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Three small results on normal first

countable linearly H-closed spaces

Mathieu Baillif

Abstract. We use topological consequences of PFA, MAω1
(S)[S] and PFA(S)[S]

proved by other authors to show that normal first countable linearly H-closed
spaces with various additional properties are compact in these models.

Keywords: linearly H-closed space; normal space; first countable space; forcing
axiom
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1. Statements

In this small note, we prove three modest results about the following problem

we raised in [3, Question 2.12], using topological consequences of MAω1
(S)[S] (MA

– Martin’s axiom), PFA(S)[S] and PFA (PFA – proper forcing axiom) due to other

authors.

Problem 1. Is there in ZFC (Zermelo–Fraenkel set theory with axiom of choice)

a noncompact normal linearly H-closed space which is first countable (or equiva-

lently has Gδ-points)?

By space we mean topological Hausdorff space, hence regular and normal imply

Hausdorff. A cover of a space always means a cover by open sets, and a cover

is a chain cover if it is linearly ordered by the inclusion relation. A space is

linearly H-closed provided any chain cover has a dense member. There are various

equivalent definitions, see for instance Lemmas 2.2–2.3 in [3] or Theorems 2.5,

2.12–2.14 in [2]. A space is H-closed if and only if any cover has a finite subfamily

with a dense union. Regular H-closed spaces are compact.

We strongly suspect that solving Problem 1 is not ranked very high on man-

kind’s priorities list but hope that our results are of some interest for researchers

in the field. To help enhancing their curiosity (and for context), we start by

listing known relevant results. Recall that a space is feebly compact if and only
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if every locally finite family of nonempty open sets is finite or equivalently (for

Hausdorff spaces) if and only if any countable cover has a finite subfamily with

a dense union. A linearly H-closed space is feebly compact. A feebly compact

space is pseudocompact (that is, any real valued continuous function is bounded)

and the converse holds for Tychonoff spaces. (We do not include regularity in

the definitions of pseudocompactness and feeble compactness.) Recall also that

a pseudocompact normal space is countably compact.

In the list below, we tried to give the name of the person(s) who first con-

structed the example (in general in contexts unrelated to linearly H-closed spaces)

or proved the result. Each fact given without a reference is explained in [3, Ex-

ample 2.9], where links to the original sources can be found. We assume that the

reader knows what the axioms CH (continuum hypothesis), MA + ¬CH, PFA, ♦,

p = ω1 mean. Recall that a space is countably tight if and only if for each subset

E and each point x in its closure, there is a countable A ⊂ E whose closure con-

tains x. A first countable space is of course countably tight. For other undefined

terms see the given references. Fact A explains the equivalence in the statement

of Problem 1.

A list of known facts:

A. A regular feebly compact space with Gδ points is first countable, see

J. R. Porter and R.G. Woods [13, Proposition 2.2].

B. A weakly linearly Lindelöf (in particular weakly Lindelöf or ccc – count-

able chain condition) feebly compact space is linearly H-closed, see

O.T. Alas, L. R. Junqueira and R.G. Wilson [2, Theorem 2.13].

C. There are noncompact linearly H-closed spaces which are moreover per-

fect, Tychonoff and first countable (for instance the famous space Ψ due

to J.R. Isbell and T. S. Mrówka), or Fréchet–Urysohn and collectionwise

normal (for instance a Σ-product of 2ω1).

D. Under CH, a normal first countable linearly H-closed space has cardi-

nality less than or equal to ℵ1 and is weakly Lindelöf, see A. Bella [6,

Theorem 4.4 & Corollary 4.6].

E. If p = ω1 (in particular under CH), there is a noncompact normal sep-

arable first countable locally compact locally countable linearly H-closed

space, namely a space of the type γN due originally to S. P. Franklin and

M. Rajagopalan and studied in detail by other authors, in particular by

P. J. Nyikos.

F. Under ♦, there is a noncompact perfectly normal first countable heredi-

tarily separable linearly H-closed space, for instance an Ostaszewski space,

and even a manifold (M. E. Rudin, see P. J. Nyikos’ exposition in [11, Ex-

ercise 3.14]). If one adds Cohen reals to the model, the manifold keeps

these properties, see [5].
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G. Under PFA, a normal linearly H-closed space which is either locally separa-

ble and countably tight or locally ccc, locally compact and first countable

is compact, see [3, Theorem 2.13].

H. Under MA + ¬CH, a perfectly normal linearly H-closed space is compact.

This result is also compatible with CH, see M. Weiss and T. Eisworth in

[3, Lemma 2.1].

I. A monotonically normal linearly H-closed space is compact, see O.T. Alas,

L. R. Junqueira and R.G. Wilson [2, Theorem 2.17].

Our new results are the following. They fit between Facts G and H, so to

say. Recall that the spread of a space is the supremum of the cardinalities of its

discrete subspaces. Hereditarily separable spaces (such as those in Fact F) are of

countable spread.

Theorem 1.1. PFA implies that if X is a normal linearly H-closed space which

is locally of countable spread, then X is compact and first countable.

Theorem 1.2. In a particular model of MAω1
(S)[S] and in any model of

PFA(S)[S], a locally compact, hereditarily normal, linearly H-closed space with

Gδ points is compact.

Theorem 1.3. In any model of PFA(S)[S], a linearly H-closed hereditarily nor-

mal space such that each point is a Gδ and has an open Lindelöf neighborhood is

compact.

MAω1
(S)[S] and PFA(S)[S] are formally not forcing axioms but rather a pow-

erful method for obtaining models starting from a coherent Suslin tree S, using

iterated forcing to obtain weaker versions (called MAω1
(S) and PFA(S)) of MAω1

and PFA which preserve (the Suslinity of) S, and then forcing with S. The pre-

cise definitions shall not concern us here as we use only topological implications

which hold in these models. The known proof of the consistency of PFA(S) needs

inaccessible cardinals, while that of MAω1
(S) does not. Hence when we write ‘in

a model of MAω1
(S)[S]’ it is implied that the model is obtained without inacces-

sibles. For details, see article [17] by F.D. Tall and references therein. We recall

that PFA =⇒ MA + ¬CH and PFA(S)[S] =⇒ MAω1
(S)[S].

We note that PFA(S)[S] implies p = ω1, see the introduction of [17], hence there

is a model of set theory where Theorems 1.2–1.3 and Fact E hold, that is, there

are first countable linearly H-closed locally compact spaces which are normal, but

none is hereditarily normal.
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2. Proofs

Our proofs are short and look like patchworks, as we mostly blend together

results found elsewhere. Since reading a sequence of references can be somewhat

dull, we provide proofs (if short enough) of the results that do not appear as an

explicit lemma or theorem somewhere else, or for which we have small variants

in the argument. Let us start with the list. First, the following easy fact will be

used several times.

Lemma 2.1 ([3, Lemma 2.3] or [2, Theorem 2.1]). If X is linearly H-closed and

U ⊂ X is open, then U is linearly H-closed.

We denote the following property by HL following [17]. Recall that an S-space

is a regular hereditarily separable non-Lindelöf space, while an L-space is a regular

hereditarily Lindelöf non-separable space.

HL: A first countable hereditarily Lindelöf regular space is hereditarily separable,

that is, first countable L-spaces do not exist.

Lemma 2.2 ([15], [1, Theorem 2.1], [16, Lemma 11]). HL holds in models of

MAω1
(S)[S] and of MA + ¬CH.

We shall also use the basic result below which is part of the folklore and is cited

for instance in [8]. A detailed proof can be found online in Dan Ma’s topology

blog1.

Lemma 2.3. If a regular space of countable spread is not hereditarily separable,

it contains an L-space, and if it is not hereditarily Lindelöf, it contains an S-space.

The next lemma is due to S. Todorčević.

Lemma 2.4 (S. Todorčević [18, Theorem 8.11]). (PFA) A space of countable

spread has Gδ points.

It then follows that:

Lemma 2.5. (PFA) If X is a regular linearly H-closed space which is locally of

countable spread, then X is first countable and locally hereditarily separable.

Proof: Let Ux ∋ x be an open neighborhood of countable spread. Since X is

regular, we may choose an open Vx such that x ∈ Vx ⊂ Vx ⊂ Ux. Then Vx is

linearly H-closed by Lemma 2.1. Then by Lemma 2.4 Vx has Gδ points under

PFA and hence is first countable by Fact A. If Vx is not hereditarily separable by

Lemma 2.3 it contains an L-space, but since PFA implies MA + ¬CH, HL shows

(Lemma 2.2) that it is impossible. Hence Vx is hereditarily separable. �

1Available at https://dantopology.wordpress.com/2018/10/15/a-little-corner-in-the-

world-of-set-theoretic-topology/ when this note was written.
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Theorem 1.1 follows almost immediately.

Proof of Theorem 1.1: Let X be normal, linearly H-closed and locally of

countable spread. By Lemma 2.5, X is first countable and locally separable.

The result follows by Fact G. �

We now turn our attention to the other two theorems. We need the following

easy lemma.

Lemma 2.6. If X is locally compact, countably tight, linearly H-closed and

noncompact, then X contains a σ-compact open set U such that U is linearly

H-closed and noncompact.

Proof: First, notice that a linearly H-closed Lindelöf space is H-closed and hence

compact if regular. By Lemma 2.1 the closure of an open set in X is thus either

compact or non-Lindelöf. We build open sets Uα with compact closure (indexed

by countable ordinals) such that Uα ⊂ Uβ whenever α < β by induction, starting

with some U0. Given Uβ for each β < α, either
⋃

β<αUβ is non-Lindelöf and

we are over, or it is compact. In the latter case, since X is noncompact, we may

choose a point xα 6∈
⋃

β<αUβ . We then cover {xα}∪
⋃

β<α Uβ with finitely many

open sets with compact closure whose union defines Uα. Notice that Uα ( Uβ

when α < β. If this goes on until ω1, then W =
⋃

α<ω1
Uα is clopen. Indeed,

openness is immediate, and by countable tightness any point x ∈ W is in the

closure of a countable subset of W which must be contained in some Uα, so

x ∈ Uα ⊂ Uα+1 ⊂ W . By Lemma 2.1, W is linearly H-closed, which is impossible

since none of the Uα is dense. Hence the process must stop before ω1, that is,
⋃

β<α Uβ is non-Lindelöf for some α < ω1. �

The next lemma also holds in ZFC and is due to P. J. Nyikos. Recall that scwH

is a shorthand for strongly collectionwise Hausdorff. A space is ℵ1-scwH if and

only if any closed discrete subset of size less than or equal to ℵ1 can be expanded to

a discrete family of open sets. A space is ω1-compact (or has countable extent) if

and only if any closed discrete subspace is at most countable. Countably compact

and Lindelöf spaces are ω1-compact.

Lemma 2.7 (P. J. Nyikos [12, Lemma 1.2]). Let X be a hereditarily ℵ1-scwH

space, and E ⊂ U ⊂ X be such that U is open, E is ω1-compact and dense in U .

Then U − U has countable spread.

Proof: We give a very small variant of Nyikos’ proof. Let D be a discrete subset

of U −U . Then D is closed discrete in the space W = D∪U , because the closure

of D does not intersect U . Since W is ℵ1-scwH, we may let {Vd : d ∈ D} be
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a discrete-in-W collection of open subsets, then {Vd ∩ E : d ∈ D} is a discrete-

in-E collection of nonempty (by density of E) open sets. Since E is ω1-compact,

this collection is countable, and so is D. �

We also need some topological implications valid in (some) models of

MAω1
(S)[S]. The first one was originally proved by Z. Szentmiklóssy under

MA+¬CH. The fact that it holds under PFA(S)[S] is due to S. Todorčević, and in

a model of MAω1
(S)[S] by P.B. Larson and F.D. Tall, see [10], [17, Theorem 4.1]

and references therein. We provide a short argument that it follows from the

following statement which we call Σ− (the terminology and the proof are taken

from [10]). Σ−: In a compact countably tight space, locally countable subspaces

of size ℵ1 are σ-discrete.

Theorem 2.8 (In a model of MAω1
(S)[S] and in every model of PFA(S)[S]).

A locally compact space of countable spread is hereditarily Lindelöf.

Proof: It is shown in [17, Theorem 4.1] that Σ− holds in a model of MAω1
(S)[S]

and in every model of PFA(S)[S].

If X is locally compact and of countable spread, its one point compactifica-

tion X∗ is countably tight (and has countable spread). Indeed, by a well known

fact if X∗ is not countably tight, it contains a perfect preimage of ω1 (see e.g.

[10, Lemma 4]), that is, a space Y with a closed onto map p : Y → ω1 such that

preimages of points are compact. But it is then easy to find an uncountable dis-

crete subspace in Y . If X∗ is not hereditarily Lindelöf, by Lemma 2.3 it contains

an S-space and hence (by classical results, see e.g. [14, Corollary 3.2]) a subspace

Z = {xα : α ∈ ω1} such that {xα : α < γ} is open in Z for each γ. But then Σ
−

implies that X∗ contains an uncountable discrete subset, a contradiction. �

We will also use the following result. Let us borrow again notation from [17]

and define the property:

CW: Any first countable normal space is ℵ1-scwH.

Theorem 2.9 ([9, Corollary 14]). CW holds in any model obtained after forcing

with a Suslin tree.

We may now prove Theorem 1.2.

Proof of Theorem 1.2: As before, our assumptions imply that X is first

countable. Assume that X is noncompact. Since X is linearly H-closed and

normal, X is countably compact. By Lemma 2.6, we may assume that X = U

where U is open and σ-compact. CW shows (Theorem 2.9) that X is heredi-

tarily ℵ1-scwH after forcing with a Suslin tree, hence in particular in any model

of MAω1
(S)[S] or PFA(S)[S]. Since U is open Lindelöf, Lemma 2.7 shows that
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U − U = X − U has countable spread. Then Theorem 2.8 implies that X − U is

hereditarily Lindelöf. It follows that X is Lindelöf and hence compact. �

We now look at our last result. We will show that our assumptions imply that

X is locally compact and apply Theorem 1.2. We need the following consequences

of PFA(S)[S].

Theorem 2.10 ([7, Theorem 3.5], [1, Theorem 2.1], [16, Lemma 11]). (PFA(S)[S])

Separable, hereditarily normal, countably compact spaces are compact.

(We note in passing that under PFA, the theorem holds without ‘hereditarily’,

this is due to Z. Balogh, A. Dow, D.H. Fremlin and P. J. Nyikos [4, Corollary 2]

and is the main ingredient in the proof of Fact G.)

Lemma 2.11. (PFA(S)[S]) Let X be first countable, linearly H-closed and hered-

itarily normal. Let U be open and Lindelöf. Then U is compact and U − U is

hereditarily separable.

Proof: Space X and any closed subset of X are countably compact. By CW

(Theorem 2.9), X is hereditarily ℵ1-scwH. By Lemma 2.7, ∂U = U − U has

countable spread. By Lemmas 2.2–2.3, ∂U is (hereditarily) separable. By Theo-

rem 2.10, ∂U is compact and hence U = U∪ ∂U is Lindelöf and thus compact. �

The proof of Theorem 1.3 is now a formality.

Proof of Theorem 1.3: The space is first countable, hence by Lemma 2.11 it

is locally compact and Theorem 1.2 does the rest of the job. �

This finishes the proofs, the section and the note.
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