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Abstract. We prove that for any ring R of Krull dimension not greater than 1 and n > 3,
the group En(R[X,X−1]) acts transitively on Umn(R[X,X−1]). In particular, we obtain
that for any ring R with Krull dimension not greater than 1, all finitely generated stably
free modules over R[X,X−1] are free. All the obtained results are proved constructively.
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1. Introduction

Let us begin by fixing some notations. Recall that for any ring B and n > 1,

an n×n elementary matrixEi,j(a) overB, where i 6= j and a ∈ B, is the matrix with 1

on the diagonal, a on position (i, j) and 0 elsewhere, that is, Ei,j(a) is the matrix

corresponding to the elementary operation Li → Li+aLj. The symbol En(B) denote

the subgroup of SLn(B) generated by elementary matrices and Umn(B) denote the

set of unimodular vectors in B of length n, that is, Umn(B) = { t(x1, . . . , xn) ∈ B
n :

〈x1, . . . , xn〉 = B}. Given u, v ∈ Umn(B), we write u ∼En(B) v (in short, u ∼E v) if

there exists M in En(B) such that v = Mu.

In [16], the author has proven that for any ring R of Krull dimension not greater

than 1 and n > 3, the group En(R[X ]) acts transitively on Umn(R[X ]). As a con-

sequence, he obtained that for any ring R with Krull dimension not greater than 1,

all finitely generated stably free modules over R[X ] are free giving a positive answer

to the Hermite ring conjecture (see [8], [9]) in dimension one. Our goal in this paper

is to establish analogous results over the Laurent polynomial ring R[X,X−1].
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Some classical facts are reminded in order to give a self-contained paper. All

the considered rings are unitary and commutative. The undefined terminology is

standard as in [7], [9], and for constructive algebra in [10], [12], [17].

2. An analogue of the lemma of Suslin for Laurent polynomials

Definition 2.1. Let A be a discrete ring.

(1) If f ∈ A[X,X−1], a minimal shifted version of f is f̃ = Xnf ∈ A[X ], where

n ∈ Z is minimal possible. For example, a minimal shifted version of X−3 +X +X2

is 1 +X4 +X5, a minimal shifted version of X2 +X4 is 1 +X2.

(2) If f ∈ A[X,X−1] is a nonzero Laurent polynomial, we denote deg(f) =

hdeg(f)− ldeg(f), where hdeg(f) and ldeg(f) denote, respectively, the highest and

lowest degrees of f .

For example, deg(X−3+X+X2) = 2− (−3) = 5. The degree of f can be defined

as the (classical) degree of a minimal shifted version of f .

Note that if A is a nondiscrete ring and f =
p∑

n=m

anX
n ∈ A[X,X−1] is a nonzero

Laurent polynomial with p > m ∈ Z, thenm and p are, respectively, the formal lowest

and highest degrees of f . We denote formal deg(f) = formal hdeg(f)−formal ldeg(f).

A minimal formal shifted version of f is f̃ =
p−m∑
k=0

am+kX
k ∈ A[X ]. If f is given

as zero, its formal degree is −1.

In the case of a Laurent polynomial which is given as doubly monic, formal versions

become useless.

Definition 2.2. If the ring A is nontrivial, an element f ∈ A[X,X−1] is called

a doubly monic Laurent polynomial if the coefficients of the highest degree and the

lowest degree terms are units (∈ A
×).

The following theorem is a generalization of a famous lemma of Suslin (see [14],

Lemma 2.3) to Laurent polynomial rings following the method explained in [15]. The

constructive form of Suslin lemma (by Yengui) can be found in [10], Theorem XV-6.1

and [17], Theorem 57.

Theorem 2.1. LetA be a commutative ring. If 〈v1(X), . . . , vn(X)〉=A[X,X−1],

where v1 is doubly monic and n > 3, then there exist γ1, . . . , γs ∈ En−1(A[X ]) such

that:

〈Res(ṽ1, e1.γ1
t(ṽ2, . . . , ṽn)), . . . ,Res(ṽ1, e1.γs

t(ṽ2, . . . , ṽn))〉 = A.

In particular, 1 ∈ 〈ṽ1, . . . , ṽn〉 in A[X ].

Here e1 ·x, where x is a column vector, stands for the first coordinate of x, and ṽi
is a shifted version of vi.
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Lemma 2.1 ([1], Theorem 7). Let B be a ring. Let u, v ∈ B[X ] with u doubly

monic. Then

〈u, v〉 = 〈1〉 in B[X,X−1] ⇔ 〈ResX(u, v)〉 = 〈1〉 in B.

In the case the base ring A contains an infinite field, we have the following more

precise and simpler formulation of Theorem 2.1. It is worth pointing out that this

result first appeared in [1] but with a nonconstructive proof. Moreover, the con-

structive proof we give below inspired by the proof of Theorem 1 of [11], after a shift

that transforms Laurent polynomial in usual polynomials, enabled us to give more

precise bounds than Proposition 9 of [1] on the degrees of the computed resultants.

Theorem 2.2. Let A be a ring, v1, . . . , vn, u1, . . . , vn ∈ A[X,X−1] such that
n∑

i=1

uivi = 1, v1 doubly monic, and n > 3. Denote l = deg v1, s = (n − 2)l + 1, and

suppose that A contains a set E = {y1, . . . , ys} such that yi − yj is invertible for

each i 6= j. For each 1 6 r 6 n and 1 6 i 6 s, letting ṽr be a minimal shifted version

of vr and denoting ri = ResX(ṽ1, ṽ2 + yiṽ3 + . . . + yn−2
i ṽn), then 〈r1, . . . , rs〉 = A,

that is, there exist α1, . . . , αs ∈ A such that α1r1 + . . . + αsrs = 1. In particular,

1 ∈ 〈ṽ1, . . . , ṽn〉 in A[X ].

Furthermore, supposing that A is a polynomial ring in a finite number of variables

over a basic ring B and that max
16i6n

{deg ui} 6 D, 1+ max
16i6n

{deg vi} 6 d (where d > 2),

then for each 1 6 i 6 s, deg(αi) 6
1
16d

4(d+D+2)2 and deg(αiri) 6
1
16d

4(d+D+3)2

(here, by degree we mean the total degree).

P r o o f. Let us denote wi = ṽ2 + yiṽ3 + . . .+ yn−2
i ṽn, ri := ResX(ṽ1, wi), 1 6 i 6

s = (n− 2)d+1, l := d+1, where d = deg ṽ1, and suppose that 1 ∈ 〈ṽ1, . . . , ṽn〉. Let

Z1 = . . . = Zn−2 = z1,

Zn−1 = . . . = Z2n−4 = z2,

...

Z(n−2)(k−1)+1 = . . . = Z(n−2)k = zk,

...

Z(n−2)(d−1)+1 = . . . = Z(n−2)d = zd,

Z(n−2)d+1 = zd+1,

be an enumeration of l indeterminates over A with n− 2 repetitions except the last

one which is repeated once. Let us denote

I = 〈ṽ1(Zi), wi(Zi) : 1 6 i 6 s〉.
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First, we deduce that 1 = 0 in A[Z±1
1 , . . . , Z±1

s ]/I, that is, 1 ∈ I. Then for 0 6

k 6 s, denoting Ik = 〈ṽ1(Zi), wi(Zi) : 1 6 i 6 k〉, Jk = Ik + 〈ri : k < i 6 s〉 and

Ak = A[Z±1
1 , . . . , Z±1

k ]/Ik and using Lemma 2.1 we get by induction on k from s

to 0 that 1 ∈ Jk. So 1 ∈ J0 = 〈rs, . . . , r1〉.

For the degree bounds, by an argument similar to that of the proof of Theorem 1

of [11], we deduce that for each 1 6 i 6 s, deg(αi) 6
1
4d

4(12 (d+D) + 1)2. Moreover,

since deg ri 6 d2, we get

deg(αiri) 6
d4

4

(d+D

2
+ 1

)2
+ d2 6

(d2
4
(d+D + 3)

)2
.

�

3. The main result

We begin by extending Lemma 2 of [16] to Laurent polynomial rings.

Lemma 3.1. Let R be a ring and I an ideal of R[X,X−1] containing a doubly

monic polynomial. If J is an ideal of R such that I + J [X,X−1] = R[X,X−1], then

(I ∩R) + J = R.

P r o o f. Let us denote by f a doubly monic polynomial in I. Without loss of

generality, we assume that f ∈ R[X ]. As I + J [X,X−1] = R[X,X−1], there

exist g ∈ I and h ∈ J [X,X−1] such that g + h = 1. For some l ∈ Z, we

can write X lg̃ + h = 1. Since we have 〈f, g̃)〉 = (R/J)[X,X−1], we obtain by

Lemma 2.1 that Res(f, (g̃) ∈ (R/J)×. As f is monic, we have Res(f, g̃) = Res(f, g̃)

and thus 〈Res(f, g̃)〉 + J = R. The desired conclusion follows from the fact that

Res(f, g̃) ∈ I ∩R. �

Lemma 3.2 ([13], Lemma 3). Let R be a ring and f(X) ∈ R[X ] of degree n > 0

such that f(0) ∈ R
×. Then for any g(X) ∈ R[X ] and k > deg g − deg f + 1, there

exists hk(X) ∈ R[X ] of degree less than n such that g(X) ≡ Xkhk(X) mod fR[X ].

Lemma 3.3 ([13], Lemma 1). Let R be a ring, and

t(x0, . . . , xr) ∈ Umr+1(R), r > 2,

and let t be an element of R which is invertible mod〈x0, . . . , xr−2〉. Then there

exists E ∈ Er+1(R) such that E t(x0, . . . , xr) =
t(x0, . . . , xr−1, t

2xr).

Now we are reaching a crucial stage in our objective to prove that for any ring R

with Krull dimension not greater than 1, all finitely generated stably free modules

over R[X,X−1] are free.
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Lemma 3.4 (key lemma). Let (v0(X), v1(X), . . . , vn(X)) ∈ Umn+1(R[X,X−1]),

where R is a reduced ring of Krull dimension not greater than 1, n > 2. Then

(ṽ0(X), ṽ1(X), . . . , ṽn(X)) ∼E (w0(X), w1(X), c2, . . . , cn),

where ci are constants for i > 2, wi ∈ R[X ] with degw1(X) 6 1.

P r o o f. By virtue of Lemma 3.3, as X is a unit in R[X,X−1], we can suppose

that vi ∈ R[X ].

We may also assume m0 := deg v0 > 0. Let a and b be, respectively, the highest

and the lowest coefficients of v0. If a, b ∈ R
×, then v0 is a doubly monic polynomial,

and as a consequence of Theorem 2.1 and the algorithm given in [1], we obtain

t(v0, v1, . . . , vn) ∼E
t(1, 0, . . . , 0).

Now suppose that v0 is not doubly monic. As dim(R/〈a〉) 6 0 and over any

zero-dimensional ring, all unimodular vectors of length not less than 2 are el-

ementarily completable, we can suppose that t(v0, v1, . . . , vn) ≡ t(1, 0, . . . , 0)

(mod aR[X,X−1]n+1).

By Lemma 3.2, as v0(0) ∈ R
×, we assume now vi = X2kwi, where degwi < m0

for 1 6 i 6 n. By Lemma 3.3, we assume deg vi < m0.

If m0 6 1, our claim is established. Assume now that m0 > 2.

Let c1, . . . , cm0(n−1) be the coefficients of 1, X, . . . , Xm0−1 in the polynomi-

als v2, . . . , vn, J the ideal generated by the coefficients of v2, . . . , vn, and I =

v0R[X,X−1] + v1R[X,X−1]. As

I + J [X,X−1] = R[X,X−1],

by Lemma 3.1 the ideal generated in Ra (whereRa := S−1
R, S := aN) by I∩Ra and

J is Ra. As n > 2 > dimRa, by Lemma 2 of [13] (this is the stable range theorem,

see [4] for a constructive proof), there exists (c′1, . . . , c
′

m0(n−1)) ≡ (c1, . . . , cm0(n−1))

(mod v0R[X ] + v1R[X ]) ∩R such that

Rac
′
1 + . . .+Rac

′
m0(n−1) = Ra.

Assume now that

Rac1 + . . .+Racm0(n−1) = Ra.

By [3], §4, 1 (b), the ideal v0R[X ]+v2R[X ]+. . .+vnR[X ] contains a polynomial h(X)

of degree m0 − 1 which is unitary in Ra[X ]. Let LC(h) = uak (the leading coef-

ficient of h), where u ∈ R
×. Using Lemma 3.3, we can perform by elementary

transformations

t(v0, v1, . . . , vn) →
t(v0, (a

k)2v1, . . . , vn)

→ t(v0, (a
k)2v1 + (1 − aku−1LC(v1))h, . . . , vn).
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Since (ak)2v1+(1−aku−1LC(v1))h is unitary inRa[X ], we can suppose that v1 is uni-

tary in Ra[X ], deg v1 = m0 − 1. By Lemma 3.3, we can assume that deg vi < deg v1
for each 2 6 i 6 n. By an element of En+1(R[X ]), we can exchange v0 and −v1. So

we can suppose that v0 is unitary in Ra[X ] and deg v0 = m0 − 1. By Lemma 3.3,

we can also assume that deg v1 < deg v0. Repeating the argument above, we lower

the degree of vi and we obtain finally a vector of the form
t(v0, v1, . . . , vn) with

deg v0 > degv1 = 1 and vi ∈ R for 2 6 i 6 n. �

Recall that the boundary ideal of an element a of a ring R is the ideal I(a) of R

generated by a and all the y ∈ R such that ay is nilpotent. Moreover, dimR 6

d ⇔ dim(R/I(a)) 6 d− 1 for all a ∈ R (this defines the Krull dimension recursively

initializing with “dimR 6 −1 ⇔ R being trivial”), see [10].

Recall also that for any ringR, the ringR〈X〉 (orR(X)) is the localization ofR[X ]

at monic polynomials (or primitive polynomials). We have R[X ] ⊆ R〈X〉 ⊆ R(X),

and the containment R〈X〉 ⊆ R(X) becomes an equality if and only if dimR 6 0,

see [6] and for a constructive proof see [5].

Theorem 3.1. Let R be a ring of dimension not greater than 1, n > 2, and

V = t(v0, . . . , vn) ∈ Umn+1(R[X,X−1]). Then there exists Γ ∈ GLn+1(R[X,X−1])

such that ΓV = t(1, 0, . . . , 0).

P r o o f. Let us recall that GK0Ared = GK0A and GK0Bred = GK0B, see [10],

Chapter XVI. In particular, if B = R[X,X−1], we have Bred = Rred[X,X−1]

(a Laurent polynomial f is nilpotent if and only if f̃ is nilpotent and by virtue of

Lemma II-2.6 of [10] it is nilpotent if and only if all its coefficients are nilpotent). So

we can suppose that R is a reduced ring.

In order to simplify, we will suppose that ṽi = vi. Moreover, by virtue of

Lemma 3.4, we can suppose that v0 = a is constant. Let us consider the ring

T := R/I(a). Since dimT 6 0, we have that T〈X〉 = T〈X,X−1〉 (see [2]),

where T〈X,X−1〉 is the localization of T[X,X−1] at doubly monic polynomials,

and dimT〈X,X−1〉 6 0. By the stable range theorem (see [4] for a constructive

proof), there exists v′1 ≡ v1 mod v2 which is invertible in T 〈X,X−1〉, that is, it di-

vides a doubly monic polynomial in T[X,X−1]. So without loss of generality, we

can assume that v1 divides a doubly monic polynomial in T[X,X−1], that is, there

exists a doubly monic polynomial u ∈ R[X,X−1], w, h1, h2,∈ R[X,X−1] with ah2

nilpotent such that

wv1 = u+ ah1 + h2.

This means that 1 ∈ 〈v1, a, h2〉 in the ring R〈X,X−1〉. Since ah2 is nilpotent, by

virtue of Lemma 2.3 of [4], we have 1 ∈ 〈v1, a + h2〉. It follows that there exist

w1, w2 ∈ R[X,X−1] such that v1w1+(a+h2)w2 =: u′ is a doubly monic polynomial.
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Let d ∈ N and denote by u0, . . . , un ∈ R[X,X−1] Laurent polynomials such that

u0v0 + . . .+ unvn = 1. Denoting

γ1 := E1,2(h2u1) . . . E1,n+1(h2un),

γ2 := E3,2((X
d +X−d)w1)E3,1((X

d +X−d)w2),

γ := γ2γ1,

we have

γ1V = t(a+ h2, v1, . . . , vn)

and

γV = t(a+ h2, v1, v2 + (Xd +X−d)u′, v3, . . . , vn).

For sufficiently large d, the third entry of γV becomes a doubly monic polynomial.

Thus, as stated in the proof of Lemma 3.4, by virtue of Theorem 2.1 and the algorithm

given in [1], we can transform the obtained vector into t(1, 0, . . . , 0). Note that

the shifted vector Ṽ = t(ṽ0, . . . , ṽn) can be obtained from V via multiplication by

a diagonal matrix D with suitable powers of X on the diagonal. �

Corollary 3.1. For any ring R of Krull dimension not greater than 1, all finitely

generated stably free modules over R[X,X−1] are free.
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