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Abstract. We prove an inner product inequality for Hilbert space operators. This inequal-
ity will be utilized to present a general numerical radius inequality using convex functions.
Applications of the new results include obtaining new forms that generalize and extend
some well known results in the literature, with an application to the newly defined general-
ized numerical radius. We emphasize that the approach followed in this article is different
from the approaches used in the literature to obtain such versions.
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1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex

Hilbert space H with inner product 〈·, ·〉. For T ∈ B(H ), let ω(T ) and ‖T ‖ denote

the numerical radius and the operator norm of T , respectively. Recall that ω(T ) =

sup
x∈H

‖x‖=1

|〈Tx, x〉| and ‖T ‖ = sup
x∈H

‖x‖=1

‖Tx‖. It is evident that ω(·) defines a norm on B(H ),

which is equivalent to the operator norm ‖·‖. In fact, for every T ∈ B(H ),

(1.1)
1

2
‖T ‖ 6 ω(T ) 6 ‖T ‖.

The inequalities in (1.1) are sharp. The first inequality becomes an equality if T 2 = 0,

while the second inequality becomes an equality if T is normal, i.e., T ∗T = TT ∗,

where T ∗ is the adjoint operator of T .
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In [12], Kittaneh improved the second inequality in (1.1) as

(1.2) ω(T ) 6
1

2
(‖T ‖+ ‖T 2‖1/2).

The fact that (1.2) provides a refinement of the second inequality in (1.1) follows

from the fact ‖T 2‖ 6 ‖T ‖2. Another refinement of the second inequality in (1.1) was

shown in [14] as

(1.3) ω2(T ) 6
1

2
‖|T |2 + |T ∗|2‖, T ∈ B(H ).

Here |T | stands for the positive operator (T ∗T )1/2.

A generalization of inequality (1.3) was given in [10] as

(1.4) ω2r(T ) 6
1

2
‖|T |2r + |T ∗|2r‖, T ∈ B(H ), r > 1.

Nowadays, a considerable attention is dedicated to refinements and generalizations

of the above inequalities [1], [8], [9], [10], [12]–[21].

Recent progress in this field includes sharper refinements, new refined forms and

new definitions related to the numerical radius, such as the generalized numerical

radius (see [1]) and the A−numerical radius, see [3], [21]. We also refer the reader

to the very recent papers (see [4], [5], [22]) for various results including better lower

bounds for the numerical radius, new inequalities for the generalized numerical radius

and the Davis-Wielandt radius.

Our main target in this article is to present a general form that leads to new

refinements and to some already known results in the literature about the numerical

radius. Our approach is based on delicate treatments of inner product inequalities

via convex functions.

The main result in this paper reads as

(1.5) f(|〈Ax, x〉〈Bx, x〉|2)

6
f(|〈BAx, x〉|2) + 〈(αf(|A|2/α) + (1− α)f(|B∗|2/(1−α)))x, x〉

2
,

for 0 6 α 6 1, where A,B ∈ B(H ), x ∈ H is a unit vector and f : [0,∞) → R

is an increasing convex function. Then upon selecting certain functions, we obtain

new explicit inequalities for the numerical radius. For example, if r > 1, the above

inequality leads to the numerical radius inequality

(1.6) ω2r(B∗A) 6
1

2
ωr(|B|2|A|2) +

1

4
‖|A|4r + |B|4r‖, A,B ∈ B(H ).

Then we will show how this refines some results in the literature. Several applications

will be presented also.
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The importance of the current work lies in the fact that (1.5) can be used to

retrieve several interpolated inequalities for the numerical radius. These interpolated

inequalities then can be used to obtain explicit forms of such inequalities.

2. Preliminary lemmas

In this short section, we present some lemmas that we shall need in our analysis.

The first lemma is a simple consequence of the classical Jensen and Young inequali-

ties.

Lemma 2.1. For a, b > 0, 0 6 α 6 1, and r > 1,

aαb1−α 6 αa+ (1− α)b 6 (αar + (1− α)br)1/r.

The second lemma follows from the spectral theorem for self-adjoint operators and

Jensen’s inequality, see, e.g., [17], Theorem 1.4.

Lemma 2.2. Let T ∈ B(H ) be a self adjoint operator and let x ∈ H be a unit

vector. If f is a convex function on an interval containing the spectrum of T , then

(2.1) f(〈Tx, x〉) 6 〈f(T )x, x〉.

If f is concave, then (2.1) holds in the reverse direction.

The third lemma is known as the mixed Schwarz inequality, see, e.g., [11],

pages 75–76.

Lemma 2.3. Let T ∈ B(H ) and let x ∈ H be a unit vector. Then

|〈Tx, x〉|2 6 〈|T |x, x〉〈|T ∗|x, x〉.

The fourth lemma has been shown in [13], equation (18), and is considered as

a refined triangle inequality for positive operators.

Lemma 2.4. Let T ∈ B(H ). Then

‖|T |2 + |T ∗|2‖ 6 ‖T 2‖+ ‖T ‖2.
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The fifth lemma, which can be found in [2], Theorem 2.3, gives a norm inequality

involving convex function of positive operators.

Lemma 2.5. Let f be a nonnegative nondecreasing convex function on [0,∞)

and let A,B ∈ B(H ) be positive operators. Then

∥

∥

∥
f
(A+B

2

)∥

∥

∥
6

∥

∥

∥

f(A) + f(B)

2

∥

∥

∥
.

3. Main results

In this section, we present our main results. However, we present these results in

consecutive subsections, where an inner product inequality for Hilbert space opera-

tors is shown via convex functions in the first subsection. Then applications of this

generalized form are presented in the second and third subsections.

3.1. Inner product inequalities. Our first main result can be stated as follows.

Theorem 3.1. Let A,B ∈ B(H ) and let x ∈ H be a unit vector. If f :

[0,∞) → R is an increasing convex function, then

(3.1) f(|〈Ax, x〉〈Bx, x〉|2)

6
f(|〈BAx, x〉|2) + 〈(αf(|A|2/α) + (1− α)f(|B∗|2/(1−α)))x, x〉

2

for 0 6 α 6 1. Further,

(3.2) f(|〈Ax, x〉〈Bx, x〉|) 6
1

2
f(|〈BAx, x〉|) +

1

4
〈(f(|A|2) + f(|B∗|2))x, x〉.

P r o o f. In [6], the following refinement of the Cauchy-Schwarz inequality was

shown:

|〈a, b〉| 6 |〈a, e〉〈e, b〉|+ |〈a, b〉 − 〈a, e〉〈e, b〉| 6 ‖a‖‖b‖,

where a, b, e are vectors in H and ‖e‖ = 1. Since

|〈a, e〉〈e, b〉|+ |〈a, b〉 − 〈a, e〉〈e, b〉| > |〈a, e〉〈e, b〉| − |〈a, b〉|+ |〈a, e〉〈e, b〉|

= 2|〈a, e〉〈e, b〉| − |〈a, b〉|,
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we have (see also [7])

(3.3) |〈a, e〉〈e, b〉| 6
1

2
(|〈a, b〉|+ ‖a‖‖b‖).

Putting e = x with ‖x‖ = 1, a = Ax and b = B∗x in inequality (3.3), we obtain

(3.4) |〈Ax, x〉〈Bx, x〉| 6
1

2
(|〈BAx, x〉| + ‖Ax‖‖B∗x‖).

Therefore,

|〈Ax, x〉〈Bx, x〉|2 6

( |〈BAx, x〉| + ‖Ax‖‖B∗x‖

2

)2

6
1

2
(|〈BAx, x〉|2 + ‖Ax‖2‖B∗x‖2)(3.5)

=
1

2
(|〈BAx, x〉|2 + 〈Ax,Ax〉〈B∗x,B∗x〉)

=
1

2
(|〈BAx, x〉|2 + 〈|A|2x, x〉〈|B∗|2x, x〉)

=
1

2
(|〈BAx, x〉|2 + 〈(|A|2/α)αx, x〉〈(|B∗|2/(1−α))1−αx, x〉)

6
1

2
(|〈BAx, x〉|2 + 〈|A|2/αx, x〉α〈|B∗|2/(1−α)x, x〉1−α)(3.6)

6
1

2
(|〈BAx, x〉|2 + α〈|A|2/αx, x〉 + (1− α)〈|B∗|2/(1−α)x, x〉),(3.7)

where in (3.5) we have used the fact that the function t 7→ t2 is convex, in (3.6) we

have used Lemma 2.2 and in (3.7) we have used Lemma 2.1.

Now since f is increasing and convex, (3.7) implies

f(|〈Ax, x〉〈Bx, x〉|2)

6 f
( |〈BAx, x〉|2 + (α〈|A|2/αx, x〉+ (1 − α)〈|B∗|2/(1−α)x, x〉)

2

)

6
f(|〈BAx, x〉|2) + f(α〈|A|2/αx, x〉 + (1− α)〈|B∗|2/(1−α)x, x〉)

2

6
f(|〈BAx, x〉|2) + αf(〈|A|2/αx, x〉) + (1− α)f(〈|B∗|2/(1−α)x, x〉)

2

6
f(|〈BAx, x〉|2) + α〈f(|A|2/α)x, x〉 + (1− α)〈f(|B∗|2/(1−α))x, x〉

2

6
f(|〈BAx, x〉|2) + 〈(αf(|A|2/α) + (1 − α)f(|B∗|2/(1−α)))x, x〉

2
,

where we have used the fact that f is convex and Lemma 2.2 to obtain the above

inequalities. This completes the proof of (3.1).
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On the other hand, from (3.4) we infer for any unit vector x ∈ H ,

|〈Ax, x〉〈Bx, x〉| 6
|〈BAx, x〉| + 〈Ax,Ax〉1/2〈B∗x,B∗x〉1/2

2

=
|〈BAx, x〉| + 〈|A|2x, x〉1/2〈|B∗|2x, x〉1/2

2

6
|〈BAx, x〉| + (〈|A|2x, x〉+ 〈|B∗|2x, x〉)/2

2
.

Again, since f is increasing and convex, we obtain

f(|〈Ax, x〉〈Bx, x〉|) 6 f
( |〈BAx, x〉| + (〈|A|2x, x〉 + 〈|B∗|2x, x〉)/2

2

)

6
f(|〈BAx, x〉|) + f((〈|A|2x, x〉 + 〈|B∗|2x, x〉)/2)

2

6
f(|〈BAx, x〉|) + (f(〈|A|2x, x〉) + f(〈|B∗|2x, x〉))/2

2

6
f(|〈BAx, x〉|) + (〈f(|A|2)x, x〉 + 〈f(|B∗|2)x, x〉)/2

2

=
1

2
f(|〈BAx, x〉|) +

1

4
〈(f(|A|2) + f(|B∗|2))x, x〉,

which proves inequality (3.2) and completes the proof of the theorem. �

Noting that the function f(t) = tr, r > 1 satisfies the conditions in Theorem 3.1,

we obtain the following special case.

Corollary 3.1. Let A,B ∈ B(H ) and let x ∈ H be a unit vector. Then for any

r > 1 and 0 6 α 6 1,

(3.8) |〈Ax, x〉〈Bx, x〉|2r 6
1

2
(|〈BAx, x〉|2r + 〈(α|A|2r/α +(1−α)|B∗|2r/(1−α))x, x〉),

and

(3.9) |〈Ax, x〉〈Bx, x〉|r 6
1

2
|〈BAx, x〉|r +

1

4
〈(|A|2r + |B∗|2r)x, x〉.

3.2. Applications to numerical radius inequalities. The first application of

Theorem 3.1 and Corollary 3.1 is the following numerical radius inequality for the

product of two operators.

Corollary 3.2. Let A,B ∈ B(H ) and let f : [0,∞) → R be an increasing convex

function. Then

f(ω2(B∗A)) 6
1

2
f(ω(|B|2|A|2)) +

1

4
‖f(|A|4) + f(|B|4)‖.
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In particular, if r > 1, then

(3.10) ω2r(B∗A) 6
1

2
ωr(|B|2|A|2) +

1

4
‖|A|4r + |B|4r‖.

P r o o f. Replacing A and B by |A|2 and |B|2, respectively, in Theorem 3.1, then

inequality (3.2) reduces to

(3.11) f(〈|A|2x, x〉〈|B|2x, x〉) 6
1

2
f(|〈|B|2|A|2x, x〉|) +

1

4
〈(f(|A|4) + f(|B|4))x, x〉.

On the other hand,

|〈B∗Ax, x〉|2 = |〈Ax,Bx〉|2

6 ‖Ax‖2‖Bx‖2 (by the Cauchy-Schwarz inequality)

= 〈|A|2x, x〉〈|B|2x, x〉.

Since f is increasing, it follows that

f(|〈B∗Ax, x〉|2) 6 f(〈|A|2x, x〉〈|B|2x, x〉).

This together with (3.11) imply

f(|〈B∗Ax, x〉|2) 6
1

2
f(|〈|B|2|A|2x, x〉|) +

1

4
〈(f(|A|4) + f(|B|4))x, x〉,

which implies the first desired inequality upon taking the supremum over all unit

vectors x ∈ H . The second inequality follows from the first by letting f(t) = tr,

r > 1. �

In [8], it was shown that

(3.12) ω2r(B∗A) 6
1

2
‖|A|4r + |B|4r‖, r > 1.

Noting the computations

ωr(|B|2|A|2) 6 ‖|A|2|B|2‖r 6
1

2
‖|A|4 + |B|4‖r

=
∥

∥

∥

( |A|4 + |B|4

2

)r∥
∥

∥
6

1

2
‖|A|4r + |B|4r‖,

inequality (3.10) implies

ω2r(B∗A) 6
1

2
‖|A|2|B|2‖r +

1

4
‖|A|4r + |B|4r‖ 6

1

4
‖|A|4 + |B|4‖r +

1

4
‖|A|4r + |B|4r‖

6
1

4
‖|A|4r + |B|4r‖+

1

4
‖|A|4r + |B|4r‖ =

1

2
‖|A|4r + |B|4r‖.

Consequently, Corollary 3.2 provides a refinement of (3.12).

In the following, we give a numerical example to show how Corollary 3.2 provides

a refinement of (3.12).
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Example 3.1. Let A =

[

0 1

0 2

]

and B =

[

2 0

1 0

]

. Then

ω2(B∗A) = 4 <
1

2
ω(|B|2|A|2) +

1

4
‖|A|4 + |B|4‖ =

25

4
.

On the other hand, we have

1

2
‖|A|4 + |B|4‖ =

25

2
.

Remark 3.1. Notice that inequality (3.10) is sharp. Indeed, if r = 1 and A = B,

we get ‖A‖4 on both sides of (3.10).

Remark 3.2. In this remark, we show that Corollary 3.2 provides a refinement

of Dragomir’s result (3.12). Notice first that

ωr(|B|2|A|2) 6 ‖|B|2|A|2‖r 6
∥

∥

∥

‖A|4 + |B|4

2

∥

∥

∥

r

=
∥

∥

∥

(‖A|4 + |B|4

2

)r∥
∥

∥

6
1

2
‖|A|4r + |B|4r‖.

Consequently, Corollary 3.2 implies that

(3.13) ω2r(B∗A) 6
1

2
ωr(|B|2|A|2) +

1

4
‖|A|4r + |B|4r‖ 6

1

2
‖|A|4r + |B|4r‖,

explaining why Corollary 3.2 provides a refinement of inequality (3.12). Further, the

first inequality in Corollary 3.2 provides a generalization of (3.12) using increasing

convex functions.

Now Theorem 3.1 is utilized to obtain the following numerical radius inequality

for one operator.

Corollary 3.3. Let T ∈ B(H ) and let f : [0,∞) → R be an increasing convex

function. Then for 0 6 α 6 1,

f(ω4(T )) 6
1

2
(f(ω2(|T ||T ∗|)) + ‖(1− α)f(|T |2/(1−α)) + αf(|T ∗|2/α)‖),

and

f(ω2(T )) 6
1

2
f(ω(|T ||T ∗|)) +

1

4
‖f(|T |2) + f(|T ∗|2)‖.

In particular, if r > 1, then

(3.14) ω4r(T ) 6
1

2
(ω2r(|T ||T ∗|) + ‖(1− α)|T |2r/(1−α) + α|T ∗|2r/α‖),

and

(3.15) ω2r(T ) 6
1

2
ωr(|T ||T ∗|) +

1

4
‖|T |2r + |T ∗|2r‖.

Both inequalities (3.14) and (3.15) are sharp.
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P r o o f. Letting A = |T ∗| and B = |T | in inequality (3.1), we get

f(|〈|T |x, x〉〈|T ∗|x, x〉|2)

6
f(|〈|T ||T ∗|x, x〉|2) + 〈{(1− α)f(|T |2/(1−α)) + αf(|T ∗|2/α)}x, x〉

2
.

Since f is increasing, it follows from Lemma 2.3 that

f(|〈Tx, x〉|4) 6
f(|〈|T ||T ∗|x, x〉|2) + 〈{(1− α)f(|T |2/(1−α)) + αf(|T ∗|2/α)}x, x〉

2
.

Taking the supremum over unit vectors x implies the first desired inequality. The

second inequality follows in a similar way, but using (3.2). The other two inequalities

follow by letting f(t) = tr; r > 1.

To show sharpness of (3.14) (or (3.15)), assume that T is a normal operator. For

r = 1 and α = 1
2 , we get ‖T ‖

4 (or ‖T ‖2) on both sides, completing the proof. �

In the following we give a numerical example calculating the terms appearing

in (3.15). Also, this example shows how (3.15) refines (1.3) numerically.

Example 3.2. Let T =

[

2 1

0 1

]

. Then

ω2(T ) ≈ 4.87132 <
1

2
ω(|T ||T ∗|) +

1

4
‖|T |2 + |T ∗|2‖ ≈ 5.0712.

On the other hand, we have

1

2
‖|T |2 + |T ∗|2‖ ≈ 5.12132.

The following result will be needed for further investigation; yet it is of interest

by itself.

Proposition 3.1. Let T ∈ B(H ). Then for any r > 1 and 0 6 α 6 1,

(3.16) ω2r(|T ||T ∗|) 6 ‖(1− α)|T |2r/(1−α) + α|T ∗|2r/α‖

and

(3.17) ωr(|T ||T ∗|) 6
1

2
‖|T |2r + |T ∗|2r‖.
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P r o o f. Let x ∈ H be a unit vector. We have

|〈|T ||T ∗|x, x〉|2r = |〈|T ∗|x, |T |x〉|2r

6 ‖|T |x‖2r‖|T ∗|x‖2r(3.18)

= 〈|T |x, |T |x〉r〈|T ∗|x, |T ∗|x〉r = 〈|T |2x, x〉r〈|T ∗|2x, x〉r

6 〈|T |2rx, x〉〈|T ∗|2rx, x〉(3.19)

= 〈(|T |2r/(1−α))1−αx, x〉〈(|T ∗|2r/α)αx, x〉

6 〈|T |2r/(1−α)x, x〉1−α〈|T ∗|2r/αx, x〉α(3.20)

6 (1− α)〈|T |2r/(1−α)x, x〉+ α〈|T ∗|2r/αx, x〉(3.21)

= 〈((1 − α)|T |2r/(1−α) + α|T ∗|2r/α)x, x〉,

where in inequality (3.18) we have used the Cauchy-Schwarz inequality, inequali-

ties (3.19) and (3.20) are obtained from Lemma 2.2, and inequality (3.21) is a con-

sequence of the first inequality in Lemma 2.1.

Whence,

(3.22) |〈|T ||T ∗|x, x〉|2r 6 〈((1 − α)|T |2r/(1−α) + α|T ∗|2r/α)x, x〉

for any unit vector x ∈ H . Taking the supremum over x ∈ H with ‖x‖ = 1 in

inequality (3.22), we obtain (3.16). Similar argument implies

(3.23) |〈|T ||T ∗|x, x〉|r 6
1

2
〈(|T |2r + |T ∗|2r)x, x〉

for any unit vector x ∈ H . Taking the supremum over x ∈ H , ‖x‖ = 1 in (3.23)

produces inequality (3.17). �

Remark 3.3. By combining inequalities (3.15) and (3.17), we infer that

(3.24) ω2r(T ) 6
1

2
ωr(|T ||T ∗|) +

1

4
‖|T |2r + |T ∗|2r‖ 6

1

2
‖|T |2r + |T ∗|2r‖.

Consequently, inequalities (3.24) provide a refinement of inequality (1.4).

The following corollary shows that inequality (3.15) provides an improvement of

inequality (1.2).

Corollary 3.4. Let T ∈ B(H ). Then

ω(T ) 6
1

2

√

2ω(|T ||T ∗|+ ‖|T |2 + |T ∗|2‖ 6
1

2
(‖T 2‖1/2 + ‖T ‖).
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P r o o f. We have

ω(T ) 6
1

2

√

2ω(|T ||T ∗|) + ‖|T |2 + |T ∗|2‖ (by (3.15))

6
1

2

√

2‖|T ||T ∗|‖+ ‖|T |2 + |T ∗|2‖ (by the second inequality in (1.1))

=
1

2

√

2‖T 2‖+ ‖|T |2 + |T ∗|2‖ (since ‖|T ||T ∗|‖ = ‖T 2‖)

6
1

2

√

2‖T 2‖+ ‖T 2‖+ ‖T ‖2 (by Lemma 2.4)

6
1

2

√

2‖T ‖‖T 2‖1/2 + ‖T 2‖+ ‖T ‖2

(since ‖T 2‖ = ‖T 2‖1/2‖T 2‖1/2 6 ‖T ‖‖T 2‖1/2)

=
1

2

√

(‖T 2‖1/2 + ‖T ‖)2 =
1

2
(‖T 2‖1/2 + ‖T ‖),

and the proof is complete. �

3.3. The generalized numerical radius. In this section, we present some new

inequalities for the generalized numerical radius ωN (·), based on the inner product

inequalities obtained earlier. First, we recall the following definition from [1].

Definition 3.1. Let T ∈ B(H ) and let N be any norm on B(H ). Then the

generalized numerical radius of T induced by the norm N is defined by ωN (T ) =

sup
θ∈R

N(ℜ(eiθT )), where ℜ(T ) is the real part of the operator T .

In the following result, we use Proposition 3.1 to obtain a new inequality for ωN(·).

This result is stated for the algebra of all n×n matrices, denoted byMn. Notice that

since the finite rank operators are dense in the class of compact operators in B(H ),

it follows that the following result is also true for any compact operator T ∈ B(H ).

Proposition 3.2. Let T ∈ Mn and let N(·) be a given unitarily invariant norm

onMn. Then for any r > 1 and 0 6 α 6 1,

ωN (|T ||T ∗|) 6 N({(1− α)|T |2r/(1−α) + α|T ∗|2r/α}1/2r)

and

ωN (|T ||T ∗|) 6 N
({ |T |2r + |T ∗|2r

2

}1/r)

.
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P r o o f. From Proposition 3.1 we have

|〈|T ||T ∗|x, x〉|2r 6 〈((1 − α)|T |2r/(1−α) + α|T ∗|2r/α)x, x〉.

Since |eiθ| = 1, this implies

|〈eiθ|T ||T ∗|x, x〉| 6 〈((1 − α)|T |2r/(1−α) + α|T ∗|2r/α)x, x〉1/2r .

But since for any operator A, |〈ℜ(A)x, x〉| 6 |〈Ax, x〉|, it follows that

|〈ℜ{eiθ|T ||T ∗|}x, x〉| 6 〈((1 − α)|T |2r/(1−α) + α|T ∗|2r/α)x, x〉1/2r .

By the minimax principle, it follows that for 1 6 k 6 n,

sk(ℜ{e
iθ|T ||T ∗|}) 6 s

1/2r
k ((1 − α)|T |2r/(1−α) + α|T ∗|2r/α)

= sk{((1− α)|T |2r/(1−α) + α|T ∗|2r/α)1/2r}.

This latter inequality implies that for any unitarily invariant norm N(·) onMn,

N(ℜ{eiθ|T ||T ∗|}) 6 N{((1− α)|T |2r/(1−α) + α|T ∗|2r/α)1/2r},

which implies

ωN (|T ||T ∗|) 6 N({(1− α)|T |2r/(1−α) + α|T ∗|2r/α}1/2r)

upon taking the supremum over θ. This proves the first desired inequality.

The second inequality can be shown similarly, and hence we leave its proof to the

reader. �

Remark 3.4. Notice that when N is the operator norm,

N
({ |T |2r + |T ∗|2r

2

}1/r)

=
∥

∥

∥

{ |T |2r + |T ∗|2r

2

}1/2r∥
∥

∥
=

∥

∥

∥

|T |2r + |T ∗|2r

2

∥

∥

∥

1/r

.

So, when N(·) = ‖·‖, Proposition 3.2 implies

wr(|T ||T ∗|) 6
∥

∥

∥

|T |2r + |T ∗|2r

2

∥

∥

∥

(which has been shown earlier in Proposition 3.1).
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