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Abstract. We say that a subgroup H is isolated in a group G if for every x ∈ G we
have either x ∈ H or 〈x〉 ∩ H = 1. We describe the set of isolated subgroups of a finite
abelian group. The technique used is based on an interesting connection between isolated
subgroups and the function sum of element orders of a finite group.
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1. Introduction

Let G be a finite group. We say that a subgroup H of G is isolated in G if for

every x ∈ G we have either x ∈ H or 〈x〉 ∩H = 1. Groups with isolated subgroups

were studied in [2], [3]. However, this concept appears much earlier (see for instance

Section 66 of [7] and the entry “isolated subgroup” in Encyclopedia of Mathematics,

cf. [5]). The starting point for our discussion is given by Janko’s paper (see [6]) that

investigates isolated subgroups for certain classes of nonabelian p-groups.

In the following, we determine these subgroups for finite abelian groups. The

problem is reduced to finite abelian p-groups. Our main result can be summarized

as follows.

Theorem 1.1. Let p be a prime number and G = Zpα1 × Zpα2 × . . . × Zpαk be

a finite abelian p-group, where 1 6 α1 6 α2 6 . . . 6 αk.

(a) If α1 > 1, then the unique isolated subgroups of G are 1 and G.

(b) If 1 = α1 = α2 = . . . = αr < αr+1 6 . . . 6 αk and A = Zp
αr+1 × . . .×Zpαk , then

the isolated subgroups of G are G and all subgroups H 6 G with H ∩ A = 1.
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The main tool used is the function sum of element orders of G,

ψ(G) =
∑

x∈G

o(x),

defined by Amiri, Jafarian Amiri and Isaacs in [1]. Given a subgroup H of G, this

has been generalized in [9] to the function

ψH(G) =
∑

x∈G

oH(x),

where oH(x) denotes the order of x relative to H , i.e., the smallest positive integer m

such that xm ∈ H . Clearly, for H = 1 we have ψH(G) = ψ(G).

We remark that

ψH(G) =
∑

x∈H

oH(x) +
∑

x∈G\H

oH(x) = |H |+
∑

x∈G\H

o(x)

|〈x〉 ∩H |

and therefore H is isolated in G if and only if

ψH(G) = |H |+
∑

x∈G\H

o(x) = |H |+ ψ(G)− ψ(H).

Since for H ⊳ G we have ψH(G) = |H |ψ(G/H), we infer that a normal subgroup H

is isolated in G if and only if

(1.1) ψ(G) − ψ(H) = |H |(ψ(G/H)− 1).

In particular, this equivalence holds for all subgroupsH of a finite abelian groupG.

It will be used in what follows, together with Theorem 1 of [10]:

Theorem 1.2. Let G = Zpα1 × Zpα2 × . . . × Zpαk be a finite abelian p-group,

where 1 6 α1 6 α2 6 . . . 6 αk. Then

(1.2) ψ(G) = 1 +

αk
∑

α=1

(p2αf(α1,α2,...,αk)(α)− p2α−1f(α1,α2,...,αk)(α− 1)),

where

f(α1,α2,...,αk)(α) =























p(k−1)α if 0 6 α 6 α1,

p(k−2)α+α1 if α1 6 α 6 α2,

...

pα1+α2+...+αk−1 if αk−1 6 α.
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We note that (1.2) gives a formula for the sum of element orders of an arbitrary

finite abelian group because the function ψ is multiplicative. Also, we note that ψ(G)

in Theorem 1.2 is a polynomial in p of degree 2αk +αk−1 + . . .+α1. An alternative

way of writing it is

(1.3) ψ(G) = p2αk+αk−1+...+α1 − (p− 1)

αk−1
∑

α=0

p2αf(α1,α2,...,αk)(α)

= p2αk+αk−1+...+α1 + . . .+ pk+1 − p+ 1.

Most of our notation is standard and is usually not introduced here. Elementary

notions and results on groups can be found in [4], [7], [8].

2. Proofs of the main results

We start with the following lemma whose proof is elementary and thus omitted.

Lemma 2.1. Let G be a finite abelian group and H be a subgroup of G. Write G

and H as the direct products of their Sylow subgroups

G = G1 ×G2 × . . .×Gm and H = H1 ×H2 × . . .×Hm,

respectively. Then H is isolated in G if and only if there are i1, i2, . . . , ik ∈

{1, 2, . . . ,m} such that Hij is isolated in Gij for all j = 1, 2, . . . , k and Hi = 1

for all i 6= i1, i2, . . . , ik.

Lemma 2.1 shows that our study can be reduced to finite abelian p-groups via the

description of the structure of finite abelian groups.

Lemma 2.2. Let G = Zpα1 ×Zpα2 × . . .×Zpαk be a finite abelian p-group, where

1 6 α1 6 α2 6 . . . 6 αk, and H be a maximal subgroup of G. If H is isolated in G,

then G is elementary abelian and H is a direct factor of G.

P r o o f. Let n = α1 + α2 + . . .+ αk. Since H is maximal and isolated in G, by

the equality (1.1) it follows that

ψ(G) − ψ(H) = pn−1(ψ(Zp)− 1) = pn+1 − pn

and so ψ(G) is a polynomial in p of degree n + 1. On the other hand, by (1.3) we

know that ψ(G) is a polynomial in p of degree 2αk +αk−1 + . . .+α1 = n+αk. Thus

n+ αk = n+ 1, that is αk = 1, implying that G is elementary abelian. The second

conclusion is obvious. �
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From Lemma 2.2 we infer that if H is a proper isolated subgroup of a finite abelian

p-group G, then

(2.1) H ⊂ Ω1(G) = {x ∈ G : xp = 1}

and, in particular, H is p-elementary abelian.

Indeed, take a subgroup K of G such that H is maximal in K. Then H is isolated

in K and Lemma 2.2 shows that K must be elementary abelian, i.e., K ⊆ Ω1(G).

Hence, H is strictly contained in Ω1(G).

Lemma 2.3. Let G = Zpα1 × Zpα2 × . . .× Zpαk be a finite abelian p-group with

1 < α1 6 α2 6 . . . 6 αk. Then G has no isolated proper subgroup.

P r o o f. Assume that H is an isolated proper subgroup of G and let |H | = pm.

Then

(2.2) ψ(G)− ψ(H) = pm(ψ(G/H)− 1).

By (2.1) we know that H is elementary abelian and m < k. Then ψ(H) =

pm+1 − p+ 1 and therefore the left side of (2.2) becomes

ψ(G)− ψ(H) = p2αk+αk−1+...+α1 + . . .+ pk+1 − pm+1.

On the other hand, (2.1) shows that G/H has also k direct factors

G/H = Zpβ1 × Zpβ2 × . . .× Zpβk ,

where either βi = αi or βi = αi−1 for all i = 1, 2, . . . , k. Thus, the right side of (2.2)

becomes

pm(ψ(G/H)− 1) = pm(p2βk+βk−1+...+β1 + . . .+ pk+1 − p)

= pm+2βk+βk−1+...+β1 + . . .+ pm+k+1 − pm+1.

Hence, (2.2) leads to pk+1 = pm+k+1, i.e., m = 0, a contradiction. �

In the following, let G = Zpα1 × Zpα2 × . . . × Zpαk be a finite abelian p-group,

where 1 = α1 = α2 = . . . = αr < αr+1 6 . . . 6 αk, and H be a subgroup of order p

of G. Then H is isolated in G if and only if 〈x〉 ∩H = 1 for all x ∈ G \H , that is if

and only if H is contained in no cyclic subgroup of order ps with s > 2 of G. This

is equivalent with the fact that H is not contained in A = Zpαr+1 × . . .× Zpαk .

The above remark can be easily extended to arbitrary proper subgroups H of G,

namely H is isolated in G if and only if H contains no subgroup of order p of A.
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Indeed, if H is not isolated in G, then there is x ∈ G \ H such that 〈x〉 ∩ H 6= 1.

Take a subgroup K of order p of 〈x〉 ∩H . Then K is also not isolated in G and thus

K ⊆ A. Consequently, H contains a subgroup of order p of A, a contradiction. The

converse is obvious.

Hence, we proved the next lemma.

Lemma 2.4. Let G = Zpα1 ×Zpα2 × . . .×Zpαk be a finite abelian p-group, where

1 = α1 = α2 = . . . = αr < αr+1 6 . . . 6 αk, and let A = Zp
αr+1 × . . .× Zpαk . Then

a proper subgroup H of G is isolated in G if and only if H ∩ A = 1.

In particular, Lemma 2.4 shows that all subgroups of an elementary abelian

p-group are isolated.

We are now able to prove our main result.

P r o o f of Theorem 1.1. It follows from Lemmas 2.3 and 2.4. �

Finally, we mention that the computation of isolated subgroups of finite abelian

p-groups can be done by using well-known Goursat’s lemma (see, e.g., the re-

sult (4.19) of [8]). We exemplify it in three particular cases:

Example 2.1.

(1) The group Zp×Zpm withm > 2 has p+2 isolated subgroups, namely 1, G and p

subgroups of order p.

(2) The group Zp×Zpm×Zpn withm,n > 2 has p2+2 isolated subgroups, namely 1,

G and p2 subgroups of order p.

(3) The group Zp × Zp × Zpm with m > 2 has 2p2 + p + 2 isolated subgroups,

namely 1, G, p2 + p subgroups of order p and p2 subgroups of order p2.

Acknowledgement. The author is grateful to the reviewer for remarks which

improved the previous version of the paper.
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