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Abstract. The paper deals with the issue of self-organization in applied sciences. It is
particularly related to the emergence of Turing patterns. The goal is to analyze the domain
size driven instability: We introduce the parameter L, which scales the size of the domain.
We investigate a particular reaction-diffusion model in 1-D for two species. We consider and
analyze the steady-state solution. We want to compute the solution branches by numerical
continuation. The model in question has certain symmetries. We define and classify them.
Our goal is to calculate a global bifurcation diagram.
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1. Introduction

The paper deals with the issue of self-organization in developmental biology, in

particular “morphogenesis”, see review in [2]. In his key work [20] Turing formu-

lated the principles of pattern formation in reaction-diffusion systems. In particular,

the mechanism of reaction-diffusion systems involving two species, see [17]. We

speak of diffusion-induced instability. For the theory of biological pattern formation,

see [7]. In particular, [13] discusses receptor-mediated patterning and [14] domain

size-dependent instabilities. For a theory of Turing pattern instabilities in reaction-

diffusion-ODE systems, we refer to [16].

We investigate numerical solutions of reaction-diffusion models. We deal with

the steady state solutions. We use numerical continuation to find branches of the

solution, see [1], [10]. We use ready made packages [5], [6]. We consider branching

solutions. For this, we use the theory of bifurcations [15], [8]. The problems we study

have certain symmetries, see [8], [9]. We refer to the equivariant bifurcation theory,
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see [9], [4]. For the numerical treatment of symmetry breaking bifurcation points we

refer to [3] and [11].

The outline of the paper is as follows: In Section 2, we define the domain size driven

instability, see [14]. We investigate a particular reaction-diffusion model in 1-D. The

aim is to compute the branches of the solution. For this purpose, we use numerical

continuation. In following Section 3 we analyze the dispersion equation: We define

critical wavelengths. We identify them with the primary bifurcation points. In

Section 4 we define and classify the symmetries of the model. Our goal is to compute

a global bifurcation diagram. Finally, we compare the numerical continuation with

the dynamical simulation. The latter technique is currently used in practice.

2. Pattern formation and numerical continuation

We consider the Turing instability in the context of reaction-diffusion systems for

two species u and v in a 1-D domain x ∈ [0, l]. The goal of the analysis is the domain

size driven instability, see [14],

(2.1) ut = d1uxx + f(u,v),

vt = d2vxx + g(u,v)

in the domain 0 6 x 6 l. The domain can be scaled to a unit interval 0 6 x 6 1 if

we introduce a parameter L2. Therefore, we consider

(2.2) ut =
d1
L2

uxx + f(u,v),

vt =
d2
L2

vxx + g(u,v)

in the range 0 6 x 6 1. Here L is the length of the interval.

We consider Neumann boundary conditions (zero flux)

(2.3) ux(0, t) = ux(1, t) = 0, vx(0, t) = vx(1, t) = 0.

We are looking for steady states of the system (2.2) that satisfy conditions (2.3). We

assume the existence of a homogeneous steady state: There exist u∗ ∈ R
1, v∗ ∈ R

1

such that

f(u(x, 0),v(x, 0)) = f(u∗, v∗) = g(u(x, 0),v(x, 0)) = g(u∗, v∗) = 0, 0 6 x 6 1.

Note that in this case uxx = 0 and vxx = 0 in the domain 0 6 x 6 1.
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To discretize the above problem, we use the method of lines, i.e. semi-discretization

in the spatial variable x. We introduce an equidistant mesh on the interval 0 6 x 6 1,

(2.4) xj = jh, h =
1

N + 1
, j = 1, . . . , N,

where N is the number of mesh points. The state variables u, v are approximated

by discrete state variables

(2.5) u ≈ [u1, . . . , ui, . . . , uN ]⊤ ∈ R
N , v ≈ [v1, . . . , vi, . . . , vN ]⊤ ∈ R

N .

We look for discrete steady states. These depend on the parameter L2. The problem

can be formulated as a system of 2N nonlinear algebraic equations depending on the

parameter L2. We put

(2.6) F : R
2N × R

1 → R
2N

and search for the roots

(2.7) F (w,L2) = 0, w ∈ R
2N , wi = ui, wN+i = vi, i = 1, . . . , N,

where

(2.8) F1(w,L
2) ≡ 2

d1
h2L2

(−u1 + u2) + f(u1, v1) = 0,

Fi(w,L
2) ≡ d1

h2L2
(ui−1 − 2ui + ui+1) + f(ui, vi) = 0, i = 2, . . . , N − 1,

FN (w,L2) ≡ 2
d1

h2L2
(uN−1 − uN ) + f(uN , vN ) = 0,

FN+1(w,L
2) ≡ 2

d2
h2L2

(−v1 + v2) + g(u1, v1) = 0,

FN+i(w,L
2) ≡ d2

h2L2
(vi−1 − 2vi + vi+1) + g(ui, vi) = 0, i = 2, . . . , N − 1,

F2N (w,L2) ≡ 2
d2

h2L2
(vN−1 − vN ) + g(uN , vN ) = 0.

The set (2.7) is called the solution manifold. We assume the existence of a homo-

geneous steady state

(2.9) F (w∗, L2) = 0, w∗ ∈ R
2N , w∗

i = u∗, w∗

N+i = v∗, i = 1, . . . , N.

Consider the homogeneous state (2.9). This can be parameterized by L, i.e. by

the length of the interval. We speak of a branch of homogeneous steady states.
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Definition 2.1. Consider a particular homogeneous steady state w∗ ∈ R
2N ,

(L∗)2 ∈ R
1,

(2.10) F (w∗, (L∗)2) = 0 ∈ R
2N , A ≡ Fw(w

∗, (L∗)2), dimkerA = 1.

Let ξ and η be the right and left eigenvectors corresponding to the zero eigenvalue

Aξ = 0 ∈ R
2N , ‖ξ‖ = 1, A⊤η = 0 ∈ R

2N , ‖η‖ = 1, η⊤ξ 6= 0

with algebraic multiplicity equal to one. Then the point (w∗, (L∗)2) ∈ R
2N+1 is

called the primary bifurcation point of the system (2.6).

The simplicity of the bifurcation point implies the regularity of the bordered

Jacobian

(2.11) det

[

Fw(w
∗, (L∗)2) ξ

η⊤ 0

]

6= 0,

see [10], Chapter 3.

Let F ∈ C1 be differentiable in the neighborhood (w∗, (L∗)2) ∈ R
2N+1. Then there

exist a vector function r = r(y, z) ∈ R
2N and a scalar function h = h(y, z) ∈ R

1

defined on the neighborhood of the origin y = 0 ∈ R
1, z = 0 ∈ R

1, such that

(2.12) F (w,L2) = F (w∗ + r, (L∗)2 + z) = 0 ∈ R
2N ⇔ h(y, z) = 0 ∈ R

1,

where w = w∗ + r(y, z). The function h : R
1 × R

1 → R
1 defines the bifurcation

equation. The state variable y is called observable. The bifurcation equation is an

analytical tool for studying the solution manifold (2.7) in a neighborhood of a simple

bifurcation point. For this purpose, we refer to the Lyapunov-Schmidt reduction [8],

Chapter VII as a suitable analytical procedure. In the context of finite-dimensional

models (e.g. the model (2.8)), we use the numerical Lyapunov-Schmidt reduction [10],

Chapter 6. This technique is based on the systematic use of bordered matrices

like (2.11). We are able to analyze Taylor expansions of the bifurcation equation in

the neighborhood of the origin y = 0 ∈ R
1, z = 0 ∈ R

1:

(2.13) h(y, z) = hy(0, 0)y + hz(0, 0)z + hyy(0, 0)y
2 + . . . ∈ R

1,

r(y, z) = ry(0, 0)y + rz(0, 0)z + ryy(0, 0)y
2 + . . . ∈ R

2N .

The leading term hy(0, 0) ∈ R
1, ry(0, 0) ∈ R

2N of the expansion (2.13) is defined by

means of the bordered linear system

(2.14)

[

Fw(w
∗, (L∗)2) ξ

η⊤ 0

] [

ry(0, 0)

hy(0, 0)

]

=

[

0 ∈ R
2N

1 ∈ R
1

]

.
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For a small given parameter δ, we can approximate the inhomogeneous steady state

close to the bifurcation point (w∗, (L∗)2) as

(2.15) (w∗ + δry(0, 0), (L
∗)2).

It will serve as an initial guess to approximate the whole solution manifold (2.7).

The solution manifold (2.7) consists of implicitly defined curves, namely of the

branch of homogeneous steady states (2.9) and of the branch of inhomogeneous

steady states, emanating from the primary bifurcation point (w∗, (L∗)2) ∈ R
2N+1.

The latter branch consists of pairs (w,L2) ∈ R
2N × R

1,

(2.16) F (w,L2) = 0 ∈ R
2N , w = [u1, . . . , uN , v1 . . . vN ]⊤ ∈ R

N × R
N = R

2N .

There exists the arc length parameterization of (2.16),

F (w(s), L2(s)) = 0 ∈ R
2N , w(s) = [u1(s), . . . , uN(s), v1(s), . . . , vN (s)]⊤ ∈ R

2N ,

s ∈ R
1, see, e.g., [1], p. 14. We can define the positive/negative orientation of this

curve.

We consider numerical continuation methods (i.e., tracing of implicitly defined

curves) using predictor-corrector methods, see, e.g., [1], [5]. We refer to the ready-

made continuation software in matcont manual [6]: see Section 7, Equilibrium con-

tinuation, generic bifurcation of codim 1. These bifurcation points are a) limit point

(fold), LP, b) Hopf point, H, c) branching point, BP. For the classification of these

bifurcation points see also [15].

We need to specify the kinetics of model (2.8). We consider the Schnakenberg

model [18] and the corresponding discretization

(2.17) ut =
d1
L2

uxx + γ(a− u+ u
2
v),

vt =
d2
L2

vxx + γ(b− u
2
v)

in the domain 0 6 x 6 1 with no flux boundary condition

ux(0, t) = ux(1, t) = 0, vx(0, t) = vx(1, t) = 0.

The parameters of the model are a > 0, b > 0, γ > 0. The model has a homogeneous

steady state

(2.18) u = a+ b, v =
b

(a+ b)2
.
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The aim is to find the discrete steady states (2.8) with respect to specific kinet-

ics (2.17). The resulting system reads as follows

(2.19)

F1(w,L
2)≡ 2

d1
h2L2

(−u1 + u2) + γ(a− u1 + u2
1v1) = 0,

Fi(w,L
2)≡ d1

h2L2
(ui−1 − 2ui + ui+1) + γ(a− ui + u2

i vi) = 0, i= 2, . . . , N − 1,

FN (w,L2)≡ 2
d1

h2L2
(uN−1 − uN ) + γ(a− uN + u2

NvN ) = 0,

FN+1(w,L
2)≡ 2

d2
h2L2

(−v1 + v2) + γ(b− u2
1v1) = 0,

FN+i(w,L
2)≡ d2

h2L2
(vi−1 − 2vi + vi+1) + γ(b− u2

i vi) = 0, i= 2, . . . , N − 1,

F2N (w,L2)≡ 2
d2

h2L2
(vN−1 − vN ) + γ(b− u2

NvN ) = 0.
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Figure 1. Left: Branch of inhomogeneous steady states projected onto pairs (uN , L2). The
circle on the branch indicates the starting point of the continuation procedure.
Stability is tested at points 1, . . . , 5. Right: thick and thin curve segments indicate
stable and unstable steady states.

E x am p l e 2.1. Consider the system (2.19) for the parameter settings a = 0.1,

b = 0.9, γ = 10, d1 = 0.1, d2 = 1.6 and N = 20. The coordinates w∗ ∈ R
2N of the

homogeneous state (2.9) can be calculated as u∗ = a+b = 1 and v∗ = b/(a+b)2 = 0.9,

see (2.18).

The aim is to compute a branch of inhomogeneous steady states (2.16) emanating

from a particular primary bifurcation point.

The primary bifurcation points (w∗, (L∗)2) are sorted in ascending order. The

primary bifurcation point (w∗, (L∗)2) with the smallest value of positive (L∗)2 > 0

is (L∗)2 ≈ 0.1539. We can compute this point in double precision.
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Figure 1 shows a branch (2.16) projected onto the pairs (uN , L2). The closed

curve on the left is computed using continuation software, see matcont manual [6]:

Section 7, Equilibrium continuation. However, the branch needs to be initialized,

which is not straightforward: To determine the initial point of the branch we use

the formula (2.15) with δ = 0.1 as predictor.

The branch is oriented counterclockwise. The continuation software calculates

bifurcation points, which are (counterclockwise) LP, BP, LP and BP. It is obvious

that the primary bifurcation point BP is caused by the crossing of the homogeneous

steady states (2.9) with inhomogeneous steady states (2.16), whereas the secondary

bifurcation point BP is not related to such a crossing. Both the primary and sec-

ondary ones are called branching points. The continuation software identifies branch

points BP. The distinction (primary/secondary) depends on the context. Branching

points BP are further classified in Section 4 as symmetry-breaking bifurcation points.

The branch (2.16) consists of segments 1, . . . , 5. In each segment, there is a test-

point on the curve and Jacobian is calculated. If the largest real part of the relevant

eigenvalues is negative, the test-point is declared stable and the whole segment is

declared stable. We do not compute all the eigenvalues of the Jacobian. We use the

Matlab function d = eigs (′Jacobian′, 6,′ lr′), which computes the six “right-most”

eigenvalues. The stability condition is therefore real(d) < 0. We also comment on

the choice of test-points on the curve. We calculate the arclength of each specific

segment numerically. The test point shall be positioned so that the arc length is

halved.

R em a r k 2.1. The continuation algorithm [6] defines the projection of branches

onto pairs (ui, L
2) and (vi, L

2), respectively, for each i = 1, . . . , N . Consider the

projection (uN , L2) as a reference. It serves for a kind of “dimensional reduction”.

R em a r k 2.2 (Algorithm of continuation: novelties).

(a) initialization of the branch via (2.15),

(b) branch segmentation, distinguishing stable and unstable branch segments.

In following Section 3 we obtain the formulae for all primary bifurcation points.

3. Dispersion equation

We consider the system (2.2). Let u∗ ∈ R
1, v∗ ∈ R

1 be a homogeneous steady

state, i.e.,

f(u∗, v∗) = g(u∗, v∗) = 0, 0 6 x 6 1.
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In particular,

(3.1) u∗ = a+ b, v∗ =
b

(a+ b)2
, a > 0, b > 0,

is the steady state calculated by the Schnakenberg model.

In general, we define the Jacobian at the steady state u∗ ∈ R
1, v∗ ∈ R

1:

(3.2) J =

[

fu fv
gu gv

]

u,v:=u∗,v∗

.

In particular,

(3.3) J =

[

2γb/(a+ b)− 1 (a+ b)2

−2b/(a+ b) −(a+ b)2

]

, a > 0, b > 0, γ > 0,

for the Schnakenberg model.

Recall (2.2). Let d1 and d2 be diffusion parameters. Let J be the Jacobian (3.2)

corresponding to the steady state. The equation

(3.4) det

(

J− k2
[

d1 0

0 d1

]

− λI

)

= 0, I = I2×2 ∈ R
2×2,

is called the dispersion relation, see, e.g., [17] p. 382. It depends on the wavenumber

k2 and frequency λ. The dispersion relation (3.4) implicitly defines the relation

λ = λ(k2).

Instead of analyzing the roots of the dispersion relation (3.4), we analyze the

spectrum of the matrix

(3.5) H = J− k2
[

d1 0

0 d1

]

.

The spectrum σ(H) consists of two eigenvalues {λ1(k
2), λ2(k

2)}. These can be
numerically computed as a function of k2. We use the Matlab function eig(H).

Note that in general σ(H) consists of either two real eigenvalues or a complex

conjugate pair.

For a given k2, we put

(3.6) ℜ(λ∗(k
2)) = max{ℜ(λi(k

2))}i=1,2,

which is the right-most eigenvalue of σ(H). We call ℜ(λ∗(k
2)) the maximal growth

rate. When the value of k2 is chosen, the next Matlab script

≫ H = J - k2*[d1 0;0 d2];

≫ [VV,DD] = eig(H);

≫ [right most,i max] = max(real(diag(DD)));

returns the value right most = ℜ(λ∗(k
2)). Figure 2 shows scan of the function

ℜ(λ∗(k
2)) related to Example 2.1.
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Consider the roots of the function k2 7→ ℜ(λ∗(k
2)). They are marked with two

dots in Figure 2. In general, there are two roots, if any. It corresponds to the fact

that the dispersion equation (3.4) is a quadratic equation.

Let k2
−
and k2+, k

2
−

6 k2+, be the roots of the function k2 7→ ℜ(λ∗(k
2)). We can

get closed-form expressions

(3.7) k2− =
d2fu + d1gv −

√
∆

2d1d2
, k2+ =

d2fu + d1gv +
√
∆

2d1d2
,

where∆ = (d2fu+d1gv)
2−4d1d2 detJ, and J, fu, gv are related to the Jacobian (3.2).

0 20 40 60 80 100 120 140 160 180
k
2

−10

−8

−6

−4

−2

0

2

4

ℜ
(λ

∗
(k

2
))

Figure 2. Schnakenberg model, Example 2.1. The maximal growth rate k2 7→ ℜ(λ∗(k
2)):

the thin and thick curve segments refer to two real eigenvalues and complex
conjugate pairs, respectively.

The open interval (k2−, k
2
+) is called the range of growing wave numbers. For

a given k2, k2
−
< k2 < k2+, the maximal growth rate is positive.

Definition 3.1. Consider the formula (3.7). If k2
−
= k2+, we say that the relevant

wavenumber is critical. Let us call it kc.

The aim is to analyze the spatial pattern formation by linear stability analysis.

We follow [17], 14.3. We consider the system (2.2) linearized about a homogeneous

steady state u∗ ∈ R
1, v∗ ∈ R

1, with the appropriate boundary conditions (2.3)

(3.8)

[

ut

vt

]

= J

[

u

v

]

+
1

L2

[

d1 0

0 d1

] [

uxx

vxx

]

in the range 0 6 x 6 1. We apply the Fourier analysis by setting

(3.9)

[

u(x, t)

v(x, t)

]

=

∞
∑

j=1

cje
λtWj(x), 0 6 x 6 1, t > 0,
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where cj ∈ R
2 are the coefficients to be determined, λ ∈ R

1 defines the temporal

growth. The Fourier functionsWj are related to the 1-D Laplacian with the Neumann

boundary conditions

(3.10) W ′′

j + k2Wj = 0, 0 6 x 6 1, W ′

j(0) = W ′

j(1) = 0.

The relevant eigenvalues are k2 = (jπ)2, while the corresponding eigenvectors are

Wj =
√
2 cos(jπx) for j = 1, 2, . . .

Substituting (3.9) into (3.8) with (3.10), and canceling eλt, we conclude that

(3.11) det

(

J− k2

L2

[

d1 0

0 d1

]

− λI

)

= 0, I = I2×2 ∈ R
2×2.

The equation (3.11) is analogous to the dispersion relation (3.4). It depends on the

frequency λ, a particular eigenvalue k2 = (jπ)2, j = 1, 2, . . ., and the wavelength L2.

The roots of (3.11) are related to the spectrum of the matrix H,

(3.12) H = J− k2

L2

[

d1 0

0 d1

]

.

Its spectrum consists of two eigenvalues {λ1(k
2/L2), λ2(k

2/L2)}. Similarly to (3.6)
we define the maximal growth rate as a function

(3.13)
k2

L2
7→ ℜ

(

λ∗

( k2

L2

))

≡ max
{

ℜ
(

λi

( k2

L2

))}

i=1,2
.

We ask for k2/L2 when ℜ(λ∗(k
2/L2)) is positive. Consider the case of the transition

ℜ(λ∗(k
2/L2)) = 0. So we are looking for the roots of the above function. We observe

that the roots are given by the formula (3.7). For the parameters k2 and L2 that

satisfy k2− < k2/L2 < k2+ we can expect the existence of an inhomogeneous steady

state. As for the wavelength L2, we have reached the restriction

(3.14)
k2

k2+
< L2 <

k2

k2−
.

The estimate (3.14) of the stable wavelength range is related to the partial differential

equation (3.8). The state variables are the functions u(x, t) and v(x, t), see (3.9).

We decided to discretize the state variables for numerical purposes.

For this purpose, we consider the spectrum of a discrete 1-D Laplacian with Neu-

mann boundary conditions on the equidistant grid (2.4). For relevant formulas, see

Remark 3.1.
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In particular, we define the function [e val, e vec] = Lap neum(N,No) where N is

the number of mesh points and No is the serial number of the eigenmode. The func-

tion Lap neum returns the corresponding eigenvalue e val ∈ R
1 and the eigenvector

e vec ∈ R
N . By definition: If No = 0 then e val = 0. The positive eigenvalues are

ordered: No = 1, . . . , N − 1 from the smallest to the largest one.

R em a r k 3.1. Spectrum of a discrete 1-D Laplacian with Neumann boundary

conditions on the equidistant grid (2.4):

[e val, e vec] = Lap neum(N,No),

e val = 2/h2[1− cos(jπ/N)], No = j = 1, . . . , N − 1, h = 1/(N + 1),

e vec ∈ R
N , the sampled eigenfunction of Wj , see (3.10).

Using the above notation, we formulate suitable discrete analogies of (3.11)–(3.14).

In particular, we set

(3.15) k2 = e val = Lap neum(N,No), No = j ∈ {1, . . . , N − 1}.

To simplify the notation, e val and e vec are generic value variables, and No = j ∈
{1, . . . , N − 1}.
We define the function

(3.16) L2 7→ ℜ(λ∗(L
2, No = j)) ≡ max

{

ℜ
(

λi

(e val

L2

))}

i=1,2
,

j ∈ {1, . . . , N−1}. We call it the maximal growth rate. We can scan it using a similar
algorithm as for the function (3.6).

Definition 3.2. Given the mode number No = j ∈ {1, . . . , N − 1}, we introduce
the interval

(3.17)
e val

k2+
< L2 <

e val

k2
−

and call it the stable wavelength range. We define

(3.18) L2 No up =
e val

k2+
, L2 No down =

e val

k2
−

as the critical wavelengths related to the mode number No = j ∈ {1, . . . , N − 1}.
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Figure 3. Schnakenberg model, Example 2.1: Left: The first stable wavelength range,
L2 1 up < L2 < L2 1 down, L2 1 up ≈ 0.1542, L2 1 down ≈ 1.0098. Right:
Critical wavelengths for j ∈ {1, . . . , N − 1}. Higher stable wavelength ranges
L2 j up < L2 < L2 j down.
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Figure 4. Schnakenberg model, Example 2.1. Critical wavelengths for j ∈ {1, . . . , N − 1},
sorted in ascending order: L2 1 up, L2 2 up, L2 1 down, L2 3 up, L2 4 up,
L2 5 up, L2 2 down, L2 6 up, etc.

An example of critical wavelengths is shown in Figure 3 on the left: L2 1 up

is the smallest critical point available. In the stable wavelength range L2 1 up <

L2 < L2 1 down we can expect the existence of an inhomogeneous steady state

due to the linearized stability argument. We consider all critical wavelengths for

j ∈ {1, . . . , N − 1}, see Figure 3 right. For a zoom, see Figure 4. The first eight
critical wavelengths are listed in Table 1.

Crit. wave 1 2 3 4 5 6 7 8

Label L2 1 up L2 2 up L2 1 down L2 3 up L2 4 up L2 5 up L2 2 down L2 6 up

Value ≈ 0.1539 0.6114 1.0081 1.3601 2.3794 3.6417 4.0047 5.1125

Mode 1 2 1 3 4 5 2 6

Table 1. Schnakenberg model, Example 2.1: Sorted critical wavelengths.
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Recall that e val and e vec are generic value variables. We put

(3.19) ξ ≡
[

a

b

]

⊗ e vec ∈ R
2N ,

where ⊗ is the Kronecker product of the two matrices above. In the standard Mat-
lab notation, ξ = [a .∗ e vec; b .∗ e vec], where the operator .∗ is the element-wise

multiplication.

There is a correlation between the critical wavelengths and the primary bifurcation

points. Let aup ∈ R
1, bup ∈ R

1, and adown ∈ R
1, bdown ∈ R

1 be the solutions of

linear systems

(3.20)

(

J− k2+

[

d1 0

0 d1

])[

aup

bup

]

= 0,

(

J− k2−

[

d1 0

0 d1

])[

adown

bdown

]

= 0,

respectively, where k2+ and k2− are defined in (3.7). Let

(3.21) ξup ≡
[

aup
bup

]

⊗ e vec ∈ R
2N , ξdown ≡

[

adown

bdown

]

⊗ e vec ∈ R
2N .

Theorem 3.1. For a given j ∈ {1, . . . , N − 1}, let L2 j up and L2 j down

be the critical wavelengths. Let ξup ∈ R
2N and ξdown ∈ R

2N be defined as

in (3.21). Then L2 j up and L2 j down are related to the primary bifurca-

tion points F (w∗, L2 j up) = 0 ∈ R
N , Fw(w

∗, L2 j up)ξup = 0 ∈ R
2N , and

F (w∗, L2 j down) = 0 ∈ R
N , Fw(w

∗, L2 j down)ξdown = 0 ∈ R
2N .

P r o o f. Consider L2 j up. By (3.18), L2 No up = e val/k2+. Recall (3.12). In

this context

(3.22) H = J− e val

L2 j up

[

d1 0

0 d1

]

= J− k2+

[

d1 0

0 d1

]

.

We investigate the spectrum of the matrix H:

≫ [VV,DD] = eig(H);

≫ [right most,i max] = max(real(diag(DD)));

The right-most eigenvalue is equal to zero. Therefore,

≫ DD =

[

0 0

0 r

]

, r < 0.

Let VV(:,1) be the first column of the matrix VV. We denote this column as

[

a

b

]

.

We conclude that
(

J− k2+

[

d1 0

0 d1

])[

a

b

]

= 0 ∈ R
2
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and
(

J− k2+

[

d1 0

0 d1

])[

a

b

]

⊗ e vec = 0 ∈ R
2N .

Therefore,

Fw(w
∗, L2 j up)

[

a

b

]

⊗ e vec =

(

J− k2+

[

d1 0

0 d1

])[

a

b

]

⊗ e vec = 0 ∈ R
2N .

Note that a = aup, b = bup, see (3.20). Hence, for ξup, see (3.21).

Let L2 j down be the critical wavelength. We can mimic the above arguments to

show that L2 j down is related to the primary bifurcation point. �

R em a r k 3.2. Based on Theorem 3.1, we can identify the critical wavelength

with the primary bifurcation point. Primary bifurcation points appear in pairs. We

can calculate and sort all 2(N − 1) bifurcation points.

R em a r k 3.3. Now we can finally classify the primary bifurcation points, which

appear in Figure 1 as (L⋆)2 = L2 1 up ≈ 0.1539.

Consider a branch of homogeneous steady states parameterized by L2, see for-

mulae (2.9). Given L2, let Fw(w
∗, L2) ∈ R

2N×2N be the Jacobian at the point

(w∗, L2) ∈ R
2N × R

1. We recall the classification of steady states [15], p. 42: Let

n−, n0, and n+ be the number of eigenvalues of the matrix Fw(w
∗, L2) (counting

multiplicities) with negative, zero, and positive real part, respectively. We say that

the triple [n−, n0, n+] is the signature of the steady state (w
∗, L2) ∈ R

2N × R
1.

0 6 L2 < L2 1 up [40,0,0] L2 1 up [39,1,0]

L2 1 up < L2 < L2 2 up [39,0,1] L2 2 up [38,1,1]

L2 2 up < L2 < L2 1 down [38,0,2] L2 1 down [38,1,1]

L2 1 down < L2 < L2 3 up [38,0,2] L2 3 up [38,1,1]

L2 3 up < L2 < L2 4 up [38,0,2] L2 4 up [37,1,2]

L2 4 up < L2 < L2 5 up [37,0,3] L2 5 up [36,1,3]

L2 5 up < L2 < L2 2 down [36,0,4] L2 2 down [36,1,3]

L2 2 down < L2 < L2 6 up [36,0,4] L2 6 up [36,1,3]

Table 2.

In the context of the Schnakenberg model, see Example 2.1, we consider the branch

of homogeneous steady states parameterized by L2 that span the interval [0, L2 6 up],

L2 6 up ≈ 5.1125. The classification is summarized in Table 2. Note that we do not

need to compute the full spectrum for the current value of the parameter L2 to

obtain the signature [n−, n0, n+]. Just recall that the signature varies incrementally

at the bifurcation points.
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4. Symmetries of the state space

Consider the abstract group Γ = Z2⊕Z2 = {ι, κ1, κ2, κ1κ2}, κ1κ2 = κ2κ1. Here Z2

is a cyclic group of order 2 and Z2 ⊕Z2 is a direct sum of groups. Therefore, Γ is an

Abelian group.

We consider the following matrices: the identity matrix, the zero matrix and the

exchange matrix of the proper size:

(4.1) I2N×2N ∈ R
2N×2N , ON×N ∈ R

N×N , E =





0 1

. .
.

1 0



 ∈ R
N×N .

We define the matrix representation of the group Γ in the state space R2N as

G(ι) = I2N×2N ∈ R
2N×2N , G(κ1) = −I2N×2N ∈ R

2N×2N ,(4.2)

G(κ2) =

[

E ON×N

ON×N E

]

∈ R
2N×2N ,(4.3)

G(κ1κ2) = G(κ1)G(κ2) = −G(κ2) = G(κ2κ1).(4.4)

We resume, that Γ = {G(ι),G(κ1),G(κ2),G(κ1κ2)} is an Abelian group with faith-
ful representation in the state space R

2N . Each element of the group γ ∈ Γ is

identified by its action, namely by a linear transformation R
2N×2N . To simplify

the notation, we identify the mentioned linear transformations with elements of the

group Γ = {ι, κ1, κ2, κ1κ2}.
The group Γ has proper subgroups Σκ1

= {ι, κ1}, Σκ2
= {ι, κ2}, Σκ1κ2

= {ι, κ1κ2}
and Σ0 = {ι}. We must recall two notions of representation theory: the isotropy
subgroup Σ, see [9], (1.2), p. 69, and the fixed-point subspace FixΣ of a subgroup Σ,

see [9], (2.1), p. 74. We have

(4.5) FixR2N Σκ1
= FixR2N Γ = 0 ∈ R

2N ,

FixR2N Σκ2
= {w ∈ R

2N : wi = wN−i+1, wN+i = w2N−i+1, i = 1, . . . , N},
FixR2N Σκ1κ2

= {w ∈ R
2N : wi = −wN−i+1, wN+i = −w2N−i+1, i = 1, . . . , N},

FixR2N Σ0 = R
2N .

Here Σκ2
, Σκ1κ2

and Σ0 are isotropy subgroups of Γ. Moreover, Σκ2
and Σκ1κ2

are

maximal isotropy subgroups, see [9], Definition 2.6, p. 78.

We recall the manifold of the steady state solutions (2.8). By specifying the

kinetics, we define a discrete version of the Schnakenberg model (2.19). A key feature

of this model is the Γ-equivariance:

(4.6) F (γw,L2) = γF (w,L2)

for (w,L2) ∈ R
2N × R

1, for all γ ∈ {ι, κ1, κ2, κ1κ2}. Property (4.6) can be immedi-
ately verified. We speak of the equivariant theory of bifurcations, see, e.g., [4].

719



Consider the Schnakenberg model, Example 2.1, assumingN = 40. Figure 5 shows

branches of inhomogeneous steady states emanating from the primary bifurcation

points L2 3 up (on the left) and L2 4 up (on the right). Projection onto the pairs

(uN , L2) is applied. The thick and thin segments of the curves indicate stable and

unstable steady states. We place random test points ∗ on the stable segments.
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Figure 5. Schnakenberg model, Example 2.1, N = 40. Branches of inhomogeneous steady
states projected onto pairs (uN , L2), emanating from L2 3 up (left) and L2 4 up

(right). Thick and thin segments of the curves denote the stable and unstable
steady state segments, respectively. The random test points ∗ are placed on the
stable segments.
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Figure 6. Schnakenberg model, Example 2.1, N = 40, the branch L2 3 up: Consider
the steady states [u1, . . . , uN , v1, . . . , vN ]

⊤ ∈ R
2N related to the two marked

test points ∗ in Figure 5 left. Both the steady states [u1, . . . , uN ]
⊤ (blue)

and [v1, . . . , vN ]
⊤ (red) are antisymmetric functions with respect to the center

line x = 1
2
.

Our aim is to investigate the symmetry of the steady state branches of (2.16).

We visualize them on particular examples. In general, the symmetries will occur in

the maximal one of isotropy subgroups Σκ1κ2
and Σκ2

. We show the steady states

[u1, . . . , uN ]⊤ ∈ R
N and [v1, . . . , vN ]⊤ ∈ R

N , which are
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⊲ discrete antisymmetric functions, in the first case,

⊲ discrete symmetric functions, in the second case.

Figure 6 shows steady states related to the test points 1 and 2 on the stable

segments, see Figure 5 left. Plots of the steady states [u1, . . . , uN ]⊤ (blue) and

[v1, . . . , vN ]⊤ (red) are antisymmetric functions with respect to the center line x = 1

2
.
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Figure 7. Schnakenberg model, Example 2.1, N = 40, the branch L2 4 up: Consider
the steady states [u1, . . . , uN , v1, . . . , vN ]

⊤ ∈ R
2N related to the two marked

test points ∗ in Figure 5 right. Both the steady states [u1, . . . , uN ] (blue) and
[v1, . . . , vN ] (red) are symmetric functions with respect to the center line x =

1

2
.

Figure 7 shows the steady states related to the test points 1 and 2 on the stable

segments, see Figure 5 right. Graphs of the steady states [u1, . . . , uN ]⊤ (blue) and

[v1, . . . , vN ]⊤ (red) are symmetric functions with respect to the center line x = 1

2
.
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Figure 8. Schnakenberg model, Example 2.1, N = 40. Homogeneous steady states are
not displayed. The branches of inhomogeneous steady states emanating from
L2 1 up, L2 2 up, L2 1 down, L2 3 up, L2 4 up.
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We use a 3-pair projector to visualize branches of the inhomogeneous steady states

(4.7) sym ≡ u1 + uN

2
, asym ≡ u1 − uN

2
, L2.

The projector (4.7) is called a symmetry-adapted filter. The filter is invariant with

respect to each fixed-point subspace of (4.5). Figure 8 shows the global bifurca-

tion diagram using the symmetry-adapted filter. The diagram includes the first

five branches emanating from the bifurcation points L2 1 up, L2 2 up, L2 1 down,

L2 3 up, L2 4 up.

5. Continuation versus dynamic simulation

Consider numerical procedures for calculating inhomogeneous steady states. In

addition to numerical continuation, we discuss a technique called dynamic simulation.

The latter is currently in use. We recall it in the following remark.

R em a r k 5.1 (Dynamic simulation). Consider the operator (2.6). Instead of

seeking for the steady states (i.e. the roots of the nonlinear system (2.8)) we define

the initial value problem

(5.1) t ∈ R
1 7→ w(t) = [u1(t), . . . , uN(t), v1(t), . . . , vN (t)]⊤ ∈ R

2N ,

L is fixed. The initial condition w0 ∈ R
2N is usually considered to be the ran-

domly perturbed homogeneous steady state (2.9). It is expected that w(t) ∈ R
2N 7→

[u1, . . . , uN , v1, . . . , vN ]⊤ ∈ R
2N as t ∈ R

1 7→ ∞. Thus, in the case of convergence,
the vector [u1, . . . , uN , v1, . . . , vN ]⊤ can be an inhomogeneous steady state related to

some parameter L. Let us call the above procedure the dynamic simulation.

We are going to illustrate that

(1) dynamic simulations can converge to steady states that are not unique,

(2) they may not converge at all.

We consider the first stable wavelength range, L2 1 up < L2 < L2 1 down,

L2 1 up ≈ 0.1542, L2 1 down ≈ 1.0098, see Figure 3.

For comparison, consider the branch L2 1 up, see Figure 1. We place five test

points on the branch. At a particular test point, we perform a dynamic simulation

with the fixed ordinate L2. Stability/instability can be confirmed by numerical

experiment.

We perform a dynamic simulation that starts at a randomly perturbed stable

test point No 1 on the branch. The result of the numerical experiment is shown

in Figure 9 left. Note that we have already assumed the stability of this point by

computing the stable/unstable branch segments, see Remark 2.2.
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Figure 9. Schnakenberg model, Example 2.1, N = 40. Left: Consider the branch L2 1 up.
Dynamic simulation: random perturbation at stable test point No 1. Steady
state (red), resulting trajectory (blue). Right: Consider the branch L2 1 down.
Dynamic simulation: random perturbation at an unstable test point No 2. Steady
state (red), resulting trajectory (blue).
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Figure 10. Schnakenberg model, Example 2.1, N = 40. Left: Consider the branch L2 2 up.
Dynamic simulation: random perturbation at the unstable test point No 2.
Steady state (red), resulting trajectory (blue). Right: Consider the branch
L2 5 up. Dynamic simulation: random perturbation at the stable test point
No 10. Steady state (red), resulting trajectory (blue).

It can be seen from Figure 1 that by performing a dynamic simulation we can

reach two steady states.

Consider a randomly perturbed unstable test point No 3 on branch L2 1 up. This

is an example that the dynamic simulation may not converge, see Figure 11.

There are unstable steady states in the range L2 1 up < L2 < L2 1 down. These

are the related branches of L2 1 up (in Figure 1), and the branches marked as L2 2 up

and L2 1 down (not shown here). We can refer to the global bifurcation diagram in

Figure 8. Taking an unstable test point with the ordinate L2 = 0.91971, the dynamic
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simulation converges to the stable steady state depicted in Figure 9 right. If we take

the unstable test point with the ordinate L2 = 0.6501, the dynamic simulation

converges to the stable steady state depicted in Figure 10 left. In principle, the

dynamic simulation can only provide stable steady states.
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Figure 11. Schnakenberg model, Example 2.1, N = 40, the branch L2 1 up. Dynamic
simulation: random perturbation at the unstable test point No 3. Left: Steady
state (red), resulting oscillation (blue). Right: Phase portrait of the oscillations.
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Figure 12. Schnakenberg model, Example 5.1, N = 40. Homogeneous steady states are not
displayed. Branches of inhomogeneous steady states emanating from L2 1 up,
L2 1 down, L2 2 up, L2 2 down, L2 3 up, L2 3 down, L2 4 up, L2 5 up,
L2 4 down, L2 6 up.

How to recognize the steady state using dynamic simulation? We can usually cut-

off transients, see Figure 9 and Figure 10 left. In Figure 10 right, we can observe the

transient growth, see [12] and [19], Section 14.
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Dynamic simulation can be used to investigate the dependence of parameters of

the Schnakenberg model. Recall Example 2.1. Let us relax the diffusion parameter d2
and trace the pairs (3.7). For a critical parameter value d2 ≈ 0.85 the continuation

breaks down, because we have reached the critical wave number kc ≈ 34.2, see

Definition 3.1. Choose a parameter d2 near the critical value d2 ≈ 0.85:

E x am p l e 5.1. Consider the system (2.19) and set the parameters a = 0.1,

b = 0.9, γ = 10, d1 = 0.1, d2 = 0.9 and N = 40.

Figure 12 shows the relevant bifurcation diagram. Note that the branches L2 1 up

end L2 1 down, L2 2 up end L2 2 down, L2 3 up end L2 3 down, L2 4 up end

L2 4 down, respectively, are setwise equal. They differ in parameterization.

Note that the generic scenario in Figure 8 is different from the scenario in Figure 12.

6. Conclusions

The aim of this paper is to promote numerical continuation in solving reaction-

diffusion problems. We claim an algorithmic contribution to the continuation

algorithm:

(a) branch initialization using Taylor expansion of the bifurcation equation,

(b) branch segmentation by distinguishing stable and unstable segments of the branch.

In principle, we can initialize, compute and sort 2(N−1) bifurcation points. Then

we can compute the relevant branches using the standard continuation algorithm.

The algorithm may collapse due to numerical reasons (too small time step).

We also classified the symmetries of the model. For this purpose, we designed a

specific group representation. By concatenating specific branches, we can create

a global bifurcation diagram.

This approach has its limits. Unfortunately, the continuation package [5] deals

with a single spatial variable. However, considering possible generalizations, we

could consider systems with advection [14] or systems for more then two species.
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