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Abstract. Let A = {At}t∈G and B = {Bt}t∈G be C∗-algebraic bundles over a finite
group G. Let C =

⊕

t∈G
At and D =

⊕

t∈G
Bt. Also, let A = Ae and B = Be, where e is the

unit element in G. We suppose that C and D are unital and A and B have the unit elements
in C and D, respectively. In this paper, we show that if there is an equivalence A−B-bundle
over G with some properties, then the unital inclusions of unital C∗-algebras A ⊂ C and
B ⊂ D induced by A and B are strongly Morita equivalent. Also, we suppose that A and B
are saturated and that A′∩C = C1. We show that if A ⊂ C and B ⊂ D are strongly Morita
equivalent, then there are an automorphism f of G and an equivalence bundle A− Bf -
bundle over G with the above properties, where Bf is the C∗-algebraic bundle induced
by B and f , which is defined by Bf = {Bf(t)}t∈G. Furthermore, we give an application.

Keywords: C∗-algebraic bundle; equivalence bundle; inclusions of C∗-algebra; strong
Morita equivalence

MSC 2020 : 46L05, 46L08

1. Introduction

Let A = {At}t∈G be a C
∗-algebraic bundle over a finite group G. Let C =

⊕
t∈G

At

and Ae = A, where e is the unit element in G. We suppose that C is unital and

that A has the unit element in C. Then we obtain a unital inclusion of unital C∗-

algebras, A ⊂ C. We call it the unital inclusion of unital C∗-algebras induced by

a C∗-algebraic bundle A = {At}t∈G. LetE
A be the canonical conditional expectation

from C onto A defined by

EA(x) = xe for all x =
∑

t∈G

xi ∈ C.
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Definition 1.1. LetA = {At}t∈G be a C
∗-algebraic bundle over a finite groupG.

We say that A is saturated if AtA∗
t = A for all t ∈ G.

Since A is unital, in our case we do not need to take the closure in Definition 1.1.

If A is saturated, by [9], Corollary 3.2, EA is of index-finite type and its Watatani

index IndW (EA) = |G|, where |G| is the order of G.

Let B = {Bt}t∈G be another C
∗-algebraic bundle over G. Let D =

⊕
t∈G

Bt and

B = Be. Also, we suppose that B has the same conditions as A. Let B ⊂ D be the

unital inclusion of unital C∗-algebras induced by B.

Let X = {Xt}t∈G be an A−B-equivalence bundle defined by Abadie and Ferraro

(see [1], Definition 2.2). Moreover, we suppose that

C〈Xt, Xs〉 = Ats−1 , 〈Xt, Xs〉D = Bt−1s

for any t, s ∈ G, where C〈Xt, Xs〉 means the linear span of the set

{C〈x, y〉 ∈ Ats−1 : x ∈ Xt, y ∈ Xs}

and 〈Xt, Xs〉D means the linear span of the similar set to the above. The above two

properties are stronger than properties (7R) and (7L) in [1], Definition 2.1.

In the present paper, we show that if there is an A − B-equivalence bundle X =

{Xt}t∈G such that C〈Xt, Xs〉 = Ats−1 and 〈Xt, Xs〉D = Bt−1s for any t, s ∈ G, then

the unital inclusions of unital C∗-algebras A ⊂ C and B ⊂ D induced by A and B are

strongly Morita equivalent. Also, we suppose that A and B are saturated and that

A′∩C = C1. We show that if A ⊂ C and B ⊂ D are strongly Morita equivalent, then

there are an automorphism f of G and an A−Bf -equivalence bundle X = {Xt}t∈G

such that C〈Xt, Xs〉 = Ats−1 and 〈Xt, Xs〉D = Bf(t−1s) for any t, s ∈ G, where Bf

is the C∗-algebraic bundle induced by B = {Bt}t∈G and f , which is defined by

Bf = {Bf(t)}t∈G.

Let A and B be unital C∗-algebras and X an A−B-equivalence bimodule. Then

we denote its left A-action and right B-action on X by a · x and x · b for any a ∈ A,

b ∈ B and x ∈ X , respectively. Also, we mean by the words “Hilbert C∗-bimodules”

Hilbert C∗-bimodules in the sense of Brown, Mingo and Shen, see [3].
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2. Equivalence bundles over a finite group

Let A = {At}t∈G and B = {Bt}t∈G be C
∗-algebraic bundles over a finite group G.

Let e be the unit element in G. Let C =
⊕
t∈G

At, D =
⊕
t∈G

Bt and A = Ae, B = Be.

We suppose that C and D are unital and that A and B have the unit elements

in C and D, respectively. Let X = {Xt}t∈G be an A−B-equivalence bundle over G

such that

C〈Xt, Xs〉 = Ats−1 , 〈Xt, Xs〉D = Bt−1s

for any t, s ∈ G. Let Y =
⊕
t∈G

Xt and X = Xe. Then Y is a C − D-equivalence

bimodule by Abadie and Ferraro (see [1], Definitions 2.1 and 2.2). Also, X is an

A−B-equivalence bimodule since C〈X,X〉 = A and 〈X,X〉D = B.

Proposition 2.1. Let A = {At}t∈G and B = {Bt}t∈G be C
∗-algebraic bundles

over a finite group G. Let C =
⊕
t∈G

At and D =
⊕
t∈G

Bt. Also, let A = Ae and

B = Be, where e is the unit element in G. We suppose that C and D are unital and

that A and B have the unit elements in C and D, respectively. Also, we suppose

that there is an A− B-equivalence bundle X = {Xt}t∈G over G such that

C〈Xt, Xs〉 = Ats−1 , 〈Xt, Xs〉D = Bt−1s

for any t, s ∈ G. Then the unital inclusions of unital C∗-algebras A ⊂ C and B ⊂ D

are strongly Morita equivalent.

P r o o f. Let Y =
⊕
t∈G

Xt and X = Xe. By the above discussions and [10],

Definition 2.1, we only have to show that

C〈Y,X〉 = C, 〈Y,X〉D = D.

Let x ∈ X and y =
∑
t∈G

yt ∈ Y , where yt ∈ Xt for any t ∈ G. Then

C〈y, x〉 =
∑

t∈G

C〈yt, x〉, 〈y, x〉D =
∑

t∈G

〈yt, x〉D.

We note that C〈yt, x〉 ∈ At and 〈yt, x〉D ∈ Bt for any t ∈ G. Since D〈Xt, Xs〉 = Ats−1

and 〈Xt, Xs〉D = Bt−1s for any t, s ∈ G, by the above computations, we can see that

C〈Y,X〉 = C, 〈Y,X〉D = D.

Therefore we obtain the conclusion. �
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Next, we give an example of an equivalence bundle X = {Xt}t∈G over G satisfying

the above properties. In order to do this, we prepare a lemma. Let A = {At}t∈G and

B = {Bt}t∈G be as above. Let X = {Xt}t∈G be a complex Banach bundle over G

with the maps defined by

(y, d) ∈ Y ×D 7→ y · d ∈ Y, (y, z) ∈ Y × Y 7→ 〈y, z〉D ∈ D,

(c, y) ∈ C × Y 7→ c · y ∈ Y, (y, z) ∈ Y × Y 7→ C〈y, z〉 ∈ C,

where Y =
⊕
t∈G

Xt.

Lemma 2.2. With the above notation, we suppose that by the above maps, Y is

a C −D-equivalence bimodule satisfying that

C〈Xt, Xs〉 = Ats−1 , 〈Xt, Xs〉D = Bt−1s

for any t, s ∈ G. If X satisfies Conditions (1R)–(3R) and (1L)–(3L) in [1], Defini-

tion 2.1, then X is an A− B-equivalence bundle.

P r o o f. Since Y is a C −D-equivalence bimodule, X has Conditions (4R)–(6R)

and (4L)–(6L) in [1], Definition 2.1 except that Xt is complete with the norms

‖〈·, ·〉D‖1/2 = ‖C〈·, ·〉‖
1/2 for any t ∈ G. But we know that if Y is complete

with two different norms, then the two norms are equivalent. Hence, Xt is com-

plete with the norms ‖〈·, ·〉D‖1/2 = ‖C〈·, ·〉‖
1/2 for any t ∈ G. Furthermore, since

C〈Xt, Xs〉 = Ats−1 , 〈Xt, Xs〉D = Bt−1s

for any t, s ∈ G, X has Conditions (7R) and (7L) in [1], Definition 2.1. Therefore we

obtain the conclusion. �

We give an example of an A− B-equivalence bundle X = {Xt}t∈G such that

C〈Xt, Xs〉 = Ats−1 , 〈Xt, Xs〉D = Bt−1s

for any t, s ∈ G.

E x am p l e 2.3. Let G be a finite group. Let α be an action of G on a unital

C∗-algebra A. Let ut be implementing unitary elements of α, that is, αt = Ad(ut)

for any t ∈ G. Then the crossed product of A by α, A⋊α G is

A⋊α G =

{∑

t∈G

atut : at ∈ A for any t ∈ G

}
.

Let At = Aut for any t ∈ G. By routine computations, we see that Aα = {At}t∈G is

a C∗-algebraic bundle over G. We call Aα the C
∗-algebraic bundle over G induced by

an action α. Let β be an action of G on a unital C∗-algebra B and let Aβ = {Bt}t∈G
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induced by β, where Bt = Bvt for any t ∈ G and vt are implementing unitary

elements of β. We suppose that α and β are strongly Morita equivalent with respect

to an action λ of G on an A−B-equivalence bimodule X . Let X⋊λG be the crossed

product of X by λ defined by Kajiwara and Watatani (see [5], Definition 1.4), that

is, the direct sum of n-copies of X as a vector space, where n is the order of G. And

its elements are written as formal sums so that

X ⋊λ G =

{∑

t∈G

xtwt : xt ∈ X for any t ∈ G

}
,

where wt are indeterminates for all t ∈ G. Let C = A ⋊α G, D = B ⋊β G and

Y = X ⋊λ G. Then by [5], Proposition 1.7, Y is a C − D-equivalence bimodule,

where we define the left C-action and the right D-action on Y by

(aut) · (xws) = (a · λt(x))wts, (xws) · (bvt) = (x · βs(b))vst

for any a ∈ A, b ∈ B, x ∈ X and t, s ∈ G and we define the left C-valued inner prod-

uct and the right D-valued inner product on Y by extending linearly the following:

C〈xwt, yws〉 = A〈x, λts−1 (y)〉uts−1 , 〈xwt, yws〉D = βt−1(〈x, y〉B)vt−1s

for any x, y ∈ X , t, s ∈ G. Let Xt = Xwt for any t ∈ G and Xλ = {Xt}t∈G. Then

Y =
⊕
t∈G

Xt. Also, Xλ has Conditions (1R)–(3R) and (1L)–(3L) in [1], Definition 2.1.

Furthermore, X is an A−B-equivalence bimodule and Xλ satisfies

C〈Xt, Xs〉 = Ats−1 , 〈Xt, Xs〉D = Bt−1s

for any t, s ∈ G. Therefore Xλ is an Aα −Aβ-equivalence bundle by Lemma 2.2.

3. Saturated C∗-algebraic bundles over a finite group

Let A = {At}t∈G be a saturated C
∗-algebraic bundle over a finite group G. Let e

be the unit element in G. Let C =
⊕
t∈G

At and A = Ae. We suppose that C is

unital and that A has the unit element in C. Let EA be the canonical conditional

expectation from C onto A defined in Section 1, which is of Watatani index-finite

type. Let C1 be the C
∗-basic construction of C and eA the Jones’ projection for E

A.

By [9], Lemma 3.7, there is an action αA of G on C1 induced by A defined as follows:

Since A is saturated and A is unital, there is a finite set {xt
i}

nt

i=1 ⊂ At such that
nt∑
i=1

xt
ix

t∗
i = 1 for any t ∈ G. Let et =

nt∑
i=1

xt
ieAx

t∗
i for all t ∈ G. Then by [9],
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Lemmas 3.3, 3.5 and Remark 3.4, {et}t∈G are mutually orthogonal projections in

A′ ∩C1, which are independent of the choice of {x
t
i}

nt

i=1, with
∑
t∈G

et = 1 such that C

and et generate the C
∗-algebra C1 for all t ∈ G. We define αA by αA

t (c) = c and

αA
t (eA) = et−1 for any t ∈ G, c ∈ C. Let A1 = {YαA

t
}t∈G be the C

∗-algebraic bundle

over G induced by the action αA of G which is defined in [9], Sections 5, 6, that is, let

YαA
t
= eAC1α

A
t (eA) = eAC1et−1 for any t ∈ G. The product • and the involution ♯

in A1 are defined as follows:

(x, y) ∈ YαA
t
× YαA

s
7→ x • y = xαA

t (y) ∈ YαA
ts
,

x ∈ YαA
t
7→ x♯ = αA

t−1(x∗) ∈ YαA

t−1

.

Lemma 3.1. With the above notation, A and A1 are isomorphic as C
∗-algebraic

bundles over G.

P r o o f. Since C1 = CeAC, for any t ∈ G

YαA
t
= eACeACet−1 = eAACet−1 = eACet−1 .

Let x be any element in C. Then we can write that x =
∑
s∈G

xs, where xs ∈ As. Hence

eAxet−1 =
∑

s,i

eAxsx
t−1

i eAx
t−1

∗
i =

∑

s,i

EA(xsx
t−1

i )eAx
t−1

∗
i

=
∑

i

xtx
t−1

i eAx
t−1

∗
i = eAxt

∑

i

xt−1

i xt−1
∗

i = eAxt.

Thus, YαA
t

= eACet−1 = eAAt for any t ∈ G. Let πt be the map from At to YαA
t

defined by πt(x) = eAx for any x ∈ At and t ∈ G. By the above discussions πt is a

linear map from At onto YαA
t
. Then

‖πt(x)‖
2 = ‖eAxx

∗eA‖ = ‖EA(xx∗)eA‖ = ‖EA(xx∗)‖ = ‖xx∗‖ = ‖x‖2.

Hence, πt is injective for any t ∈ G. Thus, At
∼= eAC1α

A
t (eA) as Banach spaces for

any t ∈ G. Also, for any x ∈ At, y ∈ As, t, s ∈ G,

πt(x) • πs(y) = eAxα
A
t (eAy) = eAxet−1y = eA

∑

i

xxt−1

i eAx
t−1

∗
i y

= eA
∑

i

xxt−1

i xt−1
∗

i y = eAxy = πts(xy),

πt(x)
♯ = αA

t−1(πt(x)
∗) = αA

t−1((eAx)
∗) = αA

t−1(x∗eA) = x∗et

=
∑

i

x∗xt
ieAx

t∗
i = eA

∑

i

x∗xt
ix

t∗
i = eAx

∗ = πt−1(x∗).

Therefore A = {At}t∈G and A1 = {YαA
t
}t∈G are isomorphic as C

∗-algebraic bundles

over G. �
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4. Strong Morita equivalence for unital inclusions of unital

C∗-algebras

Let A = {At}t∈G and B = {Bt}t∈G be saturated C
∗-algebraic bundles over a finite

group G. Let e be the unit element in G. Let C =
⊕
t∈G

At, D =
⊕
t∈G

Bt and A = Ae,

B = Be. We suppose that C and D are unital and that A and B have the unit

elements in C and D, respectively. Let EA and EB be the canonical conditional

expectations from C and D onto A and B defined in Section 1, respectively. They

are of Watatani index-finite type. Let A ⊂ C and B ⊂ D be the unital inclusions

of unital C∗-algebras induced by A and B, respectively. We suppose that A ⊂ C

and B ⊂ D are strongly Morita equivalent with respect to a C − D-equivalence

bimodule Y and its closed subspace X . Also, we suppose that A′ ∩ C = C1. Then

by [10], Lemma 10.3, B′ ∩ D = C1 and by [7], Lemma 4.1 and its proof, there is

a unique conditional expectation EX from Y onto X with respect to EA and EB.

Let C1 and D1 be the C∗-basic constructions of C and D and eA and eB the

Jones’ projections for EA and EB, respectively. Let αA and αB be actions of G

on C1 and D1 induced by A and B, respectively. Furthermore, let C2 and D2 be the

C∗-basic constructions of C1 and D1 for the dual conditional expectations E
C of EA

and ED of EB, which are isomorphic to C1 ⋊αA G and D1 ⋊αB G, respectively. We

identify C2 and D2 with C1⋊αAG and D1⋊αBG, respectively. By [10], Corollary 6.3,

the unital inclusions C1 ⊂ C2 and D1 ⊂ D2 are strongly Morita equivalent with

respect to a C2 −D2-equivalence bimodule Y2 and its closed subspace Y1, where Y1

and Y2 are the C1−D1-equivalence bimodule and the C2−D2-equivalence bimodule

defined in [10], Section 6, respectively, and Y1 is regarded as a closed subspace of Y2

in the same way as in [10], Section 6. Also, C′
1 ∩ C2 = C1 by the proof of Watatani

(see [13], Proposition 2.7.3) since A′ ∩ C = C1. Hence, by [11], Corollary 6.5, there

are an automorphism f of G, a C1 − D1-equivalence bimodule Z and an action λ

of G on Z such that αA and β, the action of G on D1 defined by βt(d) = αB
f(t)(d)

for any t ∈ G, d ∈ D, are strongly Morita equivalent with respect to λ.

Let A1 = {YαA
t
}t∈G and B1 = {YαB

t
}t∈G be the C∗-algebraic bundles over G

induced by the actions αA and αB, which are defined in Section 3. Furthermore, let

Bf = {Bf(t)}t∈G be the C
∗-algebraic bundle over G induced by B and f and let Bf

1 =

{Yβt
}t∈G be the C

∗-algebraic bundle overG induced by the action β, which is defined

in Section 3. We construct an A1 − Bf
1 -equivalence bundle Z = {Zt}t∈G over G.

Let Zt = eA · Z · βt(eB) for any t ∈ G and let W =
⊕
t∈G

Zt. Also, by Lemma 3.1

and its proof,
⊕
t∈G

YαA
t

∼= C and
⊕
t∈G

Yβt
∼= D as C∗-algebras. We identify

⊕
t∈G

YαA
t

and
⊕
t∈G

Yβt
with C and D, respectively. We define the left C-action ⋄ and the left
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C-valued inner product C〈·, ·〉 on W by

eAxα
A
t (eA) ⋄ [eA · z · βs(eB)]

def
= eAxα

A
t (eA) · λt(eA · z · βs(eB))

= eA · [xαA
t (eA) · λt(z)] · βts(eB),

C〈eA · w · βt(eB), eA · z · βs(eB)〉
def
= C1

〈eA · w · βt(eB), λts−1(eA · z · βs(eB))〉

= eAC1
〈w · βt(eB), λts−1 (z) · βt(eB)〉α

A
ts−1 (eA),

where eAxα
A
t (eA) ∈ eAC1α

A
t (eA), eA · z · βs(eB) ∈ Zs, eA · w · βt(eB) ∈ Zt. Also,

we define the right D-action, which is also denoted by the same symbol ⋄ and the

D-valued inner product 〈·, ·〉D on W by

[eA · z · βt(eB)] ⋄ eBxβs(eB)
def
= eA · z · βt(eB)βt(x)βts(eB)

= eA · [z · βt(eB)βt(x)] · βts(eB),

〈eA · z · βt(eB), eA · w · βs(eB)〉D
def
= βt−1(〈eA · z · βt(eB), eA · w · βs(eB)〉D1

)

= eBβt−1(〈eA · z, eA · w〉D1
)βt−1s(eB),

where eBxβs(eB) ∈ eBD1βs(eB), eA · z · βt(eB) ∈ Zt, eA · w · βs(eB) ∈ Zs. By the

above definitions, Z has Conditions (1R)–(3R) and (1L)–(3L) in [1], Definition 2.1.

We show that Z has Conditions (4R) and (4L) in [1], Definition 2.1 and that Z is

an A1 − Bf
1 -bundle in the same way as in Example 2.3.

Lemma 4.1. With the above notation, Z has Conditions (4R) and (4L) in [1],

Definition 2.1.

P r o o f. Let eA·z·βt(eB) ∈ Zt, eA·w·βs(eB) ∈ Zs and eBxβr(eB) ∈ eBD1βr(eB),

where t, s, r ∈ G. Then by routine computations, we can see that

〈eA · z · βt(eB), [eA · w · βs(eB)] ⋄ eBxβr(eB)〉D

= 〈eA · z · βt(eB), eA · w · βs(eB)〉D • eBxβr(eB)

and that

〈eA · z · βt(eB), eA · w · βs(eB)〉
♯
D = 〈eA · w · βs(eB), eA · z · βt(eB)〉D.

Hence, Z has Condition (4R) in [1], Definition 2.1. Next, let eA · z · βt(eB) ∈ Zt,

eA · w · βs(eB) ∈ Zs and eAxα
A
r (eA) ∈ eAC1α

A
r (eA), where t, s, r ∈ G. Then by

routine computations, we can see that

C〈eAxα
A
r (eA) ⋄ [eA · z · βt(eB)], eA · w · βs(eB)〉

= eAxα
A
r (eA) • C〈eA · z · βt(eB), eA · w · βs(eB)〉,

C〈eA · z · βt(eB), eA · w · βs(eB)〉
♯ = C〈eA · w · βs(eB), eA · z · βt(eB)〉.

Hence, Z has Condition (4L) in [1], Definition 2.1. �
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By Lemma 4.1,W is a C−D-bimodule having Properties (1)–(6) in [5], Lemma 1.3.

In order to prove that Z has Conditions (5R), (6R) and (5L), (6L) in [1], Defi-

nition 2.1 using [5], Lemma 1.3, we show that W has Properties (7)–(10) in [5],

Lemma 1.3.

Lemma 4.2. With the above notation, W has the following:

(1) (eAxα
A
t (eA) ⋄ [eA · z · βs(eB)]) ⋄ eByβr(eB) = eAxα

A
t (eA) ⋄ ([eA · z · βs(eB)] ⋄

eByβr(eB)),

(2) 〈eAxα
A
t (eA) ⋄ [eA · z ·βs(eB)], eA ·w ·βr(eB)〉D = 〈eA · z ·βs(eB), (eAxα

A
t (eA))

♯ ⋄

[eA · w · βr(eB)]〉D,

(3) C〈eA · z ·βs(eB), [eA ·w ·βr(eB)]⋄ eByβt(eB)〉 = C〈[eA · z ·βs(eB)]⋄ (eByβt(eB))
♯,

eA · w · βr(eB)〉,

where x ∈ C1, y ∈ D1, z, w ∈ Z, t, s, r ∈ G.

P r o o f. We can show the lemma by routine computations. �

By Lemma 4.2, W has Properties (7), (8) in [5], Lemma 1.3.

Lemma 4.3. With the above notation, there are finite subsets {ui}i and {vj}j

of W such that
∑

i

ui ⋄ 〈ui, x〉D = x =
∑

j

C〈x, vj〉 ⋄ vj for any x ∈ W.

P r o o f. Since Z is a C1−D1-equivalence bimodule, there are finite subsets {zi}i
and {wj}j of Z such that

∑

i

zi · 〈zi, z〉D1
= z =

∑

j

C1
〈z, wj〉 · wj

for any z ∈ Z. Then for any z ∈ Z, s ∈ G,
∑

i,t

[eA · zi · βt(eB)] ⋄ 〈eA · zi · βt(eB), eA · z · βs(eB)〉D

=
∑

i,t

eA · zi · βt(eB) ⋄ βt−1(〈eA · zi · βt(eB), eA · z · βs(eB)〉D1
)

=
∑

i,t

eA · zi · βt(eB) ⋄ eBβt−1(〈eA · zi, eA · z〉D1
)βt−1s(eB)

=
∑

i,t

eA · zi · βt(eB)〈eA · zi, eA · z〉D1
βs(eB)

=
∑

i,t

eA · [zi · 〈zi · βt(eB), eA · z〉D1
] · βs(eB)

=
∑

i

eA · [zi · 〈zi, eA · z〉D1
] · βs(eB) = eA · z · βs(eB)
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since
∑
t∈G

βt(eB) = 1 by [9], Remark 3.4. Also, by the same way and the same reason,

for any z ∈ Z, s ∈ G,

∑

j,t

C〈eA · z · βs(eB), eA · λt(wj) · βt(eB)〉 ⋄ [eA · λt(wj) · βt(eB)] = eA · z · βs(eB).

Therefore we obtain the conclusion. �

R em a r k 4.4. By Lemma 4.2, {eA · zi · βt(eB)}i,t is a right D-basis and

{eA · λt(wj) · βt(eB)}j,t is a left C-basis of W in the sense of Kajiwara and

Watatani (see [6]).

By Lemma 4.2, W has Properties (9), (10) in [5], Lemma 1.3. Hence, by [5],

Lemma 1.3, W is a Hilbert C−D- bimodule in the sense of [5], Definition 1.1. Thus,

Z has Conditions (5R), (6R) and (5L), (6L) in [1], Definition 2.1.

Proposition 4.5. With the above notation, Z is an A1 −Bf
1 -equivalence bundle

over G such that

A1
〈Zt, Zs〉 = YαA

ts−1

, 〈Zt, Zs〉Bf
1

= Yβ
t−1s

for any t, s ∈ G.

P r o o f. First, we show that the left C-valued inner product and the right D-

valued inner product on W are compatible. Let y, z, w ∈ Z and t, s, r ∈ G. Since Z

is a C1 −D1-equivalence bimodule, by routine computations, we can see that

C〈eA · z · βt(eB), eA · y · βs(eB)〉 ⋄ [eA · w · βr(eB)]

= [eA · z · βt(eB)] ⋄ 〈eA · y · βs(eB), eA · w · βr(eB)〉D.

Hence, the left C-valued inner product and the right D-valued inner product are

compatible. Thus, by Lemmas 4.1–4.3, Z is an A1 −Bf
1 -equivalence bundle over G.

Next, we show that

A1
〈Zt, Zs〉 = YαA

ts−1

, 〈Zt, Zs〉Bf
1

= Yβ
t−1s

for any t, s ∈ G. Let t, s ∈ G. Since EB is of Watatani index-finite type, there is a

quasi-basis {(dj , d
∗
j )} ⊂ D ×D for EB. Thus

∑
j

djeBd
∗
j = 1. Since Z is a C1 −D1-

equivalence bimodule, there is a finite subset {zi} of Z such that
∑
i
C1

〈zi, zi〉 = 1.
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Let c ∈ C. Then
∑

i,j

C〈eAc · λt(zi) · βt(djeB), eA · λs(zi) · βs(djeB)〉

=
∑

i,j

C1
〈eAc · λt(zi) · βt(djeB), λts−1(eA · λs(zi) · βs(djeB))〉

=
∑

i,j

C1
〈eAc · λt(zi) · βt(djeB), α

A
ts−1(eA) · λt(zi) · βt(djeB)〉

=
∑

i,j

eAC1
〈c · λt(zi) · βt(djeBd

∗
j ), λt(zi)〉α

A
ts−1(eA)

=
∑

i

eAcC1
〈λt(zi), λt(zi)〉α

A
ts−1(eA)

=
∑

i

eAcα
A
t (C1

〈zi, zi〉)α
A
ts−1(eA) = eAcα

A
ts−1(eA).

Hence, we obtain that C〈Zt, Zs〉 = YαA

ts−1

for any t, s ∈ G. Also, since EA is of

Watatani index-finite type, there is a quasi-basis {(cj , c
∗
j )} ⊂ C × C for EA. Thus∑

j

cjeAc
∗
j = 1. Since Z is a C1−D1-equivalence bimodule, there is a finite subset {wi}

of Z such that
∑
i

〈wi, wi〉D1
= 1. In the same way as above, for any d ∈ D1,

∑

i,j

〈eAc
∗
j · wi · βt(eB), eAc

∗
j · wi · dβs(eB)〉D = eBβt−1(d)βt−1s(eB).

Hence, we obtain that 〈Zt, Zs〉D = Yβ
t−1s
for any t, s ∈ G. Therefore we obtain the

conclusion. �

Theorem 4.6. Let A = {At}t∈G and B = {Bt}t∈G be saturated C∗-algebraic

bundles over a finite group G. Let e be the unit element in G. Let C =
⊕
t∈G

At,

D =
⊕
t∈G

Bt and A = Ae, B = Be. We suppose that C and D are unital and that A

and B have the unit elements in C and D, respectively. Let A ⊂ C and B ⊂ D be the

unital inclusions of unital C∗-algebras induced by A and B, respectively. Also, we

suppose that A′∩C = C1. If A ⊂ C and B ⊂ D are strongly Morita equivalent, then

there are an automorphism f of G and an A− Bf -equivalence bundle Z = {Zt}t∈G

satisfying that

C〈Zt, Zs〉 = Ats−1 , 〈Zt, Zs〉D = Bf(t−1s)

for any t, s ∈ G, where Bf is the C∗-algebraic bundle over G induced by B and f

defined by Bf = {Bf(t)}t∈G.

P r o o f. This is immediate by Lemma 3.1 and Proposition 4.5. �
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5. Application

Let A and B be unital C∗-algebras and X a Hilbert A−B-bimodule. Let X̃ be its

dual Hilbert B − A-bimodule. For any x ∈ X , x̃ denotes the element in X̃ induced

by x ∈ X .

Lemma 5.1. Let A, B and C be unital C∗-algebras. Let X be a Hilbert A−B-

bimodule and Y a Hilbert B − C-bimodule. Then X̃ ⊗B Y ∼= Ỹ ⊗B X̃ as Hilbert

C −A-bimodules.

P r o o f. Let π be the map from X̃ ⊗B Y to Ỹ ⊗B X̃ defined by π(x̃⊗ y) = ỹ⊗ x̃

for any x ∈ X , y ∈ Y . Then by routine computations, we can see that π is a Hilbert

C −A-bimodule isomorphism of X̃ ⊗B Y onto Ỹ ⊗B X̃. �

We identify X̃ ⊗B Y with Ỹ ⊗B X̃ by the isomorphism π defined in the proof of

Lemma 5.1. Next, we give the definition of an involutive Hilbert A − A-bimodule

modifying [8].

Definition 5.2. We say that a Hilbert A−A-bimodule X is involutive if there

exists a conjugate linear map x ∈ X 7→ x♮ ∈ X such that

(1) (x♮)♮ = x, x ∈ X ,

(2) (a · x · b)♮ = b∗ · x♮ · a∗, x ∈ X , a, b ∈ A,

(3) A〈x, y
♮〉 = 〈x♮, y〉A, x, y ∈ X .

We call the above conjugate linear map ♮ an involution on X . If X is full with

the both inner products, X is an involutive A − A-equivalence bimodule. For each

involutive Hilbert A− A-bimodule, let LX be the linking C
∗-algebra induced by X

and CX the C
∗-subalgebra of LX , which is defined in [8], that is,

CX =

{[
a x

x̃♮ a

]
: a ∈ A, x ∈ X

}
.

We note that CX acts on X ⊕A (see Brown, Green and Rieffel [2] and Rieffel [12]).

The norm of CX is defined as the operator norm on X ⊕A.

Let A be a unital C∗-algebra and X an involutive Hilbert A−A-bimodule. Let X̃

be its dual Hilbert A − A-bimodule. We define the map ♮ on X̃ by (x̃)♮ = (̃x♮) for

any x̃ ∈ X̃.

Lemma 5.3. With the above notation, the above map ♮ is an involution on X̃ .

P r o o f. This is immediate by direct computations. �
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For each involutive Hilbert A − A-bimodule X , we regard X̃ as an involutive

A−A-bimodule in the same manner as in Lemma 5.3.

Let Z2 = Z/2Z and we suppose that Z2 consists of the unit element 0 and another

element 1. Let X be an involutive Hilbert A − A-bimodule. We construct a C∗-

algebraic bundle over Z2 induced by X . Let A0 = A and A1 = X . Let AX =

{At}t∈Z2
. We define a product • and an involution ♯ as follows:

(1) a • b = ab, a, b ∈ A,

(2) a • x = a · x, x • a = x · a, a ∈ A, x ∈ X ,

(3) x • y = A〈x, y
♮〉 = 〈x♮, y〉A, x, y ∈ X ,

(4) a♯ = a∗, a ∈ A,

(5) x♯ = x♮, x ∈ X .

Then A ⊕ X is a ∗-algebra and by routine computations, A ⊕ X is isomorphic

to CX as ∗-algebras. We identify A ⊕X with CX as ∗-algebras. We define a norm

of A ⊕ X as the operator norm on X ⊕ A. Hence, AX is a C∗-algebraic bundle

over Z2. Thus, we obtain a correspondence from the involutive Hilbert A − A-

bimodules to the C∗-algebraic bundles over Z2. Next, let A = {At}t∈Z2
be a C∗-

algebraic bundle over Z2. Then A1 ia an involutive Hilbert A−A-bimodule. Hence,

we obtain a correspondence from the C∗-algebraic bundles over Z2 to the involutive

Hilbert A−A-bimodules. Clearly, the above two correspondences are the inverse

correspondences of each other. Furthermore, the inclusion of unital C∗-algebras

A ⊂ CX induced by X and the inclusion of unital C
∗-algebras A ⊂ A⊕X induced

by the C∗-algebraic bundle AX coincide.

Lemma 5.4. LetX and Y be involutive Hilbert A−A-bimodules and AX andAY

the C∗-algebraic bundles over Z2 induced by X and Y , respectively. Then AX
∼= AY

as C∗-algebraic bundles over Z2 if and only if X ∼= Y as involutive Hilbert A − A-

bimodules.

P r o o f. We suppose thatAX
∼= AY as C

∗-algebraic bundles overZ2. Then there

is a C∗-algebraic bundle isomorphism {πt}t∈Z2
of AX onto AY . We identify A with

π0(A). Then π1 is an involutive Hilbert A−A-bimodule isomorphism of X onto Y .

Next, we suppose that there is an involutive Hilbert A−A-bimodule isomorphism π

of X onto Y . Let π0 = idA and π1 = π. Then {πt}t∈Z2
is a C∗-algebraic bundle

isomorphism AX onto AY . �

Lemma 5.5. Let X be an involutive Hilbert A − A-bimodule and AX the C
∗-

algebraic bundle over Z2 induced by X . Then X is full with the both inner products

if and only if AX is saturated.
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P r o o f. We suppose that X is full with the both inner products. Then

A1 •A
♯
1 = A〈X,X〉 = A = A0.

Also,

A0 •A
♯
1 = A ·X♮ = A ·X = X = A1,

A1 •A
♯
0 = X ·A∗ = X · A = X = A1

by [3], Proposition 1.7. Clearly A0 • A0 = AA = A = A0. Hence AX is saturated.

Next, we suppose that AX is saturated. Then

A〈X,X〉 = A1 •A
♯
1 = A1 = A, 〈X,X〉A = A〈X

♮, X♮〉 = A〈X,X〉 = A.

Thus, X is full with the both inner products. �

R em a r k 5.6. Let X be an involutive Hilbert A − A-bimodule. Then by the

above proof, we see that X is full with the left A-valued inner product if and only

if X is full with the right A-valued inner product.

Lemma 5.7. Let A and B be unital C∗-algebras and M an A − B-equivalence

bimodule. Let X be an involutive Hilbert A−A-bimodule. Then M̃ ⊗A X ⊗A M is

an involutive Hilbert B −B-bimodule whose involution ♮ is defined by

(m̃⊗ x⊗ n)♮ = ñ⊗ x♮ ⊗m

for any m,n ∈ M, x ∈ X .

P r o o f. This is immediate by routine computations. �

Let A, B, X and M be as in Lemma 5.7. Let Y be an involutive Hilbert B −B-

bimodule. We suppose that there is an involutive Hilbert B − B-bimodule isomor-

phism Φ of M̃ ⊗A X ⊗A M onto Y . Let Φ̃ be the linear map from M̃ ⊗A X̃ ⊗A M

onto Ỹ defined by

Φ̃(m̃⊗ x̃⊗ n) = Φ̃((ñ⊗ x⊗m)˜) = [Φ(ñ⊗ x⊗m)]˜

for any m,n ∈ M , x ∈ X .

Lemma 5.8. With the above notation, Φ̃ is an involutive Hilbert B−B-bimodule

isomorphism of M̃ ⊗A X̃ ⊗A M onto Ỹ .

P r o o f. This is immediate by routine computations. �
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Again, let A, B, X and M be as in Lemma 5.7. Let Y be an involutive Hilbert

B − B-bimodule. We suppose that there is an involutive Hilbert B − B-bimodule

isomorphism Φ of M̃ ⊗A X ⊗A M onto Y . We identify A and X with M ⊗B M̃ and

A⊗A X by the isomorphisms defined by

m⊗ n ∈ M ⊗B M̃ 7→ A〈m,n〉 ∈ A, a⊗ x ∈ A⊗A X 7→ a · x ∈ X,

respectively. Since M is an A−B-equivalence bimodule, there is a finite subset {ui}

of M with
∑
i
A〈ui, ui〉 = 1. Let x ∈ X , m ∈ M . Then

x⊗m = 1A · x⊗m =
∑

i

A〈ui, ui〉 · x⊗m =
∑

i

ui ⊗ ũi ⊗ x⊗m.

Hence, there is the linear map Ψ from X ⊗A M to M ⊗B Y defined by

Ψ(x⊗m) =
∑

i

ui ⊗ Φ(ũi ⊗ x⊗m)

for any x ∈ X , m ∈ M . By the definition of Ψ, we can see that Ψ is a Hilbert

A−B-bimodule isomorphism of X ⊗A M onto M ⊗B Y .

Lemma 5.9. With the above notation, the Hilbert A − B-bimodule isomor-

phism Ψ of X⊗AM ontoM ⊗B Y is independent of the choice of a finite subset {ui}

of M with
∑
i

A〈ui, ui〉 = 1.

P r o o f. Let {vj} be another finite subset of M with
∑
j

A〈vj , vj〉 = 1. Then for

any x ∈ X , m ∈ M ,

∑

i

ui ⊗ Φ(ũi ⊗ x⊗m)

=
∑

i,j

A〈vj , vj〉 · ui ⊗ Φ(ũi ⊗ x⊗m) =
∑

i,j

vj · 〈vj , ui〉B ⊗ Φ(ũi ⊗ x⊗m)

=
∑

i,j

vj ⊗ Φ([ui · 〈ui, vj〉B]˜ ⊗ x⊗m) =
∑

j

vj ⊗ Φ(ṽj ⊗ x⊗m).

Therefore, we obtain the conclusion. �

Similarly, let Ψ̃ be the Hilbert A − B-bimodule isomorphism of X̃ ⊗A M onto

M ⊗B Ỹ defined by

Ψ̃(x̃⊗m) =
∑

i

ui ⊗ Φ̃(ũi ⊗ x̃⊗m)
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for any x ∈ X , m ∈ M . We construct the inverse map of Ψ, which is a Hilbert

A − B-bimodule isomorphism of M ⊗B Y onto X ⊗A M . Let Θ be the linear map

from M ⊗B Y to X ⊗A M defined by

Θ(m⊗ y) = m⊗ Φ−1(y)

for any m ∈ M , y ∈ Y , where we identify M ⊗B M̃ ⊗A X ⊗A M with X ⊗A M as

Hilbert A−B-bimodules by the map

m⊗ ñ⊗ x⊗m1 ∈ M ⊗B M̃ ⊗A X ⊗A M 7→ A〈m,n〉 · x⊗m1 ∈ X ⊗A M.

Lemma 5.10. With the above notation, Θ is the Hilbert A−B-bimodule isomor-

phism of M ⊗B Y onto X ⊗A M such that Θ ◦Ψ = idX⊗AM and Ψ ◦Θ = idM⊗BY .

P r o o f. Let m,m1 ∈ M , y, y1 ∈ Y . Then

A〈Θ(m⊗ y),Θ(m1 ⊗ y1)〉 = A〈m⊗ Φ−1(y),m1 ⊗ Φ−1(y1)〉

= A〈m · B〈Φ
−1(y),Φ−1(y1)〉,m1〉

= A〈m · B〈y, y1〉,m1〉 = A〈m⊗ y,m1 ⊗ y1〉.

Hence, Θ preserves the left A-valued inner products. Similarly, we can see that Θ

preserves the right B-valued inner products. Furthermore, for any x ∈ X , m ∈ M ,

(Θ ◦Ψ)(x⊗m) =
∑

i

Θ(ui ⊗ Φ(ũi ⊗ x⊗m)) =
∑

i

ui ⊗ ũi ⊗ x⊗m

=
∑

i

A〈ui, ui〉 · x⊗m = x⊗m

since we identifyM⊗M̃ with A as A−A-equivalence bimodules by the mapm⊗ ñ ∈

M ⊗B M̃ 7→ A〈m,n〉 ∈ A. Hence, Θ ◦ Ψ = idX⊗AM . Hence, Ψ ◦ Θ ◦ Ψ = Ψ

on X ⊗A M . Since Ψ is surjective, Ψ ◦ Θ = idM⊗BY . Therefore, by the remark

after [4], Definition 1.1.18, Θ is a Hilbert A−B-bimodule isomorphism of M ⊗B Y

onto X ⊗A M such that Θ ◦Ψ = idX⊗AM and Ψ ◦Θ = idM⊗BY . �

Similarly, we see that the inverse map of (Ψ̃)−1 is defined by

(Ψ̃)−1(m⊗ ỹ) = m⊗ (Φ̃)−1(ỹ)

for any m ∈ M , y ∈ Y , where we identify M ⊗B M̃ ⊗A X̃ ⊗A M with X̃ ⊗A M as

Hilbert A−B-bimodules by the map

m⊗ ñ⊗ x̃⊗m1 ∈ M ⊗B M̃ ⊗A X̃ ⊗A M 7→ A〈m,n〉 · x̃⊗m1 ∈ X̃ ⊗A M.

We prepare some lemmas in order to show Proposition 5.14.
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Lemma 5.11. Let A and B be unital C∗-algebras. Let X and Y be an involutive

Hilbert A − A-bimodule and an involutive Hilbert B − B-bimodule, respectively.

Let AX = {At}t∈Z2
and AY = {Bt}t∈Z2

be C∗-algebraic bundles over Z2 induced

by X and Y , respectively. We suppose that there is an AX −AY -equivalence bundle

M = {Mt}t∈Z2
over Z2 such that

C〈Mt,Ms〉 = Ats−1 , 〈Mt,Ms〉D = Bt−1s

for any t, s ∈ Z2, where C = A ⊕ X and D = B ⊕ Y . Then there is an A − B-

equivalence bimodule M such that Y ∼= M̃ ⊗AX ⊗AM as involutive Hilbert B−B-

bimodules.

P r o o f. By the assumptions, M0 is an A − B-equivalence bimodule. Let

M = M0. Then by Lemma 5.7, M̃ ⊗A X ⊗A M is an involutive Hilbert B − B-

bimodule whose involution is defined by (m̃⊗x⊗n)♮ = ñ⊗x♮⊗m for any m,n ∈ M ,

x ∈ X . We show that Y ∼= M̃ ⊗A X ⊗A M as involutive Hilbert B − B-bimodules.

Let Φ be the map from M̃ ⊗A X ⊗A M to Y defined by

Φ(m̃⊗ x⊗ n) = 〈m,x · n〉D

for any m,n ∈ M , x ∈ X . Since A1 = X and M = M0, X · M0 ⊂ M1. And

〈M0,M1〉D ∈ B1 = Y . Hence, Φ is a map from M̃ ⊗A X ⊗A M to Y . Clearly, Φ is

a linear and B −B-bimodule map. We show that Φ is surjective. Indeed,

X ·M = A1 ·M0 = C〈M1,M0〉 ·M0 = M1 · 〈M0,M0〉D = M1 ·B = M1

by [3], Proposition 1.7. Hence, 〈M,X ·M〉D = 〈M,M1〉D = Y . Thus, Φ is surjective.

Let m,n,m1, n1 ∈ M , x, x1 ∈ X . Then

B〈m̃⊗ x⊗ n, m̃1 ⊗ x1 ⊗ n1〉

= B〈m̃ · A〈x⊗ n, x1 ⊗ n1〉, m̃1〉 = B〈[A〈x1 ⊗ n1, x⊗ n〉 ·m]˜, m̃1〉

= 〈A〈x1 ⊗ n1, x⊗ n〉 ·m,m1〉B = 〈A〈x1 · A〈n1, n〉, x〉 ·m,m1〉B

= 〈[(x1 • C〈n1, n〉) • x
♮] ·m,m1〉B = 〈[C〈x1 · n1, n〉 • x

♮] ·m,m1〉B

= 〈C〈[x1 · n1], n〉 · [x
♮ ·m],m1〉B = 〈[x1 · n1] · 〈n, x

♮ ·m〉D,m1〉B

= 〈x♮ ·m,n〉D • 〈x1 · n1,m1〉D = 〈m,x · n〉D • 〈m1, x1 · n1〉
♯
D

= B〈〈m,x · n〉D, 〈m1, x1 · n1〉D〉 = B〈Φ(m̃⊗ x⊗ n),Φ(m̃1 ⊗ x1 ⊗ n1)〉.

Hence, Φ preserves the left B-valued inner products. Also, similarly we can see

that Φ preserves the right B-valued inner products. Furthermore,

Φ(m̃⊗ x⊗ n)♮ = 〈m,x · n〉♮Y = 〈m,x · n〉♯D = 〈x · n,m〉D = 〈x · n,m〉Y .
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On the other hand,

Φ((m̃⊗ x⊗ n)♮) = Φ(ñ⊗ x♮ ⊗m) = 〈n, x♮ ·m〉Y = 〈x · n,m〉Y = Φ(m̃⊗ x⊗ n)♮.

Hence, Φ preserves the involutions ♮. Therefore Y ∼= M̃ ⊗A X ⊗A M as involutive

Hilbert B −B-bimodules. �

Let A and B be unital C∗-algebras. Let X and Y be an involutive Hilbert A−A-

bimodule and an involutive Hilbert B − B-bimodule and let AX and AY be the

C∗-algebraic bundles over Z2 induced by X and Y , respectively. We suppose that

there is an A−B-equivalence bimodule M such that

Y ∼= M̃ ⊗A X ⊗A M

as involutive Hilbert B−B-bimodules. We construct anAX−AY -equivalence bundle

M = {Mt}t∈Z2
over Z2 such that

C〈Mt,Ms〉 = Ats−1 , 〈Mt,Ms〉D = Bt−1s

for any t, s ∈ Z2, where C = A⊕X and D = B ⊕ Y .

Let Φ be an involutive Hilbert B − B-bimodule isomorphism of M̃ ⊗A X ⊗A M

onto Y . Then by the above discussions, there are the Hilbert A − B-bimodule

isomorphismsΨ ofX⊗AM ontoM⊗BY and Ψ̃ of X̃⊗AM ontoM⊗BỸ , respectively.

We construct a CX − CY -equivalence bimodule CM from M . Let CM be the linear

span of the set

XCM =

{[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
: m1,m2 ∈ M,x ∈ X

}
.

We define the left CX -action on CM by

[
a z

z̃♮ a

]
·

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
=

[
a⊗m1 + z ⊗ x̃♮ ⊗m2 a⊗ x⊗m2 + z ⊗m1

z̃♮ ⊗m1 + a⊗ x̃♮ ⊗m2 z̃♮ ⊗ x⊗m2 + a⊗m1

]

for any a ∈ A, m1,m2 ∈ M , x, z ∈ X , where we regard the tensor product as a left

CX -action on CM in the formal manner. But we identify A ⊗A M and X ⊗A X̃,

X̃ ⊗A X with M and closed two-sided ideals of A by the isomorphism and the

monomorphisms defined by

a⊗m ∈ A⊗A M 7→ a ·m ∈ M, x⊗ z̃ ∈ X ⊗A X̃ 7→ A〈x, z〉 ∈ A,

x̃⊗ z ∈ X̃ ⊗A X 7→ 〈x, z〉A ∈ A.
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Hence, we obtain that

[
a z

z̃♮ a

]
·

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]

=

[
a ·m1 + A〈z, x

♮〉 ·m2 a · x⊗m2 + z ⊗m1

z̃♮ ⊗m1 + (̃a · x)
♮

⊗m2 〈z̃♮, x〉A ·m2 + a ·m1

]
∈ CM .

We define the right CY -action on CM by

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
·

[
b y

ỹ♮ b

]
=

[
m1 ⊗ b+ x⊗m2 ⊗ ỹ♮ m1 ⊗ y + x⊗m2 ⊗ b

x̃♮ ⊗m2 ⊗ b+m1 ⊗ ỹ♮ x̃♮ ⊗m2 ⊗ y +m1 ⊗ b

]

for any b ∈ B, x ∈ X , y ∈ Y , m1,m2 ∈ M , where we regard the tensor product

as a right CY -action on CM in the formal manner. But we identify X ⊗A M and

X̃⊗AM withM⊗B Y andM⊗B Ỹ by Ψ and Ψ̃, respectively. Hence, we obtain that

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
·

[
b y

ỹ♮ b

]

=

[
m1 ⊗ b+ x⊗ (Ψ̃)−1(m2 ⊗ ỹ♮) Ψ−1(m1 ⊗ y) + x⊗m2 ⊗ b

x̃♮ ⊗m2 ⊗ b+ (Ψ̃)−1(m1 ⊗ ỹ♮) x̃♮ ⊗Ψ−1(m2 ⊗ y) +m1 ⊗ b

]
.

Furthermore, we identifyM⊗BB and Y ⊗B Ỹ , Ỹ ⊗B Y withM and closed two-sided

ideals of B by the isomorphism and the monomorphisms defined by

m⊗ b ∈ M ⊗B B 7→ m · b ∈ M,

y ⊗ z̃ ∈ Y ⊗B Ỹ 7→ B〈y, z〉 ∈ B,

ỹ ⊗ z ∈ Ỹ ⊗B Y 7→ 〈y, z〉B ∈ B,

respectively. Then x⊗ (Ψ̃)−1(m2 ⊗ y♮) = x̃♮ ⊗Ψ−1(m2 ⊗ y) and we see that

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
·

[
b y

ỹ♮ b

]
∈ CM .

Indeed, for any ε > 0, there are finite sets {nk}, {lk} ⊂ M and {zk} ⊂ X such that

∥∥∥∥Φ
−1(y)−

∑

k

ñk ⊗ zk ⊗ lk

∥∥∥∥ < ε.

Also,

∥∥∥∥(Φ̃)
−1(ỹ♮)−

[(∑

k

ñk ⊗ zk ⊗ lk

)♮]
˜
∥∥∥∥ =

∥∥∥∥[Φ
−1(y)♮]˜ −

[(∑

k

ñk ⊗ zk ⊗ lk

)♮]
˜
∥∥∥∥

=

∥∥∥∥Φ
−1(y)−

∑

k

ñk ⊗ zk ⊗ lk

∥∥∥∥ < ε.
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Thus

∥∥∥∥x⊗ (Ψ̃)−1(m2 ⊗ ỹ♮)− x⊗m2 ⊗

[(∑

k

ñk ⊗ zk ⊗ lk

)♮]
˜
∥∥∥∥

=

∥∥∥∥x⊗m2 ⊗ (Φ̃)−1(ỹ♮)− x⊗m2 ⊗
∑

k

[(ñk ⊗ zk ⊗ lk)
♮]˜

∥∥∥∥ 6 ‖x‖‖m2‖ε

and
∥∥∥∥x̃

♮ ⊗Ψ−1(m2 ⊗ y)− x̃♮ ⊗m2 ⊗
∑

k

ñk ⊗ zk ⊗ lk

∥∥∥∥

=

∥∥∥∥x̃
♮ ⊗m2 ⊗ Φ−1(y)− x̃♮ ⊗m2 ⊗

∑

k

ñk ⊗ zk ⊗ lk

∥∥∥∥ 6 ‖x‖‖m2‖ε.

Furthermore, we can see that

x⊗m2 ⊗

[(∑

k

ñk ⊗ z̃k ⊗ lk

)♮]
˜

=
∑

k

x⊗m2 ⊗ ñk ⊗ z̃k
♮ ⊗ lk =

∑

k

A〈x · A〈m2, nk〉, z
♮
k〉 · lk

=
∑

k

x̃♮ ⊗m2 ⊗ ñk ⊗ zk ⊗ lk = x̃♮ ⊗m2 ⊗
∑

k

ñk ⊗ zk ⊗ lk,

where we identify A⊗AM and X⊗A X̃, X̃⊗AX withM and closed two-sided ideals

of A by the isomorphism and the monomorphisms defined by

a⊗m ∈ A⊗A M 7→ a ·m ∈ M,

x⊗ z̃ ∈ X ⊗A X̃ 7→ A〈x, z〉 ∈ A,

x̃⊗ z ∈ X̃ ⊗A X 7→ 〈x, z〉A ∈ A.

Hence

x⊗m2 ⊗

[(∑

k

ñk ⊗ z̃k ⊗ lk

)♮]
˜

= x̃♮ ⊗m2 ⊗
∑

k

ñk ⊗ zk ⊗ lk.

It follows that

‖x⊗ (Ψ̃)−1(m2 ⊗ y♮)− x̃♮ ⊗Ψ−1(m2 ⊗ y)‖ 6 2‖x‖ ‖m2‖ε.

Since ε is arbitrary, we can see that x ⊗ (Ψ̃)−1(m2 ⊗ y♮) = x̃♮ ⊗ Ψ−1(m2 ⊗ y) and

that [
m1 x⊗m2

x̃♮ ⊗m2 m1

]
·

[
b y

ỹ♮ b

]
∈ CM .
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Before we define a left CX -valued inner product and a right CY -valued inner product

on CM , we define a conjugate linear map on CM ,

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
∈ CM 7→

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
˜

∈ CM

by [
m1 x⊗m2

x̃♮ ⊗m2 m1

]
˜

=

[
m̃1 (x̃♮ ⊗m2)˜

(x⊗m2)˜ m̃1

]

for any m1,m2 ∈ M , x ∈ X . Since we identify ˜X ⊗A M and
˜

X̃ ⊗A M with M̃ ⊗A X̃

and M̃ ⊗A X by Lemma 5.1, respectively, we obtain that

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
˜

=

[
m̃1 m̃2 ⊗ x♮

m̃2 ⊗ x̃ m̃1

]
.

We define the left CX -valued inner product on CM by

CX

〈[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
,

[
n1 z ⊗ n2

z̃♮ ⊗ n2 n1

]〉

=

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
·

[
n1 z ⊗ n2

z̃♮ ⊗ n2 n1

]
˜

=

[
A〈m1, n1〉+ A〈x · A〈m2, n2〉, z〉 A〈m1, n2〉, ·z

♮ + x · A〈m2, n1〉

x̃♮ · A〈m2, n1〉+ A〈m1, n2〉 · z̃ A〈x · A〈m2, n2〉, z〉+ A〈m1, n1〉

]

for any m1,m2, n1, n2 ∈ M , x, z ∈ X , where we regard the tensor product as a prod-

uct in CM in the formal manner and identify in the same way as above. Similarly,

we define the right CY -valued inner product on CM by

〈[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
,

[
n1 z ⊗ n2

z̃♮ ⊗ n2 n1

]〉

CY

=

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
˜

·

[
n1 z ⊗ n2

z̃♮ ⊗ n2 n1

]

=

[
〈m1, n1〉B + 〈m2, 〈x, z〉A · n2〉B m̃1 ⊗Ψ(z ⊗ n2) + m̃2 ⊗Ψ(x♮ ⊗ n1)

m̃2 ⊗ Ψ̃(x̃ ⊗ n1) + m̃1 ⊗ Ψ̃(z̃♮ ⊗ n2) 〈m2, 〈x, z〉A · n2〉B + 〈m1, n1〉B

]

for any m1,m2, n1, n2 ∈ M , x, z ∈ X , where we regard the tensor product as a prod-

uct in CM in the formal manner, identifying in the same way as above and by the

isomorphisms Ψ and Ψ̃. Here, we have to show that the value of the above inner

product on CM exists in CM . Indeed, by routine computations,

m̃1 ⊗Ψ(z ⊗ n2) =
∑

i

m̃1 ⊗ ui ⊗ Φ(ũi ⊗ z ⊗ n2) = Φ(m̃1 ⊗ z ⊗ n2) ∈ Y,

m̃2 ⊗Ψ(x♮ ⊗ n1) = Φ(m̃2 ⊗ x♮ ⊗ n1) ∈ Y.
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Also,

m̃2 ⊗ Ψ̃(x̃⊗ n1) =
∑

i

m̃2 ⊗ ui ⊗ Φ̃(ũi ⊗ x̃⊗ n1) = Φ(ñ1 ⊗ x⊗m2)˜ ∈ Ỹ ,

ñ1 ⊗ Ψ̃(z̃♮ ⊗ n2) =
∑

i

m̃1 ⊗ ui ⊗ Φ̃(ũi ⊗ z̃♮ ⊗ n2) =
∑

i

Φ(ñ2 ⊗ z♮ ⊗m1)˜ ∈ Ỹ .

Thus

[m̃2 ⊗ Ψ̃(x̃⊗ n1) + ñ1 ⊗ Ψ̃(z̃♮ ⊗ n2)]
♮̃ = Φ(ñ1 ⊗ x⊗m2)

♮ +Φ(ñ2 ⊗ z♮ ⊗m1)
♮

= Φ(m̃2 ⊗ x♮ ⊗ n1) + Φ(m̃1 ⊗ z ⊗ n2)

= m̃1 ⊗Ψ(z ⊗ x) + m̃2 ⊗Ψ(x♮ ⊗ n1).

Hence 〈[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
,

[
n1 z ⊗ n2

z̃♮ ⊗ n2 n1

]〉

CY

∈ CY .

By the above definitions, CM has the left CX - and the right CY -actions and the left

CX -valued and the right CY -valued inner products.

Let C1
M be the linear span of the set

CY
M =

{[
m1 m2 ⊗ y

m2 ⊗ ỹ♮ m1

]
: m1,m2 ∈ M, y ∈ Y

}
.

In the similar way to the above, we define a left CX - and a right CY -actions on C
1
M

and a left CX -valued and a right CY -valued inner products. But identifying X⊗AM

and X̃ ⊗A M with M ⊗B Y and M ⊗B Ỹ by Ψ and Ψ̃, respectively, we can see that

each of them coincides with the other by routine computations. Hence, we obtain

the following lemma:

Lemma 5.12. With the above notation, CM is a CX −CY -equivalence bimodule.

P r o o f. By the definitions of the left CX -action and the left CX -valued inner

product on CM , we can see that Conditions (a)–(d) in [6], Proposition 1.12 hold.

By the definitions of the right CY -action and the right CY -valued inner product

on CM , we can also see that the similar conditions to Conditions (a)–(d) in [6],

Proposition 1.12 hold. Furthermore, we can easily see that the associativity of the

left CX -valued inner product and the right CY -valued inner product hold. Since M

is an A−B-equivalence bimodule, there are finite subsets {ui}
n
i=1 and {vj}

m
j=1 of M

such that
n∑

i=1

A〈ui, ui〉 = 1,

m∑

j=1

〈vj , vj〉B = 1.
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Let Ui =

[
ui 0

0 ui

]
for any i and let Vj =

[
vj 0

0 vj

]
for any j. Then {Ui} and {Vj}

are finite subsets of CM and

n∑

i=1

CX
〈Ui, Ui〉 =

n∑

i=1

[
ui 0

0 ui

] [
ũi 0

0 ũi

]
=

n∑

i=1

[
A〈ui, ui〉 0

0 A〈ui, ui〉

]
= 1CX

.

Similarly,
m∑
j=1

〈Vj , Vj〉CY
= 1CY

. Thus, since the associativity of the left CX -valued

inner product and the right CY -valued inner product on CM holds, we can see

that {Ui} and {Vj} are a right CY -basis and a left CX -basis of CM , respectively.

Hence by [6], Proposition 1.12, CM is a CX − CY -equivalence bimodule. �

Lemma 5.13. Let A and B be unital C∗-algebras. Let X and Y be an involutive

Hilbert A−A-bimodule and an involutive Hilbert B−B-bimodule, respectively. Let

AX = {At}t∈Z2
and AY = {Bt}t∈Z2

be C∗-algebraic bundles over Z2 induced by X

and Y , respectively. We suppose that there is an A − B-equivalence bimodule M

such that

Y ∼= M̃ ⊗A X ⊗A M

as involutive Hilbert B−B-bimodules. Then there is anAX−AY -equivalence bundle

M = {Mt}t∈Z2
over Z2 such that

C〈Mt,Ms〉 = Ats−1 , 〈Mt,Ms〉D = Bt−1s

for any t, s ∈ Z2, where C = A⊕X and D = B ⊕ Y .

P r o o f. Let CM be the CX −CY -equivalence bimodule induced by M , which is

defined in the above. We identify M ⊕ (X ⊗A M) with CM as vector spaces over C

by the isomorphism defined by

m1 ⊕ (x⊗m2) ∈ M ⊕ (X ⊗A M) 7→

[
m1 x⊗m2

x̃♮ ⊗m2 m1

]
∈ CM .

Since we identify C = A ⊕X and D = B ⊕ Y with CX and CY , respectively, M ⊕

(X⊗AM) is a C−D-equivalence bimodule by above identifications and Lemma 5.12.

LetM0 = M andM1 = X⊗AM . We note that X⊗AM is identified withM⊗BY by

the Hilbert A− B-bimodule isomorphism Ψ. LetM = {Mt}t∈Z2
. Then by routine

computations,M is an AX −AY -equivalence bundle over Z2 such that

C〈Mt,Ms〉 = Ats−1 , 〈Mt,Ms〉D = Bt−1s

for any t, s ∈ Z2. �
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Proposition 5.14. Let A and B be unital C∗-algebras. Let X and Y be an invo-

lutive Hilbert A−A-bimodule and an involutive Hilbert B−B-bimodule, respectively.

LetAX = {At}t∈Z2
andAY = {Bt}t∈Z2

be the C∗-algebraic bundles over Z2 induced

by X and Y , respectively. Then the following conditions are equivalent:

(1) There is an AX −AY -equivalence bundleM = {Mt}t∈Z2
over Z2 such that

C〈Mt,Ms〉 = Ats−1 , 〈Mt,Ms〉D = Bt−1s

for any t, s ∈ Z2, where C = A⊕X and D = B ⊕ Y .

(2) There is an A−B-equivalence bimodule M such that

Y ∼= M̃ ⊗A X ⊗A M

as involutive Hilbert B −B-bimodules.

P r o o f. This is immediate by Lemmas 5.11 and 5.13. �

Theorem 5.15. Let A andB be unital C∗-algebras. LetX and Y be an involutive

Hilbert A−A-bimodule and an involutive Hilbert B−B-bimodule, respectively. Let

A ⊂ CX and B ⊂ CY be the unital inclusions of unital C
∗-algebras induced by X

and Y , respectively. Then the following hold:

(1) If there is an A−B-equivalence bimodule M such that

M̃ ⊗A X ⊗A M ∼= Y

as involutie Hilbert B − B-bimodules, then the unital inclusions A ⊂ CX and

B ⊂ CY are strongly Morita equivalent.

(2) We suppose that X and Y are full with the both inner products and that

A′ ∩ CX = C1. If the unital inclusions A ⊂ CX and B ⊂ CY are strongly

Morita equivalent, then there is an A−B-equivalence bimodule M such that

M̃ ⊗A X ⊗A M ∼= Y

as involutive Hilbert B −B-bimodules.

P r o o f. Let AX = {At}t∈Z2
and AY = {Bt}t∈Z2

be the C∗-algebraic bundles

over Z2 induced by X and Y , respectively. We prove (1). We suppose that there is

an A−B-equivalence bimodule M such that

M̃ ⊗A X ⊗A M ∼= Y
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as involutive Hilbert B − B-bimodules. Then by Proposition 5.14, there is an

AX −AY -equivalence bundleM = {Mt}t∈Z2
over Z2 such that

C〈Mt,Ms〉 = Ats−1 , 〈Mt,Ms〉D = Bt−1s

for any t, s ∈ Z2, where C = A⊕X and D = B ⊕ Y . Hence, by Proposition 2.1, the

unital inclusions of unital C∗-algebras A ⊂ C and B ⊂ D are strongly Morita equiv-

alent. Since we identify A ⊂ C and B ⊂ D with A ⊂ CX and B ⊂ CY , respectively,

A ⊂ CX and B ⊂ CY are strongly Morita equivalent. Next, we prove (2). We sup-

pose thatX and Y are full with the both inner products and thatA′∩CX = C1. Also,

we suppose that A ⊂ CX and B ⊂ CY are strongly Morita equivalent. Then AX

andAY are saturated by Lemma 5.5. Since the identity map idZ2
is the only automor-

phism of Z2, by Theorem 4.6 there is anAX−AY -equivalence bundleM = {Mt}t∈Z2

such that

C〈Mt,Ms〉 = Ats−1 , 〈Mt,Ms〉D = Bt−1s

for any t, s ∈ Z. Hence, from Proposition 5.14, there is an A − B-equivalence

bimodule M such that

Y ∼= M̃ ⊗A X ⊗A M

as involutive Hilbert B −B-bimodules. �
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