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Abstract. We consider an inverse problem for the determination of a purely time-
dependent source in a semilinear parabolic equation with a nonlocal boundary condition.
An approximation scheme for the solution together with the well-posedness of the problem
with the initial value u0 ∈ H

1(Ω) is presented by means of the Rothe time-discretization
method. Further approximation scheme via Rothe’s method is constructed for the problem
when u0 ∈ L

2(Ω) and the integral kernel in the nonlocal boundary condition is symmetric.
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1. Introduction

Let Ω ⊂ R
d, d ∈ N, be a bounded domain with the boundary Γ of class C0,1

and T > 0. We consider a problem of finding functions u : Ω × [0, T ] → R and

p : [0, T ] → R obeying the semilinear parabolic equation

(1.1) ∂tu−∆u = p(t)h(x, t) + f(x, t, u,∇u) in Ω× (0, T )

with the initial condition

(1.2) u(x, 0) = u0(x) in Ω

and the nonlocal boundary condition

(1.3) u(x, t) =

∫

Ω

k(x, y, t)u(y, t) dy on Γ× (0, T ),
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subject to the additional measurement

(1.4)

∫

Ω

u(x, t)ω(x) dx = q(t), t ∈ (0, T ),

where h, u0, k, ω, q, f are given.

The parabolic equations with nonlocal integral conditions arise in thermoelasticity,

ion-diffusion in channels, the technology of integral circuits, etc. (see [8], [22], [3]

and the references therein). The problem (1.1)–(1.4) describes, for example, the

quasi-static flexure of a thermoelastic rod, where u is entropy and the integral over-

determination condition (1.4) means the average entropy over the domain Ω, see [8],

p. 469–471, and [16], p. 378.

A number of methods for solving such nonlocal direct and inverse problems (IPs)

are known, see, e.g., [4], [6], [13] and [7], [1].

The Rothe time-discretization method (or method of lines) as an approximate

approach gives a simple numerical scheme together with the existence of solution

for a wide range of evolution problems, see, e.g., the monographs by Kačur [12] and

Rektorys [17]. Recently, this method was applied to parabolic IPs with classical

boundary conditions, e.g., in [9], [10], [11], [19], [21] and to parabolic direct problems

with nonlocal integral conditions, e.g., in [20], [5], [14].

Slodička [20] considered the unique solvability of the direct problem (1.1)–(1.3)

with f = f(∇u) using Rothe’s method; more precisely, a solution u in the func-
tion space

V = {v : v ∈ C([0, T ]; L2(Ω)) ∩ L∞(0, T ;H1(Ω)), ∂tv ∈ L2(0, T ;L2(Ω))}

was obtained under the assumption u0 ∈ H2(Ω); the assumption was regarded im-

portant for solvability of the considered problem. One can take notice that the reg-

ularity assumption u0 ∈ H2(Ω) for obtaining such a solution in [20] is stronger than

required for the second order parabolic problems with classical boundary conditions

(this appears also in [9], [21]).

On the other hand, Kozhanov [13], employing the parameter continuation method,

showed the existence of a solution u ∈ W 2,1
2 (Ω × (0, T )) ∩ L∞(0, T ;H1(Ω)) to the

direct problem (1.1)–(1.3) under the condition u0 ∈ H1(Ω) but with an additional

strong assumption k(x, y, t) = 0, y ∈ Γ.

The aim of this paper is to establish the Rothe time-discretization method for the

parabolic IP (1.1)–(1.4) under weaker regularity than H2 for the initial value u0.

First, we find the solution u ∈ V to the IP (1.1)–(1.4) under the assumption

u0 ∈ H1(Ω) without further assumptions on the other data than [20]. The H1-

regularity of u0 requires test functions different from [20]. We construct a time-
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discretization scheme to find an approximate solution. We choose suitable test func-

tions taking account of the compatibility condition on the initial value, which to-

gether with the obvious and efficient inequality (2.20) yields estimates for solutions

of the discrete scheme. For the proof of uniqueness of a solution, we use Rothe’s

method as well, which also distinguishes the paper from the above-mentioned refer-

ences, where the uniqueness of the solution was proved just using the energy method,

irrespective of the Rothe method. We use a priori the Rothe method to obtain the

estimate of ‖∂t(u(1) − u(2))‖L2(0,T ;L2(Ω)) for two solutions u
(1), u(2) to (1.1)–(1.4).

Thus we can use a suitable test function to prove the uniqueness by the energy

method, which is also crucial for weakening the regularity of u0. See Remark 2.2 for

more details.

Next, in this paper, we further address the Rothe method for (1.1)–(1.4) under

the assumption u0 ∈ L2(Ω). To this end, we modify the above discrete scheme and

apply the symmetry condition k(x, y, t) = k(y, x, t) for the integral kernel (see [8],

p. 471) to get the required estimates for its solutions.

Finally, we refer to [2] and [10], where the Rothe methods were proposed weak-

ening the Lipschitz continuity of nonlinear term and the regularity of integral over-

determination value, respectively, as compared with the previous papers which also

had applied the method.

Notations: We use the standard notation L2(Ω), L2(0, T ), H1(Ω), H1
0 (Ω) for

Lebesgue and Sobolev spaces. By H−1(Ω) we denote the dual space of H1
0 (Ω).

Moreover, Lp(0, T ;X) for 1 6 p 6 ∞ and a Banach space X denotes the standard
Bochner spaces. The symbol ‖·‖X denotes the norm of the normed space X . More-
over, ‖·‖ = ‖·‖L2(Ω), ‖·‖1 = ‖·‖H1(Ω), ‖·‖Γ = ‖·‖L2(Γ). Throughout the paper, (µ, ν)

denotes the usual scalar product in L2(Ω), that is, (µ, ν) =
∫
Ω µ(x)ν(x) dx, and

‖µ‖ =
√
(µ, µ). Letter C with subscript denotes different positive constants which

are dependent upon the domain Ω or the length T of the time interval, or given

functions. In particular, the positive constants Cε, Cεi , i ∈ N, depend also on the

positive constants ε, εi, respectively.

The paper is organized as follows. In Section 2, we prove the convergence of

Rothe’s method and the uniqueness of the solution for u0 ∈ H1(Ω). Section 3 is

devoted to the case of u0 ∈ L2(Ω).
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2. Rothe’s method I (case of u0 ∈ H1(Ω))

We make the following assumptions on the known functions:

u0 ∈ H1(Ω); u0(x) =

∫

Ω

k(x, y, 0)u0(y) dy, x ∈ Γ.(A1)

ω ∈ H1
0 (Ω), q ∈ C1[0, T ]; h(t) ∈ L2(Ω),(A2) ∣∣∣∣

∫

Ω

h(x, t)ω(x) dx

∣∣∣∣ > Ch1 > 0, t ∈ [0, T ];

‖h(t)− h(t′)‖ 6 Ch2|t− t′|, t, t′ ∈ [0, T ].

f(t, v,∇v) ∈ L2(Ω) for t ∈ [0, T ], v ∈ H1(Ω);(A3)

‖f(t, v,∇v)− f(t′, w,∇w)‖ 6 Cf [‖v − w‖1 + |t− t′|(1 + ‖v‖1 + ‖w‖1)]
for t, t′ ∈ [0, T ], v, w ∈ H1(Ω).√∫

Ω

∫

Ω

k2(x, y, t) dy dx 6 Ck1 < 1,(A4)

√∫

Ω

∫

Ω

(∂tk)2(x, y, t) dy dx 6 Ck2,

√∫

Ω

∫

Ω

|∇xk(x, y, t)|2 dy dx 6 Ck2,

√∫

Ω

∫

Ω

|∇x∂tk(x, y, t)|2 dy dx 6 Ck2, t ∈ [0, T ].

Here we remark that the restriction on smallness of the integral kernel k like (A4)

is common in the treatment of parabolic equations with the nonlocal boundary con-

dition (1.3), see [6], [7], [13], [20].

We use the formal notation

Kv(x, t) :=

∫

Ω

k(x, y, t)v(y, t) dy, (x, t) ∈ Ω× [0, T ],

Fv(x, t) := f(x, t, v(x, t),∇v(x, t)), (x, t) ∈ Ω× [0, T ],

for a function v(x, t). Multiplying formally the equation (1.1) by a test function

ϕ ∈ L2(0, T ;H1
0(Ω)) and integrating the result over Ω× (0, T ), we have

(2.1)

∫ T

0

(∂tu(t), ϕ(t)) dt+

∫ T

0

(∇u(t),∇ϕ(t)) dt

=

∫ T

0

p(t)(h(t), ϕ(t)) dt+

∫ T

0

(Fu(t), ϕ(t)) dt ∀ϕ ∈ L2(0, T ;H1
0 (Ω)).

This yields the following definition of the solution.
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Definition 2.1. A pair of functions (u, p) is called a solution to the IP (1.1)–(1.4)

if (u, p) ∈ V × L2(0, T ) satisfies the following assumptions:

(i) for a.e. t ∈ (0, T ) and all φ ∈ H1
0 (Ω),

(2.2) (∂tu(t), φ) + (∇u(t),∇φ) = p(t)(h(t), φ) + (Fu(t), φ),

(ii) for a.e. t ∈ (0, T ),

(2.3) p(t)(h(t), ω) = q′(t) + (∇u(t),∇ω)− (Fu(t), ω),

(iii) u satisfies (1.2) and (1.3) in the trace sense.

R em a r k 2.1. (i) Choosing the test function φ = ω in (2.2) and using the

additional condition (1.4) lead to (2.3).

(ii) Obviously, the solution (u, p) ∈ V × L2(0, T ) by Definition 2.1 satisfies (2.1)

pointwise. In particular, one has ∆u∈L2(0, T ;L2(Ω)). However, u∈L2(0, T ;H2(Ω))

is not guaranteed in general since we do not know whether the right-hand side of (1.3)

could belong to L2(0, T ;H3/2(Ω)) under the assumption (A4).

2.1. Time-discretization scheme and existence of a solution. Rothe’s

method is based on a semi-discretization with respect to the time variable. We

divide the time interval [0, T ] into n ∈ N subintervals [ti−1, ti], i = 1, . . . , n, where

ti = iτ and τ = T/n.

Put

Kvi(x) :=

∫

Ω

k(x, y, ti)vi(y) dy, x ∈ Ω,

Fvi(x) := f(x, ti, vi(x),∇vi(x)), x ∈ Ω,

δvi(x) :=
vi(x)− vi−1(x)

τ
, x ∈ Ω,

for a function vi(x).

On the basis of (1.2), (1.3), (2.2) and (2.3) we construct the following recurrent

system of time-discretized problems to find ui(x) : Ω → R and pi ∈ R from ui−1(x) :

Ω → R for i = 1, . . . , n:

(δui, φ) + (∇ui,∇φ) = pi(hi, φ) + (Fui−1, φ) ∀φ ∈ H1
0 (Ω),(2.4)

pi(hi, ω) = q′i + (∇ui−1,∇ω)− (Fui−1, ω),(2.5)

ui(x) = Kui−1(x), x ∈ Γ,(2.6)

where u0(x) is given by (1.2), and hi(x) = h(x, ti) and q
′
i = q′(ti).
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The following lemma shows the well-posedness of the scheme (2.4)–(2.6).

Lemma 2.1. Let (A1)–(A4) be satisfied. Then, for all n ∈ N and i = 1, . . . , n,

there exists the unique pair (ui, pi) ∈ H1(Ω)× R, satisfying (2.4)–(2.6).

P r o o f. Let ui−1 ∈ H1(Ω) be given. Then (2.5) determines the unique pi. We

can rewrite the equation (2.4) as

(2.7) (ui, φ) + τ(∇ui,∇φ) = (ui−1, φ) + τpi(hi, φ) + τ(Fui−1, φ) ∀φ ∈ H1
0 (Ω).

Substituting ui(x) = vi(x) +Kui−1(x) into the left-hand side (LHS) of (2.7) yields

(2.8) (vi, φ) + τ(∇vi,∇φ) = (ui−1, φ) + τpi(hi, φ) + τ(Fui−1, φ)

− (Kui−1, φ) − τ(∇Kui−1,∇φ) ∀φ ∈ H1
0 (Ω).

From the Lax-Milgram lemma, we immediately obtain the existence and unique-

ness of a solution vi ∈ H1
0 (Ω) of (2.8). Thus there exists the unique solution

ui ∈ H1(Ω) of (2.4), (2.6). �

We derive estimates for ui(x), pi, i = 1, . . . , n, satisfying (2.4)–(2.6).

Lemma 2.2. Let (A1)–(A4) be satisfied. Then there exist τ0 > 0 and C > 0 such

that for all n > T/τ0 the solutions (uj , pj), j = 1, . . . , n, to (2.4)–(2.6) satisfy

‖uj‖21 6 C,(2.9)

τ

j∑

i=1

‖δui‖2 6 C,(2.10)
j∑

i=1

‖ui − ui−1‖21 6 C,(2.11)

p2j 6 C.(2.12)

P r o o f. Let δKu0(x) ≡ 0. Then it follows from assumption (A1) and (2.6) that

(δui − δKui−1)τ ∈ H1
0 (Ω), i = 1, . . . , n. If we set φ = (δui − δKui−1)τ in (2.4) and

sum it up for i = 1, . . . , j keeping 1 6 j 6 n, we obtain

(2.13) τ

j∑

i=1

(δui, δui) + τ

j∑

i=1

(∇ui,∇δui)

= τ

j∑

i=1

pi(hi, δui − δKui−1) + τ

j∑

i=1

(Fui−1, δui − δKui−1)

+ τ

j∑

i=1

(δui, δKui−1) + τ

j∑

i=1

(∇ui,∇δKui−1).
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On the other hand, from (A3) we get

(2.14) ‖Fui−1‖ 6 Cf (‖ui−1‖+ ‖∇ui−1‖) +Mf ,

where Mf := max
t∈[0,T ]

‖f(t, 0, 0)‖.
Applying the Cauchy inequality and (2.14) to (2.5) yields

(2.15) |pi| 6
|q′i|+ |(∇ui−1,∇ω)|+ |(Fui−1, ω)|

|(hi, ω)|
6 C1 + C2‖ui−1‖+ C3‖∇ui−1‖,

where

C1 =
1

Ch1
(Mf‖ω‖+ max

t∈[0,T ]
|q′(t)|), C2 =

Cf‖ω‖
Ch1

and C3 =
Cf‖ω‖+ ‖∇ω‖

Ch1
.

Moreover, it follows from (A4) that

τ‖δKui−1‖ = ‖Kui−1 −Kui−2‖ 6 τ(Ck1‖δui−1‖+ Ck2‖ui−2‖),(2.16)

τ‖∇δKui−1‖ = ‖∇Kui−1 −∇Kui−2‖ 6 τCk2(‖δui−1‖+ ‖ui−2‖).(2.17)

The application of the identity

(2.18) 2

j∑

i=1

ai(ai − ai−1) = a2j − a20 +

j∑

i=1

(ai − ai−1)
2 ∀ ai ∈ R, i = 0, . . . , j,

to the second term in the LHS of (2.13) says that

τ

j∑

i=1

(∇ui,∇δui) =
1

2
‖∇uj‖2 −

1

2
‖∇u0‖2 +

1

2

j∑

i=1

‖∇ui −∇ui−1‖2.

Using (2.16) and Young’s inequality, the third term in the right-hand side (RHS)

of (2.13) can be estimated as

∣∣∣∣τ
j∑

i=1

(δui, δKui−1)

∣∣∣∣ 6 Ck1τ

j∑

i=2

‖δui‖‖δui−1‖+ Ck2τ

j∑

i=2

‖δui‖‖ui−2‖

6 Cε1 + Ck1τ

j∑

i=1

‖δui‖2 + Cε1τ

j∑

i=1

‖ui‖2 + ε1τ

j∑

i=1

‖δui‖2.

Estimating, similarly to above, the other terms in the RHS of (2.13) by (2.14)–(2.17)

and applying the obtained relations to (2.13), we get

(2.19) (1 − Ck1 − ε2)τ

j∑

i=1

‖δui‖2 +
1

2
‖∇uj‖2 +

1

2

j∑

i=1

‖∇ui −∇ui−1‖2

6 Cε2 + Cε2τ

j∑

i=1

‖ui‖2 + Cε2τ

j∑

i=1

‖∇ui‖2.
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On the other hand, applying (2.18) to the LHS and Young’s inequality to the RHS

of the inequality

τ

j∑

i=1

(δui, ui) 6

∣∣∣∣τ
j∑

i=1

(δui, ui)

∣∣∣∣,

we have

(2.20)
1

2
‖uj‖2 −

1

2
‖u0‖2 +

1

2

j∑

i=1

‖ui − ui−1‖2 6
1

ε3
τ

j∑

i=1

‖ui‖2 + ε3τ

j∑

i=1

‖δui‖2.

Putting (2.19) and (2.20) together, we arrive at

(2.21) (1−Ck1−ε)τ
j∑

i=1

‖δui‖2+
1

2
‖uj‖21+

1

2

j∑

i=1

‖ui−ui−1‖21 6 Cε+Cετ

j∑

i=1

‖ui‖21.

If we select ε such that 0 < ε < 1−Ck1 and choose τ0 so as to satisfy 0 < τ0 < 1/(2Cε)

in (2.21), we obtain (2.9)–(2.11) by Grönwall’s lemma (cf. [14]).

Squaring both sides of (2.15) and taking into account (2.9) yield (2.12).

It is obvious that the constant C in (2.9)–(2.12) depends also on ‖u0‖1, that is,
C = C(T,Cf ,Mf , Ch1,Mh,Mq, Ck1, Ck2, ‖ω‖1, ‖u0‖1), where Mh := max

t∈[0,T ]
‖h(t)‖,

Mq := max
t∈[0,T ]

|q′(t)|. �

Now we introduce the following piecewise linear in time function ûn : [0, T ] →
H1(Ω) and piecewise constant in time functions ūn : [0, T ] → H1(Ω) and p̄n :

[0, T ] → R:

ûn(t) =

{
u0, t = 0,

ui−1 + (t− ti−1)δui, t ∈ (ti−1, ti], 1 6 i 6 n,
(2.22)

ūn(t) =

{
u0, t = 0,

ui, t ∈ (ti−1, ti], 1 6 i 6 n,
(2.23)

p̄n(t) =

{
p1, t = 0,

pi, t ∈ (ti−1, ti], 1 6 i 6 n.
(2.24)

In the same way we can define the functions h̄n, q̄′n which are piecewise constant

in time. Then we can rewrite (2.4)–(2.6) at t ∈ (0, T ] as

(∂tûn(t), φ) + (∇ūn(t),∇φ) = p̄n(t)(h̄n(t), φ) + (F ūn(t
(n)), φ),(2.25)

p̄n(t)(h̄n(t), ω) = q̄′n(t) + (∇ūn(t(n)),∇ω)− (F ūn(t
(n)), ω),(2.26)

ūn(x, t) = Kūn(x, t
(n)), x ∈ Γ,(2.27)

where ∂tûn(t) = δui and t
(n) = ti−1 for t ∈ (ti−1, ti], 1 6 i 6 n.
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Now we show that the convergent subsequences of {ûn}, {ūn}, {p̄n}, n ∈ N, tend

to the solution of the IP (1.1)–(1.4).

Theorem 2.1. Let (A1)–(A4) be satisfied. Then there exists a solution (u, p) ∈
V × L2(0, T ) to the problem (1.1)–(1.4).

P r o o f. By Lemma 2.2, see (2.9)–(2.12), there exist constants τ0 > 0 and C =

C(T,Cf ,Mf , Ch1,Mh,Mq, Ck1, Ck2, ‖ω‖1, ‖u0‖1) > 0 such that, for all n > T/τ0,

‖ūn(t)‖1 6 C ∀ t ∈ [0, T ], ‖∂tûn‖L2(0,T ;L2(Ω)) 6 C, ‖ûn‖L2(0,T ;H1(Ω)) 6 C,

‖ûn − ūn‖2L2(0,T ;H1(Ω)) 6 Cτ,
∫ T

0

‖ūn(t(n))− ūn(t)‖21 dt 6 Cτ, ‖p̄n‖L2(0,T ) 6 C.

Thus, by [12], Lemma 1.3.13 there exists a sequence {nk}k∈N ⊂ N such that

ûnk
→ u in C([0, T ];L2(Ω)),

∂tûnk
⇀ ∂tu in L2(0, T ;L2(Ω)),

ūnk

∗
⇀ u in L∞(0, T ;H1(Ω)),

p̄nk
⇀ p in L2(0, T ).

Obviously, ūnk
→ u in L2(0, T ;L2(Ω)) and u ∈ V .

On the other hand, similarly to [20], Lemma 4.1, from (2.25) we can get

∫ T

0

‖∇ūn(t)−∇ūm(t)‖2 dt 6 C1

(
1

n
+

1

m
+

∫ T

0

‖ūn(t)− ūm(t)‖2 dt
)
.

Due to the fact that {ūnk
} is a Cauchy sequence in L2(0, T ;L2(Ω)), it follows from

the above inequality that {∇ūnk
} is a Cauchy sequence in L2(0, T ;L2(Ω)). Hence,

ūnk
→ u, ûnk

→ u in L2(0, T ;H1(Ω)).

From now on, nk is written as n for simplicity.

First let us see that u satisfies (1.3) in L∞(0, T ;L2(Γ)). Using (2.27), the trace

theorem and the inequality ([15])

‖v‖2Γ 6 ε‖∇v‖2 + Cε‖v‖2 ∀ v ∈ H1(Ω), ∀ ε > 0, Cε > 0,
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we obtain

(2.28) ‖u(t)−Ku(t)‖2Γ 6 2‖ūn(t)− u(t)‖2Γ + 2‖Kūn(t(n))−Ku(t)‖2Γ
6 2‖ūn(t)− u(t)‖2Γ + C2‖ūn(t(n))− u(t)‖2 + C2τ

2‖u(t)‖2

6 ε1‖∇ūn(t)−∇u(t)‖2 + Cε1‖ūn(t)− u(t)‖2

+ Cε1‖ūn(t(n))− ūn(t)‖2 + Cε1τ
2‖u(t)‖2

6 ε1‖∇ūn(t)−∇u(t)‖2

+ 2Cε1‖ûn(t)− ūn(t)‖2 + 2Cε1‖ûn(t) − u(t)‖2

+ Cε1‖ūn(t(n))− ūn(t)‖2 + Cε1τ
2‖u(t)‖2.

On the other hand, by (2.10) we have

‖ûn(t)− ūn(t)‖ = ‖(t− ti)δui‖ 6 ‖ui − ui−1‖ =
√
τ
√
τ‖δui‖2 6 C3

√
τ ,

‖ūn(t(n))− ūn(t)‖ = ‖ui − ui−1‖ 6 C3

√
τ

for all t ∈ (ti−1, ti], 1 6 i 6 n, thus, from (2.28) we derive

ess sup
t∈[0,T ]

‖u(t)−Ku(t)‖2Γ 6 ε2 + Cε2(τ
2 + τ) + Cε2 ess sup

t∈[0,T ]

‖ûn(t)− u(t)‖2.

Passing to the limit n → ∞ in the inequality above and taking into account that

ε2 > 0 is an arbitrary constant, we get

ess sup
t∈[0,T ]

‖u(t)−Ku(t)‖2Γ = 0.

Next we see that u, p satisfy (2.2) and (2.3). Multiplying (2.25) by an arbitrary

ψ ∈ L2(0, T ) and integrating it over (0, T ), we obtain

(2.29)

∫ T

0

(∂tûn(t), φ)ψ(t) dt+

∫ T

0

(∇ūn(t),∇φ)ψ(t) dt

=

∫ T

0

p̄n(t)(h̄n(t), φ)ψ(t) dt+

∫ T

0

(F ūn(t
(n)), φ)ψ(t) dt.

Passing to the limit n→ ∞ in (2.29), it follows that
∫ T

0

(∂tu(t), φ)ψ(t) dt+

∫ T

0

(∇u(t),∇φ)ψ(t) dt

=

∫ T

0

p(t)(h(t), φ)ψ(t) dt+

∫ T

0

(Fu(t), φ)ψ(t) dt

(here the Lipschitz continuity of h(t) is used).

Since ψ ∈ L2(0, T ) is arbitrary, we can see that u and p satisfy (2.2). In the same

way, starting from (2.26), we can show that u and p satisfy (2.3). �
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2.2. Uniqueness of the solution. Let (u(1), p(1)) and (u(2), p(2)) be two solu-

tions to the IP (1.1)–(1.4). Let ũ := u(1) − u(2) and p̃ := p(1) − p(2).

Before we verify the uniqueness of the solution, we consider the following direct

problem with regard to an unknown function w:

(2.30)





(∂tw(t), φ) + (∇w(t),∇φ) = P (t)(h(t), φ) + (F (t), φ),

a.e. t ∈ (0, ξ) ∀φ ∈ H1
0 (Ω),

w(x, 0) = 0, x ∈ Ω,

w(x, t) = Kũ(x, t) in L2(0, ξ;H
1
2 (Γ)) ∩ L∞(0, ξ;L2(Γ)),

where ξ ∈ (0, T ], F (x, t) = Fu(1)(x, t) − Fu(2)(x, t) and

P (t) =
(∇ũ(t),∇ω)− (F (t), ω)

(h(t), ω)
.

We show the existence and estimate for the solution to the problem (2.30) by using

Rothe’s method as in Section 3.

Divide the time interval [0, ξ] into n ∈ N subintervals [ti−1, ti], i = 1, . . . , n, where

ti = iτ and τ = ξ/n. We construct the following recurrent system of the time-

discretized problem to get wi(x) from wi−1(x) (w0(x) = 0) for all i = 1, . . . , n:

(2.31)

{
(δwi, φ) + (∇wi,∇φ) = Pi(hi, φ) + (Fi, φ) ∀φ ∈ H1

0 (Ω),

wi(x) = Kũi(x), x ∈ Γ,

where zi = z(ti) for the function z 6= w.

We can prove the existence and uniqueness of the solution wi ∈ H1(Ω), i =

1, . . . , n, to the problem (2.31) as in Lemma 2.1 when (A2)–(A4) are satisfied.

Now, let us derive the estimates for wi(x).

Lemma 2.3. Let (A2)–(A4) be satisfied. Then there exist constants ε, Cε, τ0,

C > 0 such that, for all n > ξ/τ0 and all j = 1, . . . , n,

‖wj‖21 6 C, τ

j∑

i=1

‖δwi‖2 6 C,

j∑

i=1

‖wi − wi−1‖21 6 C,(2.32)

(
1− Ck1

2
− ε

)
τ

n∑

i=1

‖δwi‖2 6
(Ck1

2
+ ε

)
τ

n∑

i=1

‖δũi‖2(2.33)

+ Cετ

n∑

i=1

‖ũi‖21 + Cετ

n∑

i=1

‖wi‖21,

where ε, Cε are independent of the choice of ξ and 0 < ε < (1− Ck1)/2.
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P r o o f. Setting φ = (δwi − δKũi)τ in the equation of (2.31) and summing it up

for i = 1, . . . , j yield

(2.34) τ

j∑

i=1

(δwi, δwi) + τ

j∑

i=1

(∇wi,∇δwi)

= τ

j∑

i=1

Pi(hi, δwi − δKũi) + τ

j∑

i=1

(Fi, δwi − δKũi)

+ τ

j∑

i=1

(δwi, δKũi) + τ

j∑

i=1

(∇wi,∇δKũi).

Estimating (2.34) in a similar way as in Lemma 2.2 and adding it to the inequal-

ity (2.20) for wi, we are led to

(2.35)
(
1− Ck1

2
− ε

)
τ

j∑

i=1

‖δwi‖2 +
1

2
‖wj‖21 +

1

2

j∑

i=1

‖wi − wi−1‖21

6

(Ck1

2
+ ε

)
τ

j∑

i=1

‖δũi‖2 + Cετ

j∑

i=1

‖ũi‖21 + Cετ

j∑

i=1

‖wi‖21.

If we select ε such that 0 < ε < (1− Ck1)/2 and choose τ0 satisfying 0 < τ0 < 1/(2Cε)

in (2.35), we get (2.32) by Grönwall’s lemma.

The estimate (2.33) is obtained from (2.35) directly. �

Lemma 2.4. Let (A2)–(A4) be satisfied. Then the problem (2.30) has the unique

solution w ∈ V . Furthermore,

(2.36)
(
1− Ck1

2
− ε

)∫ ξ

0

‖∂tw(t)‖2 dt 6
(Ck1

2
+ ε

)∫ ξ

0

‖∂tũ(t)‖2 dt

+ Cε

∫ ξ

0

‖ũ(t)‖21 dt+ Cε

∫ ξ

0

‖w(t)‖21 dt

holds, where the constants ε, Cε are the same as in Lemma 2.3.

P r o o f. In the same way as in (2.22) and (2.23), we introduce a piecewise lin-

ear in time function ŵn : [0, ξ] → H1(Ω) and piecewise constant in time function

wn : [0, ξ] → H1(Ω). Using (2.32) and [12], Lemma 1.3.13, we see the existence of

a function w ∈ V and subsequences of {ŵn} and {wn} such that

ŵnk
→ w in C([0, ξ];L2(Ω)),

∂tŵnk
⇀ ∂tw in L2(0, ξ;L2(Ω)),

wnk

∗
⇀ w in L∞(0, ξ;H1(Ω)).
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We can easily find that w ∈ V satisfies (2.30). The uniqueness of the solution

to (2.30) is obvious.

Finally, passing to the limit k → ∞ in (2.33) for n = nk, we get (2.36). �

Now, we are in a position to prove the uniqueness of solution to the IP (1.1)–(1.4).

Theorem 2.2. Let (A2)–(A4) be satisfied. Then the solution (u, p) ∈ V ×L2(0, T )

to the IP (1.1)–(1.4) is unique.

P r o o f. Subtracting the corresponding (2.2), (2.3) for (u(1), p(1)) and (u(2), p(2))

from each other, for a.e. t ∈ (0, T ) we have

(∂tũ(t), φ) + (∇ũ(t),∇φ) = p̃(t)(h(t), φ) + (F (t), φ) ∀φ ∈ H1
0 (Ω),(2.37)

p̃(t)(h(t), ω) = (∇ũ(t),∇ω) − (F (t), ω).(2.38)

Due to (A3) and (2.38) the following inequalities hold:

‖F (t)‖ 6 Cf (‖ũ(t)‖+ ‖∇ũ(t)‖),(2.39)

|p̃(t)|Ch1 6 |p̃(t)(h(t), ω)| 6 C1(‖ũ(t)‖+ ‖∇ũ(t)‖).(2.40)

Now, setting φ = ũ(t) −Kũ(t) in (2.37) and integrating it over (0, ξ), ξ ∈ (0, T ], we

obtain

(2.41)
1

2
‖ũ(ξ)‖2 +

∫ ξ

0

‖∇ũ(t)‖2 dt

=

∫ ξ

0

p̃(t)(h(t), ũ(t)−Kũ(t)) dt+

∫ ξ

0

(F (t), ũ(t)−Kũ(t)) dt

+

∫ ξ

0

(∇ũ(t),∇Kũ(t)) dt+
∫ ξ

0

(∂tũ(t),Kũ(t)) dt.

Estimating the RHS of (2.41) by (2.39), (2.40) and (A4) in a standard way, we have

(2.42)
1

2
‖ũ(ξ)‖2 + (1− ε)

∫ ξ

0

‖∇ũ(t)‖2 dt 6 ε

∫ ξ

0

‖∂tũ(t)‖2 dt+ Cε

∫ ξ

0

‖ũ(t)‖2 dt.

On the other hand, it follows from (2.37) and (2.38) that ũ is a solution to (2.30) for

all ξ ∈ (0, T ]. By (2.36) and the uniqueness of the solution to the problem (2.30),

there exists a constant C > 0 such that

(2.43)

∫ ξ

0

‖∂tũ(t)‖2 dt 6 C

∫ ξ

0

‖ũ(t)‖2 dt+ C

∫ ξ

0

‖∇ũ(t)‖2 dt,

where C is independent of ξ. Substituting (2.43) into (2.42) and using Grönwall’s

lemma (cf. [14]) leads to u(1) = u(2) and, finally, it follows from (2.40) that p(1) = p(2).

�
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R em a r k 2.2. In [20], the direct problem (1.1)–(1.3) has been studied under the

assumption u0 ∈ H2(Ω) and (A3), (A4). For the convergence of Rothe’s method,

u0 ∈ H2(Ω) was required due to the argument setting δu0 = f(∇u0) +∆u0. On the

other hand, uniqueness of the solution was proved by the energy method assuming

∂tũ(t)− ∂tKũ(t) ∈ H1
0 (Ω), which tacitly requires u0 ∈ H2(Ω) according to the well-

known theory of parabolic equations. Our result for the IP can be an extension

of [20] from u0 ∈ H2(Ω) to u0 ∈ H1(Ω).

3. Rothe’s method II (case of u0 ∈ L2(Ω))

Now, our study continues to establishing Rothe’s method for the IP (1.1)–(1.4)

under the weaker assumption u0 ∈ L2(Ω). We show that the method will succeed for

a symmetric integral kernel k, i.e., k(x, y, t) = k(y, x, t), and for the nonlinear term

f(x, t, u(x, t)) in (1.1)–(1.4).

Let us replace (A1) and (A4) by (A1)′ and (A4)′, respectively. That is:

(A1)′ u0 ∈ L2(Ω).

(A4)′ In addition to (A4), k(x, y, t) = k(y, x, t) holds for (x, y, t) ∈ Ω× Ω× [0, T ].

Define the function space W by

W = {w : w ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)), ∂tw ∈ L2(0, T ;H−1(Ω))}.

Under (A1)′, (A2), (A3) and (A4)′, we find the solution (u, p) ∈ W ×L2(0, T ) to the

problem

(3.1)





(∂tu(t), φ) + (∇u(t),∇φ) = p(t)(h(t), φ) + (f(t, u(t)), φ),

a.e. t ∈ (0, T ) ∀φ ∈ H1
0 (Ω),

p(t)(h(t), ω) = q′(t) + (∇u(t),∇ω)− (f(t, u(t)), ω), a.e. t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = Ku(x, t) in L2(0, T ;L2(Γ)).

We construct the discrete scheme (2.4)–(2.6), where (2.5) is changed into the

relation

(2.5′) pi =
q′i + (∇ui,∇ω)− (Fui−1, ω)

(hi, ω)

in view of (A1)′ and where Fui−1(x) = f(x, ti−1, ui−1(x)).

Lemma 3.1. Let (A1)′, (A2), (A3), and (A4)′ be satisfied. Then there exists

a constant τ0 > 0 such that for all n > T/τ0 and all i = 1, . . . , n, the problem (2.4),

(2.5′), (2.6) has the unique solution (ui, pi) ∈ H1(Ω)× R.
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P r o o f. Let ui−1 ∈ H1(Ω)(u0 ∈ L2(Ω)) be given. Substituting (2.5′) into (2.4)

and setting ui(x) = vi(x) +Kui−1(x) in a similar way as in the proof of Lemma 2.1,

then

A
(n)
i (vi, φ) := (vi, φ) + τ(∇vi,∇φ)−

τ

(hi, ω)
(∇vi,∇ω)(hi, φ)

= (ui−1, φ) + τ
q′i − (Fui−1, ω)

(hi, ω)
(hi, φ) + τ(Fui−1, φ)− (Kui−1, φ)

− τ(∇Kui−1,∇φ) +
τ

(hi, ω)
(∇Kui−1,∇ω)(hi, φ) ∀φ ∈ H1

0 (Ω)

holds. The following estimates for A
(n)
i (vi, φ) are obtained:

|A(n)
i (vi, φ)| 6 ‖vi‖‖φ‖+ τ‖∇vi‖‖∇φ‖+ τCh‖∇vi‖‖φ‖ 6 C1‖vi‖H1

0 (Ω)‖φ‖H1
0 (Ω),

A
(n)
i (vi, vi) > ‖vi‖2 + τ‖∇vi‖2 − τCh‖∇vi‖‖vi‖

>

(
1− τCh

ε

)
‖vi‖2 + τ(1 − Chε)‖∇vi‖2,

where Ch = ‖∇ω‖Mh/Ch1. Selecting ε such that 0 < ε < 1/Ch and choosing

τ0 = ε/Ch, our proof is closed by the Lax-Milgram lemma. �

Next, we derive estimates for ui(x), pi, i = 1, . . . , n. We remark that the assump-

tion (A1)′ does not allow the relation (2.13) to hold since the second term in its

LHS makes no sense. Thus, choosing φ = (ui − Kui−1)τ in (2.4), we must obtain

estimates for ui(x), pi, i = 1, . . . , n. The following lemma shows that a symmetric

integral kernel makes the possibility.

Lemma 3.2. Let (A1)′, (A2), (A3) and (A4)′ be satisfied. Then there exist

constants τ0 > 0 and C = C(T,Cf ,Mf , Ch1,Mh,Mq, Ck1, Ck2, ‖ω‖1, ‖u0‖) > 0 such

that, for all n > T/τ0 and all j = 1, . . . , n,

‖uj‖2 6 C, τ

j∑

i=1

‖∇ui‖2 6 C,

j∑

i=1

‖ui − ui−1‖2 6 C,(3.2)

τ

j∑

i=1

‖δui‖2H−1(Ω) 6 C,(3.3)

τ

j∑

i=1

p2i 6 C.(3.4)
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P r o o f. We set φ = (ui −Kui−1)τ in (2.4) and sum it up for i = 1, . . . , j to get

(3.5) τ

j∑

i=1

(δui, ui) + τ

j∑

i=1

(∇ui,∇ui)− τ

j∑

i=1

(δui,Kui−1)− τ

j∑

i=1

(∇ui,∇Kui−1)

= τ

j∑

i=1

pi(hi, ui −Kui−1) + τ

j∑

i=1

(Fui−1, ui −Kui−1).

Taking into account the symmetry of k and the identity

j∑

i=1

ai−1(bi − bi−1) = ajbj − a0b0 −
j∑

i=1

bi(ai − ai−1) ∀ ai, bi ∈ R, i = 1, . . . , j,

we can rewrite the third term in the LHS of (3.5) as

τ

j∑

i=1

(δui,Kui−1)

=
1

2

∫

Ω

∫

Ω

j∑

i=1

k(x, y, ti−1)ui−1(y)[ui(x)− ui−1(x)] dy dx

+
1

2

∫

Ω

∫

Ω

j∑

i=1

k(x, y, ti−1)ui−1(x)[ui(y)− ui−1(y)] dy dx

=
1

2

∫

Ω

∫

Ω

[k(x, y, tj)uj(y)uj(x) − k(x, y, t0)u0(y)u0(x)] dy dx

− 1

2

∫

Ω

∫

Ω

j∑

i=1

[k(x, y, ti)− k(x, y, ti−1)]ui(y)ui(x) dy dx

− 1

2

∫

Ω

∫

Ω

j∑

i=1

k(x, y, ti−1)[ui(y)− ui−1(y)][ui(x) − ui−1(x)] dy dx.

From this relation, we obtain

∣∣∣∣τ
j∑

i=1

(δui,Kui−1)

∣∣∣∣ 6
1

2
Ck1‖uj‖2 +

1

2
Ck1‖u0‖2 +

1

2
Ck2τ

j∑

i=1

‖ui‖2

+
1

2
Ck1

j∑

i=1

‖ui − ui−1‖2.
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We estimate the other terms of (3.5) in a similar way as in the proof of Lemma 2.2

to obtain

1

2
(1− Ck1)‖uj‖2 + (1− ε)τ

j∑

i=1

‖∇ui‖2 +
1

2
(1− Ck1)

j∑

i=1

‖ui − ui−1‖2

6 Cε + Cετ

j∑

i=1

‖ui‖2,

yielding (3.2) by Grönwall’s lemma. The estimate (3.4) is obtained from (2.5′)

and (3.2). On the other hand, it follows from (2.4) that

|(δui, φ)| 6 |pi(hi, φ)|+ |(Fui−1, φ)|+ |(∇ui,∇φ)|
6 C1(1 + |pi|+ ‖ui−1‖+ ‖∇ui‖)‖φ‖H1

0 (Ω).

Hence,

‖δui‖H−1(Ω) = sup
‖φ‖

H1
0
(Ω)

61

|(δui, φ)| 6 C1(1 + |pi|+ ‖ui−1‖+ ‖∇ui‖)

holds and we get (3.3) by using (3.2) and (3.4). �

Theorem 3.1. Let (A1)′, (A2), (A3), and (A4)′ be satisfied. Then there exists

a solution (u, p) ∈ W × L2(0, T ) to the problem (3.1).

P r o o f. Defining functions ûn, ūn, p̄n as in (2.22)–(2.24), we get the following

estimates from (3.2)–(3.4):

‖ûn‖L2(0,T ;H1(Ω)) 6 C, ‖∂tûn‖L2(0,T ;H−1(Ω)) 6 C,

‖ûn − ūn‖2L2(0,T ;L2(Ω)) 6 Cτ,
∫ T

0

‖ūn(t(n))− ūn(t)‖2 dt 6 Cτ, ‖p̄n‖L2(0,T ) 6 C,

where C = C(T,Cf ,Mf , Ch1,Mh,Mq, Ck1, Ck2, ‖ω‖1, ‖u0‖). Due to Aubin’s lemma
[18], there exists a sequence {nk}k∈N ⊂ N such that

ûnk
⇀ u in L2(0, T ;H1(Ω)),

∂tûnk
⇀ ∂tu in L2(0, T ;H−1(Ω)),

ûnk
→ u, ūnk

→ u in L2(0, T ;L2(Ω)),

p̄nk
⇀ p in L2(0, T ).

Hence, u ∈ W , p ∈ L2(0, T ). Similarly to Theorem 2.1, we can establish that (u, p)

satisfies (3.1). �
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Under the assumptions (A2), (A3) and (A4), the uniqueness of a solution to (3.1)

can be proved as in the proof of Theorem 2.2. However, using the symmetry of the

integral kernel, we present a shorter proof of the uniqueness.

Theorem 3.2. Let (A2), (A3), and (A4)′ be satisfied. Then, the solution (u, p) ∈
W × L2(0, T ) to the problem (3.1) is unique.

P r o o f. Suppose that (u(1), p(1)) and (u(2), p(2)) are two solutions. Then they

satisfy (2.37), (2.38), where F (x, t) = f(x, t, u(1)(x, t)) − f(x, t, u(2)(x, t)).

Setting φ = ũ(t)−Kũ(t) in (2.37) and integrating it over (0, ξ), ξ ∈ (0, T ], we have

(3.6)
1

2
‖ũ(t)‖2 +

∫ ξ

0

‖∇ũ(t)‖2 dt−
∫ ξ

0

(∇ũ(t),∇Kũ(t)) dt−
∫ ξ

0

(∂tũ(t),Kũ(t)) dt

=

∫ ξ

0

p̃(t)(h(t), ũ(t)−Kũ(t)) dt+

∫ ξ

0

(F (t), ũ(t)−Kũ(t)) dt.

Due to the symmetry of k, the fourth term in the LHS of (3.6) leads to

∫ ξ

0

(∂tũ(t),Kũ(t)) dt =
1

2

∫ ξ

0

dt

∫

Ω

∫

Ω

k(x, y, t)∂t(ũ(x, t)ũ(y, t)) dy dx

=
1

2

∫

Ω

∫

Ω

k(x, y, ξ)ũ(x, ξ)ũ(y, ξ) dy dx

− 1

2

∫ ξ

0

dt

∫

Ω

∫

Ω

kt(x, y, t)ũ(x, t)ũ(y, t) dy dx.

From the above, we obtain

∣∣∣∣
∫ ξ

0

(∂tũ(t),Kũ(t)) dt

∣∣∣∣ 6
1

2
Ck1‖ũ(ξ)‖2 +

1

2
Ck2

∫ ξ

0

‖ũ(t)‖2 dt.

Estimating the other terms of (3.6) directly by the Cauchy and Young inequalities

and using the Grönwall lemma, we have u(1) = u(2) and finally p(1) = p(2) from (2.40).

�

R em a r k 3.1. Obviously, our result for the IP (1.1)–(1.4) suggests Rothe’s

method for the direct problem (1.1)–(1.3) as well.
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