs−1

(s− 1)!
D2s

0 G(αx) dα

+

k−1∑

s=1

x2s

4ss! (s− 1)!

∫ 1

0

(1− α)s−1D2s
0 G(αx) dα

+

k−2∑

s=1

x2s+2l

4ss! (s− 1)!

∫ 1

0

k−s−1∑

l=1

(−1)l(1− α)s−1α2l

4ll!

×

∫ 1

0

(1 − β)l−1βl−1

(l − 1)!
D

2(l+s)
0 G(αβx) dβ dα.

By making the change of variables αβ → t and by changing the integration order,

the last sum in the above equality becomes

k−2∑

s=1

k−s−1∑

l=1

(−1)lx2s+2l

4l+ss! l!

×

∫ 1

0

α2(1− α)s−1

(s− 1)!

∫ 1

0

(α− αβ)l−1(αβ)l−1

(l − 1)!
D

2(l+s)
0 G(αβx) dβ dα

=
k−2∑

s=1

k−s−1∑

l=1

(−1)lx2s+2l

4l+ss! l!

∫ 1

0

α(1− α)s−1

(s− 1)!

∫ α

0

(α− t)l−1tl−1

(l − 1)!
D

2(l+s)
0 G(tx) dt dα
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=
k−2∑

s=1

k−s−1∑

l=1

(−1)lx2s+2l

4l+ss! l!

∫ 1

0

∫ α

0

α(1 − α)s−1(α− t)l−1

(s− 1)! (l − 1)!
tl−1D

2(l+s)
0 G(tx) dt dα

=

k−2∑

s=1

k−s−1∑

l=1

(−1)lx2s+2l

4l+ss! l!

∫ 1

0

∫ 1

t

α(1 − α)s−1(α− t)l−1

(s− 1)! (l − 1)!
tl−1D

2(l+s)
0 G(tx) dα dt

=

k−2∑

s=1

k−s−1∑

l=1

(−1)lx2s+2l

4l+s

×

∫ 1

0

[ (1− t)s+l

s! (l − 1)! (l + s)!
+

t(1− t)l+s−1

s! l! (l+ s− 1)!

]
tl−1D

2(l+s)
0 G(tx) dt.

Let s+ l = i. Then we can continue as follows

k−1∑

i=2

i−1∑

l=1

(−1)lx2i

4i

∫ 1

0

[ tl−1(1− t)i

(i− l)! (l − 1)! i!
+

tl(1− t)i−1

(i− l)! l! (i− 1)!

]
D2i

0 G(tx) dt

=

k−1∑

i=2

x2i

4i

∫ 1

0

(1− t)i−1(−t)i−1

i! (i− 1)!
D2i

0 G(tx) dt−

k−1∑

i=2

x2i

4i

∫ 1

0

(1− t)i−1

i! (i− 1)!
D2i

0 G(tx) dt

=

k−1∑

i=2

x2i

4i

∫ 1

0

(1− t)i−1(−t)i−1

i! (i− 1)!
D2i

0 G(tx) dt+
x2

4

∫ 1

0

D2i
0 G(tx) dt

−

k−1∑

i=2

x2i

4i

∫ 1

0

(1− t)i−1

i! (i− 1)!
D2i

0 G(tx) dt−
x2

4

∫ 1

0

D2i
0 G(tx) dt

= −

k−1∑

s=1

(−1)sx2s

4s

∫ 1

0

(1− t)s−1ts−1

s! (s− 1)!
D2s

0 G(tx) dt

−
k−1∑

s=1

x2s

4s

∫ 1

0

(1 − t)s−1

s! (s− 1)!
D2s

0 G(tx) dt

and the theorem is proved. �

We now consider the equation

(3.8) D2
0u(x) = f(x),

where D0 is the slice Dirac operator and f ∈ C∞(Ω,Clm+1) is a real analytic func-

tion. In the sequel, we always assume that infinite series converge absolutely and

uniformly in the unit ball Ω.

Theorem 3.5. The solution of the equation (3.8) can be represented as

(3.9) u(x) =

∞∑

s=0

(−1)sx2(s+1)

4s+1(s+ 1)! s!

∫ 1

0

(1− t)stsD2s
0 f(tx) dt.
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P r o o f. We let the operator D2
0 act on the right side of the equation (3.9). Then

from the formula (3.5) it follows that

∞∑

s=0

(−1)s

4s+1(s+ 1)! s!
D2

0

[
x2(s+1)

∫ 1

0

(1− t)stsD2s
0 f(tx) dt

]

=

∞∑

s=0

(−1)s

4s+1(s+ 1)! s!

[
x2(s+1)

∫ 1

0

(1− t)sts+2D
2(s+1)
0 f(tx) dt

]

+
∞∑

s=0

(−1)s

4s+1(s+ 1)! s!
4(s+ 1)x2s(E + s+ 1)

∫ 1

0

(1− t)stsD2s
0 f(tx) dt

=

∞∑

s=0

(−1)s

4s+1(s+ 1)! s!

[
x2(s+1)

∫ 1

0

(1− t)sts+2D
2(s+1)
0 f(tx) dt

]

+ (E + 1)

∫ 1

0

f(tx) dt+

∞∑

s=1

(−1)s

4ss! s!
x2s(E + s+ 1)

∫ 1

0

(1− t)stsD2s
0 f(tx) dt.

By means of Lemma 3.1, we have

∞∑

s=0

(−1)s

4s+1(s+ 1)! s!
D2

0

[
x2(s+1)

∫ 1

0

(1− t)stsD2s
0 f(tx) dt

]

= f(x) +

∞∑

s=0

(−1)s

4s+1(s+ 1)! s!

[
x2(s+1)

∫ 1

0

(1− t)sts+2D
2(s+1)
0 f(tx) dt

]

+

∞∑

s=1

(−1)sx2s

4ss! (s− 1)!

∫ 1

0

(1 − t)s−1ts+1D2s
0 f(tx) dt

= f(x) +

∞∑

s=0

(−1)s

4s+1(s+ 1)! s!

[
x2(s+1)

∫ 1

0

(1− t)sts+2D
2(s+1)
0 f(tx) dt

]

+

∞∑

s=0

(−1)s+1x2(s+1)

4s+1s! (s+ 1)!

∫ 1

0

(1− t)sts+2D
2(s+1)
0 f(tx) dt = f(x).

This implies that the desired result holds. �

Applying Theorem 3.5, we study the iterated slice Dirac equation

(3.10) D4
0u(x) = f(x),

where f ∈ C∞(Ω,Clm+1) is a real analytic function.

Theorem 3.6. The solution of the equation (3.10) is given by

u(x) =
∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 2)! s!

∫ 1

0

(1− t)s+1tsD2s
0 f(tx) dt.
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P r o o f. From Theorem 3.5, we find that

g(x) =
∞∑

s=0

(−1)sx2(s+1)

4s+1(s+ 1)! s!

∫ 1

0

(1− t)stsD2s
0 f(tx) dt

is the solution of the equation D2
0g(x) = f(x).

Similarly, the solution of the equation D2
0u(x) = g(x) can be written as

u(x) =

∞∑

s=0

(−1)sx2(s+1)

4s+1(s+ 1)! s!

∫ 1

0

(1 − t)stsD2s
0 g(tx) dt.

Since D2
0g(x) = f(x), we have

(3.11) u(x) =
x2

4

∫ 1

0

g(tx) dt+

∞∑

s=1

(−1)s(tx)2(s+1)

4s+1(s+ 1)! s!

∫ 1

0

(1− t)stsD
2(s−1)
0 f(tx) dt.

We compute the first term on the right side of (3.11):

x2

4

∫ 1

0

g(tx) dt =
x2

4

∫ 1

0

∞∑

s=0

(−1)sx2(s+1)

4s+1(s+ 1)! s!

∫ 1

0

(1− β)sβsD2s
0 f(tβx) dβ dt

=

∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 1)!

∫ 1

0

∫ 1

0

(1− β)sβst2(s+1)

s!
D2s

0 f(tβx) dβ dt

=

∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 1)!

∫ 1

0

∫ 1

0

(t− tβ)s(tβ)st2

s!
D2s

0 f(tβx) dβ dt

=

∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 1)!

∫ 1

0

∫ 1

0

(t− tβ)s(tβ)st

s!
D2s

0 f(tβx) d(tβ) dt.

By making the change of variables tβ → β̃ and by changing the integration order,

the first term on the right side of (3.11) becomes

x2

4

∫ 1

0

g(tx) dt=

∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 1)!

∫ 1

0

∫ t

0

(t− β̃)sβst

s!
D2s

0 f(β̃x) dβ dt

=
∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 1)! s!

∫ 1

0

β̃sD2s
0 f(β̃x)

∫ 1

β̃

(t− β̃)st dt dβ̃

=

∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 1)! s!

∫ 1

0

β̃s
[ (1− β̃)s+1

s+ 1
−

(1− β̃)s+2

(s+ 2)(s+ 1)

]
D2s

0 f(β̃x) dβ̃

=
∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 2)! (s+ 1)!

×

∫ 1

0

β̃s[(1− β̃)(s+ 2)− (1− β̃)s+2]D2s
0 f(β̃x) dβ̃.
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We now return to formula (3.11),

u(x) =

∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 2)! (s+ 1)!

∫ 1

0

β̃s[(1 − β̃)(s+ 2)− (1− β̃)s+2]D2s
0 f(β̃x) dβ̃

+

∞∑

s=1

(−1)s(tx)2(s+1)

4s+1(s+ 1)! s!

∫ 1

0

(1− t)stsD
2(s−1)
0 f(tx) dt

=
∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 2)! (s+ 1)!

∫ 1

0

ts[(s+ 2)(1− t)s+1 − (1− t)s+2]D2s
0 f(tx) dt

+

∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 2)! (s+ 1)!

∫ 1

0

[−(1− t)s+1ts+1]D2s
0 f(tx) dt

=

∞∑

s=0

(−1)sx2(s+2)

4s+2(s+ 2)! s!

∫ 1

0

ts(1 − t)s+1D2s
0 f(tx) dt,

which completes the proof. �

4. Boundary value problems for iterated slice Dirac equations

In [22], the author examined Dirichlet type problems for the iterated slice Dirac

equation by integral operators. In this section, we construct generalized Dirichlet

problems for inhomogeneous iterated slice Dirac equations by means of a new ap-

proach.

4.1. Homogeneous boundary value problems for inhomogeneous iterated

slice Dirac equations. In this section, we first consider the following homogeneous

boundary value problem for the inhomogeneous iterated slice Dirac equation.

Let f be a Clifford-valued polynomial and let n denote the outward normal to ∂Ω.

We look for a function u ∈ C4(Ω,Clm+1) such that

(4.1)






D4
0u(x) = f(x), x ∈ Ω,

u|∂Ω = 0,
∂u

∂n

∣∣∣
∂Ω

= 0.

In order to obtain the solution of the problem (4.1), we need the following lemma.

Lemma 4.1. Let Pl be a a Clifford-valued homogeneous polynomial of degree l.

Then

(4.2) Pl(x) = Rl(x) + x2Rl−2(x) + . . .+ x2jRl−2j(x),
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where Rl−2j(x) are homogeneous polynomials of degree l − 2j and

(4.3) Rl−2j(x) =
(l − 2j)!

4jj! (l − j)!

∞∑

s=0

(−1)sx2sD
2(s+j)
0 Pl(x)

4ss! (l − 2j − s)s
.

Here (a)s = a(a+ 1) . . . (a+ s− 1) and D2
0Rl−2j(x) = 0.

P r o o f. Using the formulas (3.6) and (3.7), we have

Pl(x) = f0(x) +

[l/2]∑

j=1

x2j

4jj! (j − 1)!

∫ 1

0

(1− α)j−1fj(αx) dα,

fj(x) = D2j
0 Pl(x) +

[l/2−j]∑

s=1

(−1)sx2s

4sl! (s− 1)!

∫ 1

0

(1− β)s−1βs−1D
2(s+j)
0 Pl(βx) dβ.

Then the formula (4.2) can be written as

(4.4) Rl−2j(x) =
fj(x)

4jj! (j − 1)!

∫ 1

0

(1− α)j−1αl−2j dα =
B(j, l − 2j + 1)

4jj! (j − 1)!
fj(x),

where B(m,n) is the Euler beta function. It follows that f0(x) = Rl(x). Using the

formula (3.6), we have

(4.5) f0(x) = Pl(x) +

[l/2]∑

s=1

(−1)sx2s

4ss! (s− 1)!

∫ 1

0

(1− β)s−1βs−1D2s
0 Pl(βx) dβ

= Pl(x) +

[l/2]∑

s=1

(−1)sx2sD2s
0 Pl(x)

4ss! (s− 1)!

∫ 1

0

(1− β)s−1βl−s−1 dβ.

Applying the relation between the Euler beta function and beta functions, we can

continue as follows

Pl(x) +

[l/2]∑

s=1

(−1)sx2sD2s
0 Pl(x)

4ss! (s− 1)!
B(s, l − s)

= Pl(x) +

[l/2]∑

s=1

(−1)sx2sD2s
0 Pl(x)

4ss! (s− 1)!

Γ(s)Γ(l − s)

Γ(l)

= Pl(x) +

[l/2]∑

s=1

(−1)sx2sD2s
0 Pl(x)

4ss! (s− 1)!

(s− 1)! (l − s− 1)!

(l − 1)!

= Pl(x) +

[l/2]∑

s=1

(−1)sx2sD2s
0 Pl(x)

4ss! (l − s)s
=

[l/2]∑

s=0

(−1)sx2sD2s
0 Pl(x)

4ss! (l − s)s
.
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Therefore,

fj(x) =

[l/2−j]∑

s=0

(−1)sx2sD
2(s+j)
0 Pl(x)

4ss! (l − 2j − s)s
.

Thus, it follows from (4.4) that

Rl−2j(x) =
B(j, l − 2j + 1)

4jj! (j − 1)!

[l/2−j]∑

s=0

(−1)sx2sD
2(s+j)
0 Pl(x)

4ss! (l − 2j − s)s
.

This means that the desired result holds. �

Theorem 4.2. Let f(x) be an arbitrary Clifford-valued polynomial. Then the

solution of the problem (4.1) can be written as

(4.6) u(x) = (x2 + 1)2
∫ 1

0

∞∑

s=0

(1 + αx2)s(1− α)s+1

4s+2(s+ 2)! s!
D2s

0 f(αx) dα.

P r o o f. Firstly, we consider the following boundary value problem: For the inho-

mogeneous iterated slice Dirac equation in the domain Ω, find a function u(x) such

that

(4.7)





D4
0u(x) = x2iRl−2i(x),

u|∂Ω = 0,
∂u

∂n

∣∣∣
∂Ω

= 0,

where the homogenous polynomials Rl−2i(x) satisfy the equation D2
0Rl−2i(x) = 0.

Using the formula (3.5), we have

D4
0[x

2(l+2)Ps(x)] = D2
0D

2
0[x

2(l+2)Ps(x)]

= D2
0[x

2(l+2)D2
0Ps(x) + 4(l+ 2)x2l+2(E + l + 2)Ps(x)]

= 4(l+ 2)(s+ l + 2)D2
0[x

2l+2Ps(x)]

= 4(l+ 2)(s+ l + 2)[x2l+2D2
0Ps(x) + 4(l + 1)x2l(E + l + 1)Ps(x)]

= 4(l+ 2)(s+ l + 2)[x2l+2D2
0Ps(x) + 4(l + 1)x2l(s+ l+ 1)Ps(x)]

= 42(l + 2)(l + 1)(s+ l + 2)(s+ l+ 1)x2lPs(x).

This implies that the solution of the equation D4
0u(x) = x2lPs(x) is given by

u(x) =
x2(l+2)Ps(x)

42(l + 2)(l + 1)(s+ l + 2)(s+ l + 1)

with the homogenous polynomial Ps(x) of degree s.
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Thus, we can see that

gi(x) =
x2i+4Rl−2i(x)

42(i + 2)(i+ 1)(l − i+ 2)(l − i+ 1)

is the solution of the equation D2
0u(x) = x2iRl−2i(x).

Hence, the solution of the problem (4.7) is

(4.8) ui(x) =
[x2i+4 + (−1)i(i+ 1) + (−1)i(i+ 2)x2]Rl−2i(x)

42(i+ 2)(i+ 1)(l − i+ 2)(l − i+ 1)
.

Then we consider the homogeneous boundary value problem

(4.9)





D4
0u(x) = Pl(x), x ∈ Ω,

u|∂Ω = 0,
∂u

∂n

∣∣∣
∂Ω

= 0,

where Pl(x) is a Clifford-valued polynomial of degree l.

Let ul(x) be the solution of the problem (4.9). Then

ul(x) =

[l/2]∑

i=0

[x2i+4 + (−1)i(i + 1) + (−1)i(i + 2)x2]Rl−2i(x)

42(i+ 2)(i+ 1)(l − i+ 2)(l − i+ 1)
.

Using the formula (4.3), we have

(4.10) ul(x) = (x2 + 1)2
[l/2]∑

s=0

D2s
0 Pl(x)

4s+2(s+ 2)!

s∑

k=0

(s+ 1)!x2k

k! (s− k)! (l − 2s+ k + 1)s+2
.

Since

1

(l − 2s+ k + 1)s+2
=

1

(l − 2s+ k + 1) . . . (l − s+ k + 2)
=

(l − 2s+ k)!

(l − s+ k + 2)!

=
B(s+ 2, l+ k − 2s+ 1)

Γ(s+ 2)

1

(s+ 1)!

∫ 1

0

(1− t)s+1tl+k−2s dt,

then

(4.11) ul(x) = (x2 + 1)2
[l/2]∑

s=0

D2s
0 Pl(x)

4s+2(s+ 2)!

∫ 1

0

(1− t)s+1tl+k−2sx2k dt

= (x2 + 1)2
[l/2]∑

s=0

D2s
0 Pl(x)

4s+2(s+ 2)! s!

∫ 1

0

(1− t)s+1tl−2s
s∑

k=0

s!

k! (s− k)!
tkx2k dt

= (x2 + 1)2
[l/2]∑

s=0

1

4s+2(s+ 2)! s!

∫ 1

0

(1 − t)s+1(1 + tx2)sD2s
0 Pl(tx) dt.

We now turn to the boundary value problem (4.1).
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Since P (x) is an arbitrary Clifford-valued polynomial, then

P (x) =
∑

l

Pl(x),

where Pl(x) is a Clifford-valued polynomial of degree l. Let u(x) denote the solution

of the problem (4.1). From the formula (4.11) it follows that

u(x) =
∑

l

ul(x) = (x2 + 1)2
∫ 1

0

∞∑

s=0

(1 + tx2)s(1− t)s+1

4s+2(s+ 2)! s!
D2s

0

∑

l

Pl(tx) dt

= (x2 + 1)2
∫ 1

0

∞∑

s=0

(1 + tx2)s(1 − t)s+1

4s+2(s+ 2)! s!
D2s

0 P (tx) dt,

which completes the proof. �

4.2. Inhomogeneous boundary value problems for inhomogeneous iter-

ated slice Dirac equations. In this section, we turn to the problem (1.1).

Theorem 4.3. The solution of the problem (1.1) is given by

(4.12) u(x) = Q(x) +
(x2 + 1)

2
[R(x)− EQ(x)]

+ (x2 + 1)2
∫ 1

0

∞∑

s=0

(1 + tx2)s(1− t)s

2 · 4s+1(s+ 1)! s!
D2s

0 [D2
0(EQ −R)](tx) dt

− (x2 + 1)2
∫ 1

0

∞∑

s=0

(1 + tx2)s(1− t)s+1

4s+2(s+ 2)! s!
D2s

0 [P −D2
0Q](tx) dt,

where E is the Euler operator.

P r o o f. We first consider the boundary value problem for the iterated slice Dirac

equation

(4.13)






D4
0u(x) = 0, x ∈ Ω,

u|∂Ω = Q(x),
∂u

∂n

∣∣∣
∂Ω

= 0

with the Clifford-valued polynomial boundary value Q(x).

From Theorem 4.2 it follows that

(4.14) u(x) = Q(x)−
(x2 + 1)

2
EQ(x)

+ (x2 + 1)2
∫ 1

0

∞∑

s=0

(1 + tx2)s(1− t)s

2 · 4s+1(s+ 1)! s!
D

2(s+1)
0 [EQ(tx)] dt

− (x2 + 1)2
∫ 1

0

∞∑

s=0

(1 + tx2)s(1− t)s+1

4s+2(s+ 1)! s!
D

2(s+2)
0 Q(tx) dt
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is the solution of the problem (4.13). In fact, since x2 +1 = 0, we can prove that the

function u(x) in (4.14) satisfies the equation u|∂Ω = Q(x). Since ∂u/∂n = Eu(x), we

can prove that the function u(x) in (4.14) satisfies ∂u/∂n|∂Ω = 0.

Next, we consider the boundary value problem for the iterated slice Dirac equation

(4.15)






D4
0u(x) = 0, x ∈ Ω,

u|∂Ω = 0,
∂u

∂n

∣∣∣
∂Ω

= R(x)

with the Clifford-valued polynomial boundary value R(x). Combining relations (4.6)

and (4.16), we have that

(4.16) u(x) =
(x2 + 1)

2
R(x)− (x2 + 1)2

∫ 1

0

∞∑

s=0

(1 + tx2)s(1 − t)s

2 · 4s+1(s+ 1)! s!
D

2(s+1)
0 R(tx) dt

is the solution of the problem (4.15).

It is easy to see that the solution of the problem (1.1) can be represented as the

sum of solutions of the three problems (4.1), (4.13), and (4.15). Combining (4.14)

and (4.16), we finally obtain the desired solution (4.12). �
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