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Abstract. We derive sufficient conditions for asymptotic and monotone exponential decay
in mean square of solutions of the geometric Brownian motion with delay. The conditions
are written in terms of the parameters and are explicit for the case of asymptotic decay. For
exponential decay, they are easily resolvable numerically. The analytical method is based on
construction of a Lyapunov functional (asymptotic decay) and a forward-backward estimate
for the square mean (exponential decay).
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1. Introduction and main result

Geometric Brownian motion (also called Ornstein-Uhlenbeck process with multi-

plicative noise) is the strong solution of the Itô stochastic differential equation

(1.1) dw(t) = −λw(t) dt+ σw(t) dBt,

where λ and σ are real parameters and dBt denotes the one-dimensional Wiener

process. It is one of the stochastic processes very often used in applications, in par-

ticular, in financial mathematics to model stock prices in the Black-Scholes model [8].

However, modelling the price process by geometric Brownian motion has been crit-

icized, because the past of the volatility is not taken into account. Consequently,

[1] suggests to replace the multiplicative constants λ and σ in (1.1) by some linear

functionals on the space of continuous functions. Here we make the generic choice

of constant delay model, i.e., we evaluate w on the right-hand side of (1.1) at the
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past time instant t − τ with τ > 0. This leads to the following delay Itô stochastic

differential equation

(1.2) dw(t) = −λw(t− τ) dt+ σw(t − τ) dBt.

The main goal of this paper is to derive sufficient conditions for asymptotic and

monotone (exponential) decay in mean square of the solutions of (1.2).

Solutions of delay (retarded) differential equations are well known to develop os-

cillations in certain regimes [15]. Taking the expectation of (1.2), we obtain the

deterministic delay differential equation for u(t) := E[w(t)],

(1.3) u̇(t) = −λu(t− τ).

Despite its simplicity, it exhibits a surprisingly rich qualitative dynamics. An analysis

of the corresponding characteristic equation

z + λτe−z = 0,

where z ∈ C, reveals that:

⊲ If 0 < λτ < e−1, then u = 0 is asymptotically stable. Solutions of (1.3) subject

to constant nonzero initial datum on [−τ, 0] tend to zero monotonically (exponen-

tially) as t → ∞.
⊲ If e−1 < λτ < π/2, then u = 0 is asymptotically stable, but every nontrivial

solution of (1.3) is oscillatory, i.e. changes sign infinitely many times on (0,∞).

⊲ If λτ > π/2, then u = 0 is unstable.

We refer to Chapter 2 of [15] and [7] for details. Consequently, two very natural

questions arise in connection with (linear) delay differential equations: Under which

conditions does the solution tend to zero asymptotically as t → ∞, and under which
conditions is this decay monotone? This paper is devoted to the study of these two

questions in mean square sense for solutions of (1.2).

Various types of sufficient conditions for stability (in some sense) of equation (1.2)

and its generalizations have been established in the literature, see [10], [12], [13]

for an overview. However, to our best knowledge, none of them provide an explicit

formula relating the parameters λ, τ and σ. A remarkable result by [1] states that

lim
t→∞

E[|w(t)|2] = 0 if and only if

∫ ∞

0

rλ(t)
2 dt <

1

σ2
,

where w is a solution of (1.2) and rλ is the fundamental solution of the delayed

ODE (1.3), i.e. formally, rλ solves (1.3) subject to the initial condition u(t) = χ{0}(t)
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for t ∈ (−τ, 0]. The fundamental solution rλ can be constructed by the method of

steps [15], however, to our best knowledge, analytic evaluation of its L2(0,∞)-norm

is an open problem. An explicit sufficient condition for asymptotic mean square

stability of (1.2) has been provided in [4], together with numerical experiments (sys-

tematic Monte Carlo simulations) giving a hint about how far the analytical result

is from optimal. However, [4] considers (1.2) only as a special case of a more general

delay stochastic system, which leads to some inefficiencies. Our first result, Theo-

rem 2.1, improves the sufficient condition of [4], and is still explicit in terms of the

parameter values. The proof is based on a construction of an appropriate Lyapunov

functional. Our second result, Theorem 2.2, is based on a forward-backward estimate

for the mean square and provides sufficient condition for exponential decay in mean

square of solutions of (1.2). The condition, written in terms of λ, τ and σ, is not

fully explicit, however, can be very easily resolved numerically.

This paper is organized as follows. In Section 2, we provide an overview of our

results, formulate the corresponding theorems and discuss their optimality. In Sec-

tion 3, we give the proof for the case of asymptotic decay, which is based on a con-

struction of an appropriate Lyapunov functional. Finally in Section 4, we present

the proof of exponential decay, based on forward-backward estimates for the mean

square of the solution.

2. Main results

A simple scaling analysis of (1.2) reveals that its dynamics depends on two pa-

rameters, which can be chosen as λτ and σ/
√
λ. Therefore, with abuse of notation,

we rename λτ 7→ τ and σ/
√
λ 7→ σ and rewrite (1.2) as

(2.1) dw(t) = −w(t− τ) dt+ σw(t− τ) dBt.

We shall consider (2.1) subject to the deterministic initial datum

(2.2) w(s) = w0(s) for s ∈ [−τ, 0],

where w0 = w0(s) is a continuous function on [−τ, 0]. We have the following result

regarding the well posedness of problem (2.1)–(2.2).

Proposition 2.1. The stochastic delay differential equation (2.1) with initial da-

tum (2.2) admits a unique global solution w = w(t) on [−τ,∞) which is an adapted

process with

E

[∫ T

−τ

|w(t)|2 dt
]
< ∞ ∀T < ∞.
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P r o o f. The proof follows directly from Theorem 3.1 of [11] and the subsequent

remark on p. 157 there. In particular, the right-hand side of (2.1) is independent of

the present state w(t), so the solution can be constructed by the method of steps [15].

The second order moment is bounded on any bounded interval due to the linearity

of the equation. �

Convention. Throughout the paper we adopt the following notational conven-

tion: we denote by w̃ the quantity w evaluated at time t − τ , i.e. w̃ := w(t − τ),

while w shall denote w := w(t). The same convention shall be applied to any other

time-dependent variable, in particular, the quantity y := E[w2/2], which we shall

use in the sequel.

Our first result gives an explicit sufficient condition in terms of the parameters τ , σ

for asymptotic decay of the square mean E[w(t)2] for solutions w = w(t) of (2.1).

Theorem 2.1. Let

(2.3) σ2 < 2, τ < 1−
√
σ2 − σ4

4
,

or equivalently

(2.4) τ < 1, σ <
√
2− τ −

√
τ .

Then the solutions w = w(t) of (2.1) satisfy

lim
t→∞

E[w(t)2] = 0.

Let us observe that the above result is suboptimal in the borderline case σ = 0,

i.e. the deterministic regime given by (1.3). Indeed, (2.3) then turns into τ < 1, while

solutions of (1.3) asymptotically decay to zero if (and only if) τ < π/2, see e.g., [15].

However, in the other borderline case τ = 0, (2.4) becomes σ2 < 2, which is the

sharp condition for asymptotic vanishing of the mean square of geometric Brownian

motion (1.1), see e.g., [14], [11].

We also note that the result of [4] provides a less optimal condition than Theo-

rem 2.1. Indeed, the condition stated by Lemma 3.5 of [4] reads, in our notation,

(2.5) σ2 < 2, τ <
1

4

(
−2σ2 +

√
4σ4 + 2(2− σ2)2

)
.

As illustrated in Fig. 1, the upper bound on τ of (2.5) is more restrictive then the one

of (2.3) for all values of σ2 < 2. We see that Theorem 2.1 represents an improvement
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especially in the low noise regime. In the limit σ2 → 0 it improves the restriction

τ < 1/
√
2 imposed by (2.5) to τ < 1 (which, however, is still not optimal, as noted

above).
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Figure 1. Comparison of sufficient conditions for asymptotic decay of E[w2] formulated by
Theorem 2.1, solid line, and by [4], Lemma 3.5, dashed line.

Finally, let us refer to [4], Fig. 2 for a comparison of the analytical condition (2.5)

to results of systematic Monte Carlo simulations, which indicates that there is still

a significant potential for improvement of the analytical result.

Our second result provides a sufficient condition for exponential (monotone) decay

of the square mean of solutions of (2.1). Obviously, monotonicity of the solution

strongly depends on the initial datum w0. Therefore, we consider the generic case

of constant, nonzero initial condition w0 ∈ R in the theorem below. For notational

convenience we define for s > 0 the function G = G(s),

(2.6) G(s) :=

√
e2s − 1

2s
.

Theorem 2.2. Let τ , σ > 0 be such that the conditions

(2.7) σ < e−µτ
√
2µ− 2eµτ

and

(2.8) σ < −G(µτ)
√
τ +

√
G(µτ)2τ − 2G(µτ)τ + 2

are simultaneously verified for some µ > 1, with the function G defined in (2.6).

Then E[w(t)2] decays exponentially to zero as t → ∞, where w = w(t) is the solution

of (2.1) subject to the constant initial datum w0 6= 0.
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Obviously, the condition posed by Theorem 2.2 is not explicit, since it involves

a search for µ > 1 such that both (2.7) and (2.8) are satisfied. Finding the maximal

admissible σ = σ(τ) for a given τ > 0 in fact means

(2.9) σ(τ) := max
µ>1

min{f1(τ, µ), f2(τ, µ)},

where f1 = f1(τ, µ) and f2 = f2(τ, µ) denote the right-hand sides of (2.7) and (2.8),

respectively. It does not seem feasible to find an explicit analytical formula for σ(τ)

in (2.9), however, the problem is quite easily approachable numerically. First, let us

observe that (2.7) is only satisfiable if µ > eµτ , which requires τ < e−1. Consequently,

for each τ ∈ (0, e−1) we only need to search values of µ such that µ > eµτ , which

represents a bounded interval. The situation is also simplified by the fact that, as

revealed by a simple analysis, f2(τ, µ) is a decreasing function of µ for any fixed

τ < e−1. The result of numerical realization of (2.9) is plotted in Fig. 2, where also

the condition for asymptotic decay (2.4) is indicated for comparison. Finally, let us

note that for τ = 0, conditions (2.7)–(2.8) collapse to σ2 < 2, which is the sharp

condition for asymptotic decay in mean square of the (nondelay) geometric Brownian

motion. Also the condition τ < e−1 is sharp, since all nontrivial solutions of (1.3)

oscillate if τ > e−1.
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Figure 2. Numerical realization of the sufficient condition for exponential decay of E[w2]
as formulated in Theorem 2.2, solid line. For comparison, sufficient condition for
asymptotic decay given by Theorem 2.1, dotted line.
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3. Asymptotic decay: Proof of Theorem 2.1

For p, q > 0 and t > 0 we define the functional

(3.1) L(t) := |w(t)|2 + q

∫ t

t−τ

|w(s)|2 ds+ p

∫ t

t−τ

∫ t

θ

|w(s− τ)|2 ds dθ,

where w = w(t) is the solution of (2.1)–(2.2); we refer to [5], [16] for an overview of

the theory of Lyapunov functionals for systems with delay.

Lemma 3.1. Let σ2 < 2 and

(3.2) τ < 1− σ

2

√
4− σ2.

Then there exist p, q > 0 and κ > 0 such that

(3.3)
d

dt
E[L(t)] 6 −κE[w(t − τ)2] for t > τ.

P r o o f. We apply the Itô formula to calculate d|w(t)|2. Note that the Itô formula
holds in its usual form also for delay stochastic processes, see page 32 in [6] or [9],

[10], [3], [12], and with (2.1) it gives

(3.4) d|w(t)|2 = 2
(
−w̃w +

σ2

2
w̃2

)
dt+ 2σw̃w dBt.

Consequently,

(3.5) dL(t) = 2
(
− w̃w +

σ2

2
w̃2

)
dt+ 2σw̃w dBt

+ q(w2 − w̃2) dt+ p

(
−
∫ t

t−τ

|w(s− τ)|2 ds+ τw̃2

)
dt.

For any δ > 0 we have

−2w̃w = −2(w̃ − w)w − 2w2 6 δ|w − w̃|2 + (δ−1 − 2)w2.

Restricting to t > τ , we have for any ε > 0,

|w − w̃|2 =

∣∣∣∣
∫ t

t−τ

dw(s)

∣∣∣∣
2

6

(∣∣∣∣
∫ t

t−τ

w(s− τ) ds

∣∣∣∣+ σ

∣∣∣∣
∫ t

t−τ

w(s− τ) dBs

∣∣∣∣
)2

6 (1 + ε)

(∫ t

t−τ

w(s− τ) ds

)2

+ (1 + ε−1)σ2

(∫ t

t−τ

w(s− τ) dBs

)2

.
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We take the expectation and use the Jensen inequality and Fubini theorem for

the term

E

[(∫ t

t−τ

w(s − τ) ds

)2]
6 τE

[∫ t

t−τ

|w(s − τ)|2 ds
]
= τ

∫ t

t−τ

E[|w(s − τ)|2] ds,

and the isometry of the Itô integral [11], Theorem 5.8 (iii), for the term

E

[(∫ t

t−τ

w(s− τ) dBs

)2]
=

∫ t

t−τ

E[|w(s − τ)|2] ds.

Therefore, we arrive at

E[|w − w̃|2] 6 ((1 + ε)τ + (1 + ε−1)σ2)

∫ t

t−τ

E[|w(s − τ)|2] ds.

Minimization of the right-hand side in ε > 0 leads to ε := σ/
√
τ , and thus

E[|w − w̃|2] 6 (
√
τ + σ)2

∫ t

t−τ

E[|w(s − τ)|2] ds.

Consequently, taking the expectation in (3.5), we obtain

d

dt
E[L(t)] 6 (δ−1 + q − 2)E[w2] + (σ2 + pτ − q)E[w̃2]

+ (δ(
√
τ + σ)2 − p)

∫ t

t−τ

E[|w(s− τ)|2] ds.

With the choice

p := δ(
√
τ + σ)2, q := 2− δ−1

we arrive at
d

dt
E[L(t)] 6 (σ2 + δτ(

√
τ + σ)2 + δ−1 − 2)E[w̃2].

Minimization of the right-hand side with respect to δ > 0 gives δ := (τ(
√
τ+σ)2)−1/2

and
d

dt
E[L(t)] 6 −κE[w̃2]

with

(3.6) −κ := (σ +
√
τ)2 + τ − 2.

Finally, a simple calculation reveals that if σ2 < 2, then κ > 0 if and only if (3.2) is

satisfied. It is easily checked that then p and q are both positive. �
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P r o o f of Theorem 2.1. Obviously, with the bounded initial datum (2.2), we

have E[L(τ)] < ∞ due to (3.5). An integration of (3.3) in time gives, for t > τ ,

(3.7) E[w(t)2] 6 E[L(t)] = E[L(τ)] +
∫ t

τ

d

ds
E[L(s)] ds

6 E[L(τ)] − κ

∫ t

τ

E[w(s− τ)2] ds,

with κ > 0 given by (3.6). Consequently, E[w(t)2] is uniformly bounded by E[L(τ)]
for t > τ . Taking the expectation in (3.4) and using the Cauchy-Schwarz inequality,

we have

d

dt
E[w(t)2] = −2E[ww̃] + σ2

E[w̃2] 6 E[w2] + (1 + σ2)E[w̃2],

which gives uniform boundedness of d

dtE[w(t)
2] for t > 2τ . Moreover, we note

that due to (3.7), the integral
∫ t

τ
E[w(s − τ)2] ds is convergent as t → ∞. Bar-

balat’s lemma [2] then implies that lim
t→∞

E[w(t)2] = 0 and concludes the proof of

Theorem 2.1. �

4. Exponential decay: Proof of Theorem 2.2

In this section we assume that w = w(t) is a solution of (2.1) subject to the

deterministic constant initial datum w0 6= 0, and we introduce the notation

(4.1) y(t) := E

[w2(t)

2

]
for t > 0,

:=
w2

0

2
for t < 0.

Lemma 4.1. Let σ2 6 2. If for some µ > 1 the condition

(4.2) 2eµτ + σ2e2µτ 6 2µ

is satisfied, then for all t ∈ R and s > 0,

(4.3) e−2µsy(t) < y(t− s) < e2µsy(t).
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P r o o f. An application of the Itô formula gives

dw2

2
=

(
− w̃w +

σ2

2
w̃2

)
dt+ σw̃w dBt,

and taking expectation, we have for t > 0

(4.4) ẏ = E

[
− w̃w +

σ2

2
w̃2

]
.

With the constant initial datum w0 ∈ R, we obtain for t = 0

ẏ(0+) =
(
− 1 +

σ2

2

)
w2

0 ,

where ẏ(0+) denotes the right-hand side derivative of y at t = 0. Consequently, since

by assumption µ > 1, ∣∣∣
ẏ(0+)

y(0)

∣∣∣ = 2− σ2 < 2µ.

Due to nonzero constant initial datum and the continuity of y(t) and ẏ(t) for t > 0,

there exists T > 0 such that

(4.5)
∣∣∣
ẏ(t)

y(t)

∣∣∣ < 2µ for t < T.

We claim that (4.5) holds for all t ∈ R, i.e. that T = ∞.
For contradiction, assume that T < ∞. Then again by continuity we have

(4.6) |ẏ(T )| = 2µy(T ).

Integrating (4.5) on the time interval (T − s, T ) with s > 0 yields

(4.7) y(T − s) < e2µsy(T ).

With (4.4) and the Cauchy-Schwarz inequality with ε > 0 we have for t > 0

|ẏ| 6 E[|w̃||w|] + σ2ỹ 6 2
√
ỹ
√
y + σ2ỹ 6 εy + (ε−1 + σ2)ỹ.

Using (4.7) with s := τ gives y(T − τ) < e2µτy(T ), so

|ẏ(T )| < (ε+ (ε−1 + σ2)e2µτ )y(T ),
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and minimization of the right-hand side with respect to ε > 0 gives

|ẏ(T )| < (2eµτ + σ2e2µτ )y(T ).

Finally, assumption (4.2) gives

|ẏ(T )| < 2µy(T ),

which is a contradiction to (4.6). Consequently, (4.5) holds for all t ∈ R, and an

integration on the interval (t− s, t), taking into account the constant initial datum,

implies (4.3). �

Lemma 4.2. Let condition (4.2) of Lemma 4.1 be satisfied for some µ > 1. Then

we have, along the solutions of (2.1),

(4.8) ẏ < 2
[(√

τ + σ
)(e2µτ − 1

2µ

)1/2
+

σ2

2
− 1

]
ỹ

for t > 0.

P r o o f. Referring to (4.4), we have for t > 0

(4.9) ẏ = E[−w̃w] +
σ2

2
E[w̃2],

and with the Cauchy-Schwarz inequality,

E[−w̃w] = E[(w̃ − w)w̃]− E[w̃2] 6 (E[|w − w̃|2])1/2(E[w̃2])1/2 − E[w̃2].

If t > τ , we have for any ε > 0

|w − w̃|2 =

∣∣∣∣
∫ t

t−τ

dw(s)

∣∣∣∣
2

=

(∫ t

t−τ

w(s − τ) ds+ σ

∫ t

t−τ

w(s− τ) dBs

)2

6 (1 + ε)

(∫ t

t−τ

w(s− τ) ds

)2

+ (1 + ε−1)σ2

(∫ t

t−τ

w(s− τ) dBs

)2

.

As in the proof of Lemma 3.1, we take the expectation and use the Jensen inequality,

Fubini theorem and isometry of the Itô integral to obtain

(4.10) E[|w − w̃|2] 6 ((1 + ε)τ + (1 + ε−1)σ2)

∫ t

t−τ

E[|w(s − τ)|2] ds.
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If 0 < t 6 τ , we have, due to the constant initial condition,

|w − w̃|2 =

∣∣∣∣
∫ t

t−τ

dw(s)

∣∣∣∣
2

=

(∫ t

0

w(s− τ) ds+ σ

∫ t

0

w(s− τ) dBs

)2

,

and a trivial modification of the above estimates gives (4.10) again. Consequently,

(4.10) holds for all t > 0 with the constant initial datum w0 being extended to the

interval [−2τ, 0]. Minimization of the right-hand side in ε > 0 leads to ε := σ/
√
τ ,

and thus

E[|w − w̃|2] 6 (
√
τ + σ)2

∫ t

t−τ

E[|w(s − τ)|2] ds.

Application of Lemma 4.1 gives

∫ t

t−τ

E[|w(s − τ)|2] ds = 2

∫ t

t−τ

y(s− τ) ds < 2y(t− τ)

∫ τ

0

e2µs ds =
e2µτ − 1

µ
ỹ.

Consequently, we have

E[−w̃w] < 2
[(√

τ + σ
)(e2µτ − 1

2µ

)1/2
− 1

]
ỹ,

and inserting this into (4.9) immediately gives (4.8). �

P r o o f of Theorem 2.2. Lemmas 4.1 and 4.2 assert that y(t) = E[w(t)2/2] is

monotonically decaying if condition (4.2) is satisfied for some µ > 1 and if

(4.11)
(√

τ + σ
)(e2µτ − 1

2µ

)1/2
+

σ2

2
< 1.

A simple calculation reveals that (4.2) is equivalent to (2.7), while (4.11) is equivalent

to (2.8). Then a combination of (4.3) with s := τ and (4.8) yields

ẏ(t) <
[(√

τ + σ
)(e2µτ − 1

2µ

)1/2
+

σ2

2
− 1

]
e−2µτy(t)

for t > 0, which implies exponential decay of y = y(t) in time. �
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