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Abstract. In this paper, we propose a new stabilization technique for numerical simula-
tion of incompressible turbulent flow by solving Reynolds-averaged Navier-Stokes equations
closed by the SST k-ω turbulence model. The stabilization scheme is constructed such that
it is consistent in the sense used in the finite element method, artificial diffusion is added
only in the direction of convection and it is based on a purely nonlinear approach. We
present numerical results obtained by our in-house incompressible fluid flow solver based
on isogeometric analysis (IgA) for the benchmark problem of a wall bounded turbulent
fluid flow simulation over a backward-facing step. Pressure coefficient and reattachment
length are compared to experimental data acquired by Driver and Seegmiller, to the
computational results obtained by open source software OpenFOAM and to the NASA
numerical results.
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1. Introduction

Fluid mechanics belongs among the most challenging areas of research (in both the-

ory and numerical simulation) and its development is driven by the requirement of the

modern technologies for deeper understanding of behaviour of real fluids and as accu-

rate as possible numerical simulations. Generally, the motion of the fluid is described
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by the Navier-Stokes equations (see, e.g., [41]), which are used to model a wide range

of problems such as weather, water and some air flow or, e.g., study of blood flow.

The turbulent flow can be simulated by solving directly the Navier-Stokes equa-

tions for the given boundary and initial conditions, which is known as Direct Nu-

merical Simulation (DNS). However, it means that the whole range of the scales

(sizes of the eddies) must be resolved up to the smallest scales of the flow (cf.,

e.g., [41]), which substantially increases computational and memory requirements

for higher Reynolds numbers. Thus, DNS is typically applied only for low Reynolds

number flows.

The RANS (Reynolds-Averaged Navier-Stokes) approach is probably the most

widely used method for numerical simulation of turbulent flows in the industry.

RANS equations are time-averaged (ensemble-averaged) equations of fluid flow mo-

tion such that the variables are decomposed into a mean (time-averaged) com-

ponent and a fluctuating component. The Reynolds stresses resulting from the

time-averaging, see, e.g., [41], [31], are typically approximated using the Boussi-

nesq assumptions, which gives rise to turbulence models. Various turbulence models

have been proposed to satisfy different types and conditions of a fluid flow. In

modern engineering applications, the commonly used turbulence models are, e.g.,

the one-equation Spalart-Allmaras and two-equation SST k-ω turbulence models,

see [41], [24].

Isogeometric analysis (IgA) is a relatively recently introduced numerical method

for solving partial differential equations (cf., e.g., [18]). The main motivation of

isogeometric analysis is to bridge the gap between geometric modelling (Computer

Aided Design—CAD) and numerical simulation (Finite Element Analysis—FEA).

Isogeometric analysis is based on an isoparametric framework, i.e., the same shape

functions are used for both the representation of geometry and the solution space

of the problem unknowns. The method has been successfully applied in a wide

range of practical problems, like, e.g., fluid flow simulation, heat transfer analysis,

shape optimization, linear elasticity, plate and shell analysis, etc., see, e.g., [38],

[8], [3], [2]. Exact representation of complex computational domains, and higher

smoothness of basis functions, and higher accuracy of the numerical solution with

respect to degrees of freedom (cf. [19]) are several advantages of the isogeomet-

ric analysis.

On the other hand, one of the disadvantages of isogeometric analysis is that true

local refinement is not possible for the NURBS/B-spline objects, but it can be over-

come by various generalizations, e.g., T-, THB- or LR-splines (cf., e.g., [15]). Further,

among other drawbacks belong the time-consuming matrix assembly in the construc-

tion of the system of linear equations (see [16]) or degraded performance of direct

solvers because of the wide support of B-spline/NURBS basis functions (see [10]).
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Solving RANS equations closed with a turbulence model for numerical simulation

of a turbulent flow is closely connected to the treatment of dominated convection or

reaction terms. It is well known that the continuous Galerkin discretization produces

unstable discretizations in the convection-dominated regime. In order to overcome

these deficiencies, many stabilization techniques have been proposed with the aim to

remove (or to diminish) spurious oscillations without leading to excessive smearing

of discontinuities or layers.

Stabilization techniques used within the continuous Galerkin method can be

divided into those that are based on the upwinding, on the modification of a

variational formulation, and those based on the enrichment of a set of basis func-

tions. They can also be distinguished as consistent or inconsistent (cf., e.g., [22],

[1]). Consistency of a finite element method means that a sufficiently smooth

solution satisfies also the discrete equation (see [36]). It is easy to show that

a consistent finite element method has the property of Galerkin orthogonality.

This property plays an important role in the proof of convergence and error es-

timation of stabilized methods. Some techniques only add numerical diffusion

in the direction along the streamlines (e.g., streamline upwind/Petrov-Galerkin

(SUPG) or streamline diffusion finite element method (SDFEM)) while others

add it in multiple directions (isotropic diffusion), see [22], [20], [21]. From an-

other perspective, linear and nonlinear schemes are distinguished. There are many

linear approaches to stabilize Galerkin-based methods, like SUPG, GLS (gener-

alized least squares), CIP (continuous interior penalty), LPS (local projection

stabilization), etc., see, e.g., [7], [20], [21], [22]. It is well known that a solu-

tion computed with SUPG does not prevent the presence of spurious oscillations

of small magnitudes in the vicinity of sharp gradients. Small overshoots and

undershoots resulting from the SUPG method are caused by the fact that the

SUPG method as one of the linear methods is neither monotone nor monotonic-

ity preserving.

Nonlinear methods have been proposed to reduce the drawbacks of SUPG-type

methods and the use of nonlinear methods is the only feasible way to obtain a high

order of accuracy with strongly reduced local oscillations. These techniques are called

spurious oscillations at layers diminishing schemes (SOLD), see, e.g., [20], [21]. The

aim of these approaches is to reduce or remove spurious oscillations in the multidi-

mensional case by adding artificial diffusion in directions where solutions are rapidly

changing. Let us note that regardless the nonlinear stabilization technique is applied

to a linear or nonlinear problem, the resulting stabilized problem is always nonlin-

ear. This gives rise to questions concerning the existence and uniqueness of solutions

of such problems and convergence of appropriate iterative methods. Unfortunately,

very few results are known in this area.
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Bazilevs et al. show in [5] advantages of the isogeometric analysis in conjunction

with linear and nonlinear stabilization techniques. Especially, they show on a lin-

ear convection-dominated problem on one patch that IgA-based approximations are

suitable for problems with internal and boundary layers. There are not many pa-

pers dealing with modeling incompressible turbulent fluid flow using IgA. Most of

them are focused on LES (Large Eddy Simulation) or VMS (Variational MultiScale)

techniques (cf., e.g., [4], [39]) and only few of them are devoted to RANS equa-

tions completed with the two-equation turbulence model solved by IgA based on

a continuous Galerkin approach, see, e.g., [32].

The main goal of this paper is to propose a new stabilization technique suitable for

RANS equations completed with a turbulence model in combination with IgA. This

stabilization technique is not based on an additional term to the SUPG-type linear

stabilization. On the contrary, it is based on a purely nonlinear approach (it is nonlin-

ear even in the case of a 1D linear problem). This approach, which we call the stream-

line residual-based artificial viscosity stabilization, is consistent and nonlinear artifi-

cial viscosity is added only in the direction of convection. In our study of the stabiliza-

tion techniques, we focus on a standard benchmark problem for the wall bounded tur-

bulent fluid flow simulation—flow over a backward-facing step—which is frequently

studied in the literature. The turbulent flow is simulated by solving stabilized RANS

equations with the SST k-ω turbulence model. We compare the solutions obtained by

our in-house IgA-based fluid flow solver (see [3], [2]) for different stabilization tech-

niques and B-spline discretization spaces to experimental and computational data

and we especially focus on the comparison with our newly proposed stabilization

techniques. Moreover, we have to deal with a multi-patch geometry of the backward-

facing step for numerical simulation of the turbulent flow which causes another

instabilities. Papers dealing with stabilization techniques for IgA typically focus on

single-patch geometries or multi-patch geometries with regular meshes (see, e.g., [26],

[39], [18]), but only few of them are devoted to multi-patch geometries with irregular

meshes (see [34] for convection-diffusion equations and [32] for RANS equations).

The paper is organized as follows. Section 2 introduces the RANS equations closed

with the SST k-ω turbulence model and their weak formulation of the semi-discrete

form. In Section 3, we give an overview of fundamentals of B-spline objects, present

the main ideas of isogeometric analysis and formulate the Galerkin discretization.

Section 4 is devoted to standard stabilization schemes. Then, we propose our new

stabilization method in Section 5. In Section 6, we discuss the choice of the stabiliza-

tion parameter and the element length. In Section 7, we formulate the benchmark

problem studied in the paper, and we present the results obtained by our in-house

IgA-based fluid flow solver and their comparison with the experimental data and

reference solutions in Section 8. In Section 9, we conclude the paper.
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2. Reynolds-averaged Navier-Stokes equations

Consider a bounded domain Ω ⊂ R
d, d being the number of spatial dimensions,

with the boundary ∂Ω consisting of two parts, Dirichlet ∂ΩD and Neumann ∂ΩN .

The Reynolds-averaged Navier-Stokes problem is given as a system of d+1 ensemble-

averaged (or time-averaged, see, e.g., [11], [41]) differential equations together with

boundary and initial conditions

∂ū

∂t
+ ū · ∇ū = −∇p̄+∇ · [(ν + νT)(∇ū+∇ū⊤)] in Ω× (0, t̄),(2.1)

∇ · ū = 0 in Ω× (0, t̄),

ū(x, 0) = ū0(x) in Ω,

ū = g in ∂ΩD × [0, t̄],

(ν + νT)(∇ū +∇ū⊤) · n− np̄ = 0 in ∂ΩN × [0, t̄],

where ū = ū(x, t) is the mean flow velocity, p̄ = p̄(x, t) is the mean kinematic

pressure, ν is the given kinematic viscosity of the fluid, νT is the eddy (turbulent)

viscosity introduced below and g and u0(x) are given functions. In essentially all

practical formulations of the RANS equations, the time derivative term is included,

despite the fact that ū is independent of time. This formulation is only auxiliary

and the solution of the RANS equations is understood as stationary. Note that the

so-called Boussinesq approximation (cf., e.g., [31]) is applied to obtain (2.1), which

generally introduces also the term 2
3∇k on the right-hand side of the first equation

in (2.1), where k is the turbulent kinetic energy. However, similarly to [42], [43], [41],

the contribution of this term is neglected in this paper.

A wide range of approaches has been developed to approximate the eddy viscos-

ity νT in the Boussinesq assumptions, which lead to different so-called turbulence

models also known as eddy viscosity models. The turbulence models vary from rel-

atively simple algebraic models to more complex models, e.g., one-equation models

and two-equation models.

The SST (shear stress transport) k-ω turbulence model for unknown variables, the

turbulent kinetic energy k and turbulent specific dissipation ω, is one of the most

commonly used two-equation models and it can be formulated as (cf., e.g., [31])

∂k

∂t
+ ū · ∇k = Pk +∇ · [(σkνT + ν)∇k]− β∗kω in Ω× (0, t̄),(2.2)

∂ω

∂t
+ ū · ∇ω =

γ

νT
Pk +∇ · [(σωνT + ν)∇ω]− βω2

+ 2(1− F1)σω2
1

ω
∇k · ∇ω in Ω× (0, t̄),
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k(x, 0) = k0(x) in Ω,

ω(x, 0) = ω0(x) in Ω,

k = gk in ∂ΩD × [0, t̄],

ω = gω in ∂ΩD × [0, t̄],

∇k · n = 0 in ∂ΩN × [0, t̄],

∇ω · n = 0 in ∂ΩN × [0, t̄],

where gk, gω are given functions and

(2.3) F1 = tanh
([

min
[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2

]]4)
,

CDkω = max
(
2σω2

1

ω
∇k · ∇ω, 10−10

)
,

Pk = min

(
2νT

d∑

i,j=1

Sij
∂ūi
∂x̄j

, 10β∗kω

)
,

Sij =
1

2

( ∂ūi
∂x̄j

+
∂ūj
∂x̄i

)
,

β∗ = 9
100 , σω2 = 0.856. The values of the remaining parameters σk, σω , α, β,

and γ are dependent on the wall distance y, which is the distance of a point in the

domain Ω to the nearest wall. Let ϕ1 and ϕ2 be two given parameters. Then, let

us define a parameter ϕ, whose value depends on the wall distance y, such that it

varies between the given parameters ϕ1, ϕ2 as

(2.4) ϕ = ϕ1F1 + ϕ2(1− F1).

This relation is applied to calculate appropriate values of the parameters σk, σω, α,

and β using

σk1 = 0.85, σω1 = 0.5, α1 =
5

9
, β1 =

3

40
,(2.5)

σk2 = 1, σω2 = 0.856, α2 = 0.44, β2 = 0.0828,

and parameter γ using

(2.6) γ1 =
β1
β∗

− σω1κ
2

√
β∗

, γ2 =
β2
β∗

− σω2κ
2

√
β∗

,

where κ = 0.41. Since the two-equation model switches according to the wall dis-

tance y, the eddy viscosity has to be also dependent on the wall distance, i.e.,

(2.7) νT =
a1k

max (a1ω, SF2)
,
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where a1 = 0.31, S =
d∑

i,j=1

2SijSij is magnitude of the strain rate tensor Sij and

(2.8) F2 = tanh
([

max
( 2

√
k

β∗ωy
,
500ν

y2ω

)]2)
.

Then, the problems (2.1) and (2.2) are fully coupled because νT in (2.1) depends on

the solution of (2.2) and the solution of (2.2) depends on the solution ū of (2.1). Fur-

ther, presence of the time derivative of ū is helpful for the convergence of numerical

methods.

In the following, a weak formulation of the RANS equations is presented. To treat

the time dependence of the RANS problem, we apply a semi-discrete method such

that we start with the time discretization. The time discretization is used as an

iterative approach to determine a steady-state solution. Let superscripts n and n+1

denote the values at the time layers tn and tn+1. Then, applying the semi-implicit

time discretization we look for ūn+1 and p̄n+1 such that

(2.9)
ūn+1 − ūn

∆t
−∇ · [(ν + νnT)(∇ūn+1 + (∇ūn+1)⊤)] + ūn+1 · ∇ūn+1 +∇p̄n+1 = 0,

∇ · ūn+1 = 0.

In order to formulate the weak formulation of the semi-discrete problem, we define

solution and test function spaces as

(2.10) V = {u ∈ H1(Ω)d ; u = g on ∂ΩD},
V0 = {v ∈ H1(Ω)d ; v = 0 on ∂ΩD},

where the boundary equalities are understood in the sense of traces and we assume

that g ∈ H1/2(∂Ω)d. The weak formulation of the RANS problem in semi-discrete

form is to find ūn+1 ∈ V and p̄n+1 ∈ L2(Ω), n = 0, 1, 2, . . ., satisfying ū0 = ū0(x)

and

(2.11)
( ūn+1 − ūn

∆t
,v

)
+ a(ūn+1,v, νnT) + c(ūn+1, ūn+1,v)− b(v, p̄n+1) = 0,

b(ūn+1, q) = 0

for all v ∈ V0 and q ∈ L2(Ω), where

(2.12) a(u,v, νT) = ((ν + νT)(∇u + (∇u)⊤),∇v),

c(w,u,v) = (w · ∇u,v),

b(v, p) = (∇ · v, p)
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and the L2 scalar products in Ω are defined as

(u,v) =

∫

Ω

u · v for vector functions,(2.13)

(σ, τ) =

∫

Ω

σ : τ for second-order tensors,(2.14)

(p, q) =

∫

Ω

pq for scalar functions.(2.15)

The weak formulation of the turbulence model is derived similarly to the RANS

equations, i.e., we use the semi-implicit time discretization to discretize the problem

in time first and then we look for a weak form of the semi-discrete problem. For this

purpose, we define solution and test function spaces as

(2.16) V̂ = {k ∈ H1(Ω); k = gk on ∂ΩD},
Ṽ = {ω ∈ H1(Ω); ω = gω on ∂ΩD},
V̂0 = {w ∈ H1(Ω); w = 0 on ∂ΩD},

where the boundary equalities are understood in the sense of traces and we as-

sume that gk, gω ∈ H1/2(∂Ω). Then, the weak formulation is: find kn+1 ∈ V̂ and

ωn+1 ∈ Ṽ , n = 0, 1, 2, . . ., such that k0 = k0(x), ω
0 = ω0(x) and

(2.17)
(kn+1 − kn

∆t
, w

)
+ ak(k

n+1, w, νn+1
T ) + ck(ū

n+1, kn+1, w)

+ (β∗ωn+1kn+1, w) = (Pk, w),
(ωn+1 − ωn

∆t
, w

)
+ aω(ω

n+1, w, νn+1
T ) + cω(ū

n+1, ωn+1, w)

+ (β(ωn+1)2, w)− dω(ω
n+1, kn+1, w) =

( γ

νnT
Pk, w

)

for all w ∈ V̂0, where

ak(k, w, νT) = ((σkνT + ν)∇k,∇w), ck(ū, k, w) = (ū · ∇k, w),(2.18)

aω(ω,w, νT) = ((σωνT + ν)∇ω,∇w), cω(ū, ω, w) = (ū · ∇ω,w),

dω(ω, k, w) =
(
2(1− F1)σω2

1

ω
∇k · ∇ω,w

)
.

Due to the explicit discretization of νT in (2.11), the problems (2.11) and (2.17) can

be separated.
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3. Isogeometric analysis and Galerkin discretization

of RANS equations

Isogeometric analysis (IgA) shares a lot of features with the Finite Element

Method, but it is closely connected to the description of geometry, i.e., it directly

uses the geometric description from the CAD system also for numerical analysis.

Indeed, the computational domain with a boundary represented as B-spline/NURBS

objects (cf. [35], [18]) is exactly discretized and then an isoparametric approach is

applied. This is the main advantage of IgA, which cannot be achieved by a FEM

polynomial description of the boundaries.

A B-spline surface of degree q is a vector function of two parameters (ξ and ψ)

determined by a control net of control points Pi,j , i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

and two knot vectors Ξ = (ξ1, . . . , ξn+q+1), Ψ = (ψ1, . . . , ψm+q+1), where ξi 6 ξi+1

and ψi 6 ψi+1. Then its parametrization is given as

(3.1) f(ξ, ψ) =

n∑

i=1

m∑

j=1

Pi,jN
q
i (ξ)M

q
j (ψ) =

n∑

i=1

m∑

j=1

Pi,jBij(ξ, ψ).

Let us note that f can generally be of degree p, q in parameters ξ, ψ, but for the

simplicity of notation we restrict ourselves to the case p = q in this paper. The B-

spline basis functions N q
i (ξ) andM

q
j (ψ) are determined by the knot vectors Ξ and Ψ

and degree q recursively by the Cox-de Boor formula as

(3.2) N0
i (ξ) =

{
1, ξi 6 ξ < ξi+1,

0 otherwise,

Nk
i (ξ) = ski (ξ)N

k−1
i (ξ) + (1− ski+1(ξ))N

k−1
i+1 (ξ), k = 1, . . . , q,

where

(3.3) ski (ξ) :=





ξ − ξi
ξi+k − ξi

, ξi < ξi+1,

arbitrary otherwise.

Bij(ξ, ψ) in (3.1) is the corresponding tensor product B-spline basis function

N q
i (ξ)M

q
j (ψ). One of the fundamental properties of B-spline basis functions is

that they are Cq−mi continuous at the knot ξi, where mi is the multiplicity of the

knot ξi. Other properties include local support, non-negativity and partition of

unity. More details about the B-spline basis can be found in [35], [18], [3].

Let us denote the tensor product B-spline space spanned by the basis functions

Bij(ξ, ψ), i = 1, . . . , n, j = 1, . . . ,m, by

(3.4) Sq
r = span{Bij}n,mi=1,j=1,
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where r is the order of continuity of the basis functions, and the Cartesian product

of these tensor product B-spline spaces by

(3.5) Sq
r = Sq

r × Sq
r .

A B-spline mesh used in isogeometric analysis is defined by the knot vectors Ξ, Ψ.

If the subsequent knots are different from each other, i.e., ξi 6= ξi+1 and ψj 6= ψj+1,

then [ξi, ξi+1]× [ψj , ψj+1] defines an element of the computational mesh.

The idea of the Galerkin discretization method in IgA applied to RANS equa-

tions is to introduce finite dimensional subspaces V h ⊂ V , V h
0 ⊂ V0, W

h ⊂ L2(Ω),

V̂ h ⊂ V̂ , Ṽ h ⊂ Ṽ , V̂ h
0 ⊂ V̂0 together with their basis functions which define also the

geometry of Ω and solve the RANS problem projected into these subspaces. More-

over, to get a stable Galerkin discretization of a saddle-point problem, the velocity

and pressure spaces V h
0 and W

h must satisfy the so-called LBB (Ladyženskaja-

Babuška-Brezzi) condition

(3.6) inf
q∈Wh\{0}

sup
v∈V h

0
\{0}

∫
Ω q∇ · v

‖v‖H1(Ω)‖q‖L2(Ω)
> γ > 0,

where γ is a constant independent of the mesh. Here, we consider only the case of

so-called inf-sup stable combinations of velocity and pressure spaces ensuring that

the inf-sup condition is satisfied. The reader is referred, e.g., to [14], [41] for more

details, discussion and basic theory of the saddle point problems and their numerical

analysis.

We apply an extension of the classical Taylor-Hood finite elements for the iso-

geometric analysis which is proved to satisfy the inf-sup condition (see, e.g., [6]),

i.e., the pressure basis functions are taken to be equal to the geometry basis func-

tions (Bp
l (ξ, ψ) = Bl for all l) and the velocity basis functions {Bu

j (ξ, ψ)} as the
B-spline basis functions obtained by degree elevation of the pressure basis functions

{Bp
l (ξ, ψ)}. Hence, the velocity basis functions are of bi-degree (q + 1, q + 1), and

both velocity and pressure bases are defined on the same mesh and have the same

order of continuity. This yields

V h = {u : u ◦ F ∈ Sq+1
r ∧ u = g on ∂ΩD},

Wh = {q : q ◦ F ∈ Sq
r},

V h
0 = {v : v ◦ F ∈ Sq+1

r ∧ u = 0 on ∂ΩD},
V̂ h = {k : k ◦ F ∈ Sq

r ∧ k = gk on ∂ΩD},
Ṽ h = {ω : ω ◦ F ∈ Sq

r ∧ k = gω on ∂ΩD},
V̂ h
0 = {w : w ◦ F ∈ Sq

r ∧ w = 0 on ∂ΩD},
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where F is the parameterization representing the mapping from the parameteric do-

main Ω̂ to the physical space Ω. We assume that the parameterization F is invertible

with smooth inverse on each element of the computational mesh.

To treat the nonlinearity in the convective term of the RANS problem, we employ

Picard’s method, i.e., the problem is solved iteratively at each time step and the

nonlinear term is linearized using the solution from the previous Picard’s iteration

step [14]. Then, we look for discrete solutions ūn+1,m+1
h ∈ V h, p̄n+1,m+1

h ∈ Wh(Ω),

m = 0, 1, . . . ,M , such that for all vh ∈ V h
0 and qh ∈Wh(Ω)

(3.7)
1

∆t
(ūn+1,m+1

h ,vh) + a(ūn+1,m+1
h ,vh, ν

n
T) + c(ūn+1,m

h , ūn+1,m+1
h ,vh)

− b(vh, p̄
n+1,m+1
h ) =

1

∆t
(ūn

h ,vh),

b(ūn+1,m+1
h , qh) = 0.

In the first time step, ū1,0 = ū0 is considered as the given initial condition from (2.1).

Then, ūn+1,0 = ūn,M is considered in all other time steps. Considering the basis

of V h
0 formed by vector functions

(Bu
i (x), 0, . . . , 0︸ ︷︷ ︸

d

), . . . , (0, . . . , Bu
i (x)︸ ︷︷ ︸

d

), i = 1, . . . , nu,

and the basis of Wh formed by functions Bp
i (x), i = 1, . . . , np, we eventually arrive

at a non-symmetric saddle-point linear system, which is not mentioned here, but can

be found, e.g., in [3]. The system matrix is sparse thanks to local supports of the

B-spline basis functions.

When the iteration process (3.7) converges or the maximum number of Picard’s

iterations is reached, the obtained solution is used to iterate analogously linearized

turbulence model, i.e., we look for kn+1,m̃+1
h ∈ V̂ h, ωn+1,m̃+1

h ∈ Ṽ h, m̃ = 0, 1, . . . , M̃ ,

such that for all wh ∈ V̂ h
0 we have

(3.8)
(kn+1,m̃+1

h − knh
∆t

, wh

)
+ ak(k

n+1,m̃+1
h , wh, ν

n+1,m̃
T )

+ ck(ū
n+1
h , kn+1,m̃+1

h , wh) + (β∗ωn+1,m̃
h kn+1,m̃+1

h , wh) = (Pk, wh),

(ωn+1,m̃+1
h − ωn

h

∆t
, wh

)
+ aω(ω

n+1,m̃+1
h , wh, ν

n+1,m̃
T ) + cω(ū

n+1
h , ωn+1,m̃+1

h , wh)

+ (βωn+1,m̃
h ωn+1,m̃+1

h , wh)− dω(ω
n+1,m̃
h , kn+1,m̃

h , wh) =
( γ

νnT
Pk, wh

)
.

Note that all the parameters (like, e.g., σk or Pk etc.) of the turbulence model are

functions of both space and time and these parameters are evaluated from the last

obtained solution (e.g., σn+1,m̃
k etc.).
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To achieve a stable iterative process, we add stabilization terms introduced below

to the formulation of the discrete problem (3.7)–(3.8). Also, a special treatment of

the last blending term in the ω-equation in (3.8) is implemented according to [28].

It is well-known that the tensor-product structure of B-spline/NURBS objects

prevents the possibility to describe an arbitrary computational domain by one B-

spline/NURBS object. Thus, so-called multi-patch B-spline/NURBS meshes are

typically used for the description of computational domains in isogeometric analysis.

Then, any solver based on isogeometric analysis working on multipatch domains has

to be able to join B-spline/NURBS patches along their interfaces into one computa-

tional domain. Only the conforming connection of meshes of patches is considered in

this paper, i.e., patches have along a common interface the same elements (discretiza-

tion) and the same control nets describing this interface. Conforming meshes can be

handled easily—it is enough to identify the corresponding control points determining

the common interface on both patches.

4. Stabilization techniques for IgA

In this section, we discuss only stabilization techniques which can be used to-

gether with IgA and which are then employed in numerical experiments in Section 7.

The stabilization schemes are formulated only for the RANS equations, but their

application to the turbulence model is analogous.

4.1. Classical streamline diffusion (CSD). The classical streamline diffusion

method is one of the oldest stabilization techniques. Employing the CSD stabiliza-

tion, the following artificial diffusion term is added to the formulation of a discrete

problem (3.7), i.e.,

(4.1)

nel∑

ie=1

∫

Qie

τS(b · ∇ū
n+1,m+1
h )(b · ∇vh),

where b = ū
n+1,m
h is the convection coefficient, nel is the number of elements Qie

and τS ∈ L∞(Ω) is a suitable non-negative stabilization parameter, which is given in

Section 6. Although this type of linear CSD stabilization leads to an over-diffusive so-

lution and makes the whole approximation a first-order scheme, this approach can be

advantageous as an initialization technique in the search for a steady state solution.

For space-time formulation, we arrive at T-CSD stabilization

(4.2)

nel∑

ie=1

∫

Qie

τS

( ūn+1,m+1
h − ūn

h

∆t
+ b · ∇ū

n+1,m+1
h

)
(b · ∇vh).
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4.2. Streamline Upwind/Petrov-Galerkin (SUPG) stabilization. The

SUPG method proposed in [7] has become one of the most popular stabilization

method. The weighted element residual

(4.3)

nel∑

ie=1

∫

Qie

τSR(ū
n+1,m+1
h , p̄n+1,m+1

h )b · ∇vh

is added to the Galerkin problem (3.7), where τS is a suitably chosen non-negative

SUPG stabilization parameter which is explained in Section 6, b = ū
n+1,m
h is the

convection coefficient and R(ūn+1,m+1
h , p̄n+1,m+1

h ) is the residual given as

(4.4) R(ū, p̄) =
ū− ūn

h

∆t
−∇ · [(ν + νnT)(∇ū+ (∇ū)⊤)] + ū

n+1,m
h · ∇ū+∇p̄.

For linear finite elements and B-splines of the first degree, the second derivative

vanishes within each element. However, this term cannot be neglected if higher

order basis functions are used (which are typical for IgA).

4.3. Crosswind stabilization. As mentioned above, the SUPG stabilization

can be assumed to add numerical diffusion in a streamline direction. The cross-

wind diffusion is employed to reduce spurious oscillations in a crosswind direction.

The crosswind diffusion term is constructed such that the resulting stabilization is

consistent and can be written as (cf., e.g., [20])

(4.5)

nel∑

ie=1

∫

Qie

τcwP
⊥∇ū

n+1,m+1
h · ∇vh,

where τcw is the crosswind stabilization parameter and P
⊥ is an orthogonal projector

defined by

(4.6) P⊥ = I− b⊗ b

‖b‖2 .

If the magnitude of the convection coefficient equals zero, then P⊥ = 0. Many formu-

las have been proposed for τcw, which is highly non-trivial to define, but the variant

(4.7) τcw =
τS‖b‖2‖R(ūn+1,m+1

h , p̄n+1,m+1
h )‖

‖b‖‖∇ū
n+1,m
h ‖+ ‖R(ūn+1,m+1

h , p̄n+1,m+1
h )‖

(cf. [20]) is used in our numerical experiments, where τS is the stabilization parameter

discussed in Section 6.
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5. Streamline residual-based artificial viscosity stabilization

In this section, we propose a new stabilization technique, where the streamline

artificial viscosity term is added to the discrete weak form (3.7) as

(5.1)

nel∑

ie=1

∫

Qie

τ(b · ∇ū
n+1,m+1
h )(b · ∇vh),

where b = ū
n+1,m
h is the convection coefficient and τ is a suitable stabilization

parameter which we propose in the form

(5.2) τ = C1τSh
α tanh2(C2R(ū

n+1,m
h , p̄n+1,m

h )),

where α > 0, τS is a non-negative parameter defined in Section 6, h is an ele-

ment length also discussed in Section 6, R is the element residual defined by (4.4)

and C1 and C2 are suitable scale factors. We call this stabilization method Streamline

Residual-Based Artificial Viscosity (SRBAV) method.

This new stabilization technique acts in the streamline direction, has the character

of a viscous (diffusion) term and uses artificial viscosity, which, among other things,

ensures the consistency of the scheme. Thus, this stabilization technique is a mod-

ification of the CSD method (only the diffusion term is added, which acts in the

direction of the flow) and the procedure proposed by Nazarov for scalar conservation

law in [29], [30]. However, the technique proposed by Nazarov is isotropic and based

on the residual norm. In our case, we use the residual only as a switch activating

the stabilization. At the same time, we use the stabilization parameter τS originat-

ing from the SUPG method. We also emphasize that this stabilization is genuinely

nonlinear (i.e., it is nonlinear even for the linear 1D case) and it is not based on the

idea of supplementing the SUPG-type linear stabilization with a nonlinear term in

the case of multiple dimensions.

Let us emphasize that for large values of the residuals, the value of tanh2 ap-

proaches the value of one. Thus, the stabilization (specifically for α = 0) is close to

the CSD stabilization. This prevents the artificial viscosity values from being too

large for large values of residuals and the numerical solution from being inappropri-

ately smeared. At the same time, however, the stabilization is consistent because

the stabilization term vanishes for residuals going to zero.

The factors C1 and C2 are chosen such that C1 ∝ 1/Lα and C2 ∝ L/U2 for the

RANS equations, where L is the characteristic length scale and U is the characteristic

velocity of the flow that appear in the definition of the Reynolds number. This

ensures invariance to data scaling unless we use a dimensionless formulation of the

problem. The factors C1 and C2 are chosen analogously for the equations of the

turbulence model.
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A more detailed analysis of how to appropriately choose the parameter α and how

to modify the switching function, if necessary, will be a part of a future work.

6. Choice of the stabilization parameter τS and element length

The choice of the stabilization parameter τS is a challenging part of the stabiliza-

tion methods. The parameter usually involves a characteristic size of an element

that plays also a significant role. Most of the literature deals with the linear steady

convection-diffusion equation, thus the stabilization parameters are only convection

dependent or convection and diffusion dependent. Only a small number of papers

focuses on the stabilization parameter which takes into account also reaction, see [9],

[22], [26], [39]. There are some texts dealing with higher order basis functions, see,

e.g., [26], [18], [39], [34]. However, formulas for the stabilization parameter are not

optimal for general problems because they are typically constructed for a particular

discrete problem with no clear way for generalization (cf., e.g., [20]).

If the coefficients of the problem solved are not constant or the problem also in-

volves reaction, the following stabilization parameter is recommended for the general

unsteady convection-diffusion-reaction problem (cf., e.g., [12])

(6.1) τS =
((2‖b‖

h

)2
+ 9

(4ε
h2

)2
+
( 2

∆t
+ |r|

)2)−1/2

,

where b is the convection coefficient, ε is the diffusion coefficient, r is the reaction

coefficient (i.e., b = ū, ε = ν+νT and r = 0 for RANS equations) and h is the charac-

teristic size of an element. This stabilization parameter was proposed by Shakib and

Hughes (cf. [37]) and this formula is fourth-order accurate. An asymptotic analysis

near the different limits shows the superior convergence of (6.1) to the theoretical

values compared with

(6.2) τS =
(2‖b‖

h
+

4ε

h2
+

2

∆t
+ |r|

)−1

.

However, the fourth-order accuracy does not extend to higher dimensions or general

systems. Nevertheless, numerical experiments indicate that (6.1) presents slightly

lower errors (in the C2 norm) compared with (6.2). Alternative formulations for the

stabilization parameter τS are discussed, e.g., in [22].

One should be aware of the fact that τS defined in (6.1) is not robust for small

time steps. Indeed, τS → 0 as ∆t → 0, i.e., the stabilization effect vanishes for

small time steps and the spurious oscillations may be expected in the vicinity of the

sharp layers, see [17], [22]. As we are interested in a stationary solution of the RANS

problem, the term with the time step size is omitted in (6.1) in our computations.

819



The computation of the characteristic size of an element h is another key com-

ponent of the stabilization parameter τS in (6.1) and τ in (5.2). The appropriate

measure of the element h is usually chosen as the element length in the specific di-

rection, such as the direction of the convection or solution gradient, see, e.g., [34],

[39], [20]. Therefore, we consider the convection-dependent element length in the

form (cf., e.g., [40])

(6.3) h = 2‖b‖
(nen∑

a=1

|b · ∇Na|
)−1

in our computations (usually denoted hUGN), where Na and nen are the active basis

function and the number of active basis functions associated with an evaluation point.

Note that the appropriate choice of the direction-dependent element length h is

still not clear for reaction dominated problems such as the turbulence model, see,

e.g., [22]. Alternative formulations for the computation of h in isogeometric analysis

and a convection-reaction dominated problem will be studied in a future work.

7. Flow over a backward-facing step

In this section, we introduce the benchmark wall bounded problem for turbulent

fluid flow simulation—flow over a backward-facing step—which is a classical prob-

lem used to study separation, recirculation and reattachment of the flow and thus

to validate the turbulence models. We investigate numerical results obtained by

our in-house IgA-based fluid flow solver using stabilization techniques mentioned

in Section 4 and our new stabilization scheme proposed in Section 5, and we com-

pare them to the experimental data acquired by Driver and Seegmiller [13], to the

numerical results obtained by open source software OpenFOAM in [33] and to the

NASA computational SSTm results from CFL3D (Computational Fluid Laboratory

3-Dimensional) CFD flow solver which are available in [25]. Especially, we focus on

validation of the pressure coefficient and reattachment length.

7.1. Problem description and setting. The problem description is shown in

illustrative Figure 1, where H = 0.0127m is the step height, the height of the

inlet channel is 8H and its length is 110H , outlet channel length is 50H in our

computations. The backward-facing step (BFS) problem represents a flow of fluid

which enters the computational domain through the inlet and develops fully into

a turbulent flow before reaching the step. Because of the sudden change in geometry,

the flow separates at the step corner, a recirculation region occurs next to the step

and the flow again reattaches with the bottom wall behind the step at the point of

reattachment. The distance from the point of separation to the point of reattachment

is the reattachment length.
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Figure 1. Flow over a backward-facing step—the illustrative problem description and com-
putational mesh.

The experiment performed by Driver and Seegmiller [13] was conducted with such

a test configuration that their data can be compared to the numerical results of the

incompressible fluid flow in 2D, see, e.g., [23]. Although the unsteady problem (2.1) is

solved in our computations, we assume time discretization as an iterative approach to

determine a steady-state solution, which is used for comparison with the experimental

data in [13], NASA computational SSTm results [25] and numerical results obtained

by OpenFOAM [33].

The Dirichlet boundary conditions are set according to Table 1, the outflow condi-

tions are defined in (2.1) and (2.2). The inlet boundary conditions for the velocity ū,

turbulent kinetic energy k and specific turbulent dissipation ω are specified by pro-

files. The velocity profile is expressed as

(7.1) ū2(x, y) = ūmax

(
1−

( |y − y|
Y

)1/n̄)
,

where ūmax is the maximal value of the velocity profile which equals to ū∞ (given

in Table 1) in our experiment, y = 5H is the y-coordinate of the midpoint of the

inlet channel, Y = 4H is half of the inlet channel height and n̄ is set such that

the velocity profile determined by (7.1) corresponds to the velocity profile from the

OpenFOAM validation experiment, i.e., n̄ = 1000 is used in the experiments. The

expression (7.1) is used analogously for k and ω profiles with the maximum (free-

stream) values specified in Table 1 to avoid the discontinuous boundary conditions

of k and ω at the corners where the Dirichlet boundary of the inlet and walls meet

and thus the corresponding functions gk and gω in (2.2) lie in H1/2(∂ΩD). The

values k∞ and ω∞ are again set according to the OpenFOAM validation experiment

and its parameter setting. The wall boundary condition for ω is approximated using

the expression (cf., e.g., [41], [11])

(7.2) ω =
6ν

βy21
,

where y1 is the normal distance of the grid point nearest to the wall.
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Inlet boundary Walls Initial condition

Velocity ū∞ = 44.2 [0, 0] ū0(x) = [0, 0]

k k∞ = 0.00109 0 k0(x) = 0.00109

ω ω∞ = 181728 3.44 · 106 ω0(x) = 181728

Table 1. Initial and boundary conditions of the backward-facing step flow problem.

SRBAV1-SRBAV0 TCSD-SRBAV0

RANS SRBAV with α = 1 T-CSD

turbulence model SRBAV with α = 0 SRBAV with α = 0

SRBAV1-SUPG SRBAV1-SOLD

RANS SRBAV with α = 1 SRBAV with α = 1

turbulence model SUPG SUPG with additional crosswind

Table 2. Examples of chosen stabilization schemes for RANS and turbulence model equa-
tions and their abbreviated notation.

8. Results and discussion

In this section, we present the numerical results obtained by our in-house IgA-

based fluid flow solver for the model problem of flow over a backward-facing step

for stabilization techniques mentioned in Section 4 and our new stabilization scheme

proposed in Section 5, and we compare them with the experimental data from Driver

and Seegmiller in [13], NASA reference solution provided in [25] and numerical results

obtained by the prepared validation backward-facing step example in OpenFOAM

using SimpleFOAM solver according to [33].

Our in-house IgA-based fluid flow solver is implemented in C++ in the framework

of G+Smo (Geometry and Simulation modules) library, see [27]. We tested several

different inf-sup stable pairs of B-spline discretization spaces, S2
0 × S1

0 (i.e., linear

basis functions for pressure and quadratic for velocity, which is close to the standard

FEM), S3
1 × S2

1 (i.e., quadratic basis functions for pressure and cubic for velocity,

with C1 continuity across the elements) and S4
2 × S3

2 (i.e., cubic basis functions for

pressure and quartic for velocity, with C2 continuity across the elements).

For all these pairs of B-spline discretization spaces, we run the simulations

on the B-spline mesh shown in illustrative Figure 1 satisfying y+ ≈ 0.85, where

y+ = uτy1/ν is the dimensionless wall distance of a grid point nearest to the wall

and uτ is the friction velocity. The mesh is composed of three conforming patches

with 12439 B-spline elements in total. The corresponding numbers of degrees

of freedom are 111403 for S2
0 × S1

0 , 113552 for S
3
1 × S2

1 and 115719 for S4
2 × S3

2

discretizations.
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The discrete RANS problem is solved decoupled from the discrete turbulence

model. In the first time step, the linearized RANS problem is solved until itera-

tions of the numerical solution of ū and p̄ converge (or until the maximum number

of the Picard iterations is achieved). Then, we continue solving the discrete turbu-

lence model such that the computed velocity and pressure solutions are used for the

evaluation of turbulence model terms. This sequence is repeated for each time step.

As already mentioned, time steps serve only as an iterative process converging to

a steady-state solution.

OpenFoam

CFL3D-SSTm

S20S10 SUPG-SRBAV0

S20S10 SUPG-SUPG

S20S10 SRBAV1-SUPG

S20S10 SRBAV1-SRBAV0

S20S10 SRBAV1-SOLD

Experiment

−5 0 5 10 15 20 25 30 35

x/H

−0.25

−0.20

−0.15

−0.10

−0.05

0

0.05
cp

OpenFoam

CFL3D-SSTm

S31S21 SRBAV1-SUPG h-diam

S31S21 SRBAV1-SUPG h-UGN

S31S21 SRBAV1-SRBAV0 h-diam

Experiment

−5 0 5 10 15 20 25 30 35

x/H

−0.25

−0.20

−0.15

−0.10

−0.05

0

0.05
cp

Figure 2. Comparison of the pressure coefficient cp at the lower wall obtained for various
stabilization methods, where S20S10 stands for S20 × S10 (top), and comparison
of using different element length h (bottom), where S31S21 stands for S31 × S21 .

In the experiments in this section, we choose the same stabilization param-

eter τS from (6.1) without dependence on a time step, i.e., τS = ((2|b|/h)2 +

9(4ε/h2)2+|r|2)−1/2 for all stabilizations, where h is the direction-dependent element

length (6.3). Let us note that we use abbreviations for employed stabilization schemes

for RANS and turbulence model equations in the following, such as SRBAV1-

SRBAV0 if SRBAV stabilization scheme with the parameter α = 1 is used for RANS

and α = 0 is used for turbulence model equations, see Table 2 for other examples of

used abbreviations. The factors C1 and C2 in (5.2) are chosen so that C1 = 1/Hα for

both discrete RANS and turbulence model equations and C2 = H/ū2∞ for the RANS

equations, C2 = H/ū3∞ for the k-equation and C2 = (H/ū∞)2 for the ω-equation.
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S31S21 SUPG-SUPG
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S42S32 SRBAV1-SRBAV0

Experiment

Figure 3. Comparison of the pressure coefficient cp at the lower wall obtained for various
stabilization methods, where S31S21 stands for S31 × S21 (top) and S42S32 for
S
4

2 × S32 (bottom).

To achieve a stable iterative process, we first use the T-CSD method for the sta-

bilization of RANS equations and the SRBAV scheme with α = 0 for the turbulence

model, i.e., TCSD-SRBAV0, and we choose the time step size ∆t = 10−5. The

numerical simulation is stopped in t = 0.01 s and the result is used as the initial con-

dition for the subsequent computation for the study of various stabilization methods

and comparison to experimental and reference data. First, we continue solving the

RANS closed problem using ∆t = 10−5 for the next 1000 time steps and then we

increase the time step to ∆t = 10−4 and let the iterative process converge to the

steady state (if the sequence of iterates is convergent). In the following experiments,

we mention only the stabilization schemes, which are used after the initialization

step, i.e., the stabilization methods used from the time moment t = 0.01 s.

In Figures 2 and 3, we present the pressure coefficient cp at the lower wall obtained

for different discretization spaces and various stabilization methods. The pressure

coefficient is defined by

(8.1) cp =
p̄− p̄∞
1
2̺ū

2
∞

,

where p̄∞ and ū∞ are free stream values of the computed mean pressure and velocity

at x/H = −4 and ̺ is the fluid density.
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We compare the stabilization schemes proposed in Section 4 and the newly pro-

posed scheme introduced in Section 5 for both RANS and turbulence model equations

employing the inf-sup stable B-spline discretization space pair S2
0×S1

0 (which is close

to the standard FEM) in Figure 2 (top) and the discretization spaces S3
1 × S2

1 and

S4
2 × S3

2 in Figure 3.

The inner nonlinear iteration process stagnates in some cases, i.e., the relative

error of the solution does not decrease for the consecutive steps and the maximum

number of inner iterations is reached in every time step. Note that we set maximum

of 5 inner iterations, but the stagnation of the nonlinear iteration method does not

change even if we increase the maximum number of the inner iterations to 1000.

For this reason, we show the numerical results only in t = 0.12 s in Figure 2. In

Figure 3, we present the results for the discretization spaces S3
1 × S2

1 and S
4
2 × S3

2 in

the steady state.

The following conclusions can be drawn from the results obtained. Approaches

based on low-order methods or high-resolution methods equipped with nonlin-

ear techniques for limiting oscillations (e.g., finite volume TVD flux limiter-based

schemes) give the least oscillatory results. These are the methods used in the Open-

FOAM and NASA CFL3D packages and the T-CSD scheme. The non-consistent

T-CSD scheme is only used to start the calculation (as described above) and is

not included in the comparison of results, because we focus on consistent stabi-

lization schemes. Based on the results shown in Figure 2 (top), variants with the

SOLD stabilization are excluded from further comparison (they contain signifi-

cant artificial oscillations even for higher orders of approximation). The results

using the stabilization method SRBAV0-SRBAV0 are less satisfactory than for

other stabilization methods and also the convergence of the nonlinear iterations

is slow in this case. The graphs in Figure 3 suggest that in the case of higher

order methods, it can be observed that oscillations decrease with the degree of

approximation and higher smoothness of the approximation. This is an advantage

of using isogeometric analysis. Regarding the type of stabilization, it appears that

in the case of the turbulence model approximation, the results are roughly the

same and the type of stabilization does not have a significant effect. In the case of

the approximation of the RANS equations, SRBAV stabilizations seem to be more

robust than the SUPG stabilization. In the case of our problem, we obtained the

best results using the SRBAV1-SUPG and SRBAV1-SRBAV0 stabilizations. From

Figure 2 (bottom), it can be concluded that in the case of the problem we have

solved the stabilization SRBAV appears to be more robust also with respect to the

choice of the stabilization parameter h, e.g., if h is chosen as the element diameter

(h-diam in Figure 2 (bottom)) instead of the direction-dependent h (h-UGN in

Figure 2 (bottom)).

825



Finally, we present a comparison of reattachment lengths (in steady-states) for

all the discretization spaces and for the best stabilization approaches mentioned

in the previous paragraphs, i.e., SRBAV1-SRBAV0, SUPG-SUPG, SRBAV1-SUPG,

SUPG-SRBAV0, in Table 3. The point where the skin friction coefficient equals to

zero is set as the reattachment point. The skin friction coefficient is defined by

(8.2) cf =
τw

1
2̺ū

2
∞

,

where ū∞ is again the free stream value of the computed velocity at x/H = −4

and τw is the wall shear stress. It can be concluded that all stabilizations combined

with higher degree and continuity basis functions and isogeometric analysis give

better estimates of the reattachment length than the OpenFOAM and NASA CFL3D

packages.

Together with the previously mentioned observations, SRBAV1-SRBAV0 or

SRBAV1-SUPG can be considered as favourable options for the numerical sim-

ulation of the turbulent flow over a backward-facing step by solving the RANS

equations with turbulence model with the help of isogeometric analysis.

S2
0 × S1

0 S3
1 × S2

1 S4
2 × S3

2

x/H x/H x/H x/H

SRBAV1-SRBAV0 6.26 6.27 6.33 Experiment [13] 6.26± 0.1

SUPG-SUPG 6.02 6.25 6.18 NASA [25] 6.5

SRBAV1-SUPG 6.15 6.15 6.19 OpenFOAM [33] 6.39

SUPG-SRBAV0 5.96 6.27 6.26

Table 3. Comparison of the reattachment length.

9. Summary and conclusions

In this paper, we have provided a study of linear and nonlinear stabilization meth-

ods for RANS equations and SST k-ω turbulence model and high Reynolds numbers

in combination with isogeometric analysis.

We have proposed a new stabilization method, which we call the streamline resid-

ual based artificial viscosity. It is consistent, genuinely nonlinear and the numerical

diffusion is added only in the direction of the flow.

The classical flow over a backward-facing step was considered in two dimensions as

a model problem in order to investigate the behaviour of the stabilized isogeometric

discretization. We have presented numerical solutions obtained by our in-house in-

compressible fluid flow solver based on isogeometric analysis and we have compared

our results with experimental data and reference numerical solutions.

826



The test computations we have presented show that the flow over a backward-

facing step problem was successfully solved using the new SRBAV stabilization.

Also, our experiments have shown that isogeometric analysis based on the inf-sup

stable B-spline discretization space pairs of higher degrees and continuities stabilized

by SRBAV1-SRBAV0, SRBAV1-SUPG can provide results which match the experi-

mental data and reference solutions available in the literature very well. Moreover,

the results indicate that oscilations of the numerical solution are reduced using the

SRBAV stabilization for discretization spaces of higher degree and continuity, which

are typical for IgA.
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