
Czechoslovak Mathematical Journal

Xiaoli Liu; Zhishan Yang
Weighted Erdős-Kac type theorem over quadratic field in short intervals

Czechoslovak Mathematical Journal, Vol. 72 (2022), No. 4, 957–976

Persistent URL: http://dml.cz/dmlcz/151121

Terms of use:
© Institute of Mathematics AS CR, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/151121
http://dml.cz


Czechoslovak Mathematical Journal, 72 (147) (2022), 957–976
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Abstract. Let K be a quadratic field over the rational field and aK(n) be the number
of nonzero integral ideals with norm n. We establish Erdős-Kac type theorems weighted
by aK(n)

l and aK(n
2)l of quadratic field in short intervals with l ∈ Z+. We also get

asymptotic formulae for the average behavior of aK(n)
l and aK(n

2)l in short intervals.
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1. Introduction

Let K be a number field of degree q > 2 and let OK be its ring of algebraic integers.

Then the Dedekind zeta function of K is defined as

ζK(s) =
∑

a

1

(Na)s
=

∑

n>1

aK(n)

ns
, ℜs > 1,

where a varies over nonzero integral ideals in OK, aK(n) is called the ideal counting

function which is defined as the number of nonzero integral ideals in OK with norm n

and Na is the norm of a.

The function aK(n) is very important in algebraic number theory. Since its behav-

ior is irregular, one often tries to study the asymptotic behavior of aK(n). In 1927,

Landau in [6] gave an asymptotic formula for the average behavior of aK(n). It is

hard to improve Landau’s result. In 1993, Nowak in [10] gave a more precise error

term for any algebraic number field of degree q > 3.
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In 2010, Lü in [8] gave the average behavior of powers of aK(n). They showed

that if K is a Galois extension over Q of degree q > 2, then for any ε > 0 and any

integer l > 2,
∑

n6x

aK(n)
l = xPl(log x) +O(x1−3/(ql+6)+ε),

where Pl(t) denotes a suitable polynomial in t of degree q
l−1 − 1. This improved the

error term O(x1−2/(ql)+ε) of Chandraseknaran and Good (see [2]) for q > 3 and l > 2.

In 2011, Lü and Yang in [9] gave the asymptotic behavior of aK(n) in quadratic

field over square numbers. They showed that if K is a quadratic field, then for any

integer l > 1,
∑

n6x

aK(n
2)l = xPβ(log x) +O(x1−3/(2β+2)+ε),

where

β =
3l + 1

2
,

Pβ(t) is a polynomial in t of degree β − 1 and ε > 0 is an arbitrarily small constant.

Moreover, when l > 3, they got an asymptotic formula with a more precise error term.

In 2015, for a quadratic number field K with discriminant d(K), Zhai in [14] gave

the short interval estimate

(1.1)
∑

x<n6x+y

aK(n)
2 ∼ B0y log x,

which holds if y = o(x) and y/(x1/2 log x) → ∞ as x→ ∞, where

B0 =
6

π
2
L2(1, χ′)

∏

p|d(K)

p

p+ 1
,

where p is a rational prime number and L(s, χ′) is a Dirichlet L-function with respect

to a certain nonprincipal real character modulo |d(K)|.
The discussion of the distribution of arithmetic functions can also be viewed from

the perspective of probability. In 1939, Erdős and Kac in [4] proved that the distri-

bution of ω(n) on the set {n ∈ N : n 6 x} is approximately Gaussian, with mean
log log x and standard deviation (log log x)1/2, i.e., for any λ ∈ R we have

1

x

∑

n6x

ω(n)−log log x6λ(log log x)1/2

1 → Φ(λ), x→ ∞,

where ω(n) is the number of distinct prime divisors of n and Φ(λ) is the normal

distribution function.
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We now assume that K = Q
(
√
d
)

, where d is a square-free integer. Assume the

set Ωx,y = {n ∈ N : x 6 n 6 y}, where x is a sufficiently large number and y = o(x).

We will define two new uniform probability measures associated with aK(n) in Ωx,y
and study the Erdős-Kac type theorem as follows. In fact, the authors have proved

a special case for Gaussian field in paper, see [7]. In this paper, the method is

similar to the previous article, but has a difference in dealing with aK(n) since it is

complicated in general quadratic field.

1.1. Erdős-Kac type theorem with weight aK(n)
l over quadratic field in

short intervals. Define the summatory function in short intervals as

Vl(x, y) :=
∑

x<n6x+y

aK(n)
l,

where l ∈ Z+, x7/12+ε 6 y 6 x. We prove the following theorem

Theorem 1.1. Let ε ∈ (0, 5
12 ). Then for any real number λ and any integer

l ∈ Z+ we have

(1.2)
1

Vl(x, y)

∑

x<n6x+y

ω(n)−2l−1 log log x6λ(2l−1 log log x)1/2

aK(n)
l = Φ(λ) +Ol,ε

( 1√
log log x

)

uniformly for x > 3 and x7/12+ε 6 y 6 x, where the implied constant depends on l

and ε only. The error term in (1.2) is optimal.

Remark 1.1. The exponent 7
12 in Theorem 1.1 comes from Huxley’s zero-density

bound for the Riemann ζ-function. This constant can be reduced to 1
2 if we assume

the zero-density hypothesis.

In order to prove that the error term in (1.2) is optimal, we need to consider the

local distribution of aK(n)
l in short intervals. For l ∈ Z+ and k ∈ N, define

(1.3) Vk,l(x, y) :=
∑

x<n6x+y
ω(n)=k

aK(n)
l.

We have the following result.

Theorem 1.2. Let l ∈ Z+, k ∈ N, B > 0 and ε ∈ (0, 5
12 ). We have

(1.4) Vk,l(x, y) =
y

log x

(2l−1 log log x)k−1

(k − 1)!

×
{

πj

( k − 1

2l−1 log log x

)

+Ol,B,ε

( k − 1

(log log x)2
+

log log x

k log x

)}

959



uniformly for x > 3, x7/12+ε 6 y 6 x and 1 6 k 6 2l−1B log log x, where

(1.5) π1(z) :=
2l−1

Γ(2l−1z + 1)

(

1 +
∑

v>1

(v + 1)lz

2v

)

(1

2

)2l−1z

v(z) if d ≡ 1 (mod 8),

π2(z) :=
2l−1

Γ(2l−1z + 1)

(

1 +
z

3

)(1

2

)2l−1z

v(z) if d ≡ 5 (mod 8),

π3(z) :=
2l−1

Γ(2l−1z + 1)
v(z) if d ≡ 2, 3 (mod 4)

with

v(z) :=
∏

p∤d(K)
p>3

(d/p)=1

(

1 +
∑

v>1

(v + 1)lz

pv

)

(

1− 1

p

)2l−1z ∏

p∤d(K)
p>3

(d/p)=−1

(

1 +
z

p2 − 1

)(

1− 1

p

)2l−1z

×
∏

p|d(K)

(

1 +
z

p− 1

)(

1− 1

p

)2l−1z

and the implied constant depends on l, B and ε only.

In Section 4.1, we will establish the connection between Vk,l(x, y) and the error

term in formula (1.2). By using the estimation of Vk,l(x, y) in Theorem 1.2, we

proved that the error term in formula (1.2) is optimal.

1.2. Erdős-Kac type theorem with weight aK(n
2)l over quadratic field

in short intervals. Similarly to the functions Vl(x, y) and Vk,l(x, y) for aK(n)
l, we

define the following functions for aK(n
2)l:

(1.6) Ul(x, y) :=
∑

x<n6x+y

aK(n
2)l, Uk,l(x, y) :=

∑

x<n6x+y
ω(n)=k

aK(n
2)l,

where l ∈ Z+, k ∈ N and x7/12+ε 6 y 6 x.

Our results are as follows.

Theorem 1.3. Let ε ∈ (0, 5
12 ). Then for any real number λ and any integer l ∈ Z+

we have

(1.7)
1

Ul(x, y)

∑

x<n6x+y

ω(n)−β log log x6λ(β log log x)1/2

aK(n
2)l = Φ(λ) +Ol,ε

( 1√
log log x

)

uniformly for x > 3 and x7/12+ε 6 y 6 x, where the implied constant depends on l

and ε only. The error term in (1.7) is optimal.
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Theorem 1.4. Let l ∈ Z+, k ∈ N, B > 0 and ε ∈ (0, 5
12 ). We have

(1.8) Uk,l(x, y) =
y

log x

(β log log x)k−1

(k − 1)!

×
{

λj

( k − 1

β log log x

)

+Ol,B,ε

( k − 1

(log log x)2
+

log log x

k log x

)}

uniformly for x > 3, x7/12+ε 6 y 6 x and 1 6 k 6 βB log log x, where

(1.9) λ1(z) :=
β

Γ(βz + 1)

(

1 +
∑

v>1

(2v + 1)lz

2v

)

(1

2

)βz

u(z) if d ≡ 1 (mod 8),

λ2(z) :=
β

Γ(βz + 1)
(1 + z)

(1

2

)βz

u(z) if d ≡ 5 (mod 8),

λ3(z) :=
β

Γ(βz + 1)
u(z) if d ≡ 2, 3 (mod 4)

with

u(z) :=
∏

p∤d(K)
p>3

(d/p)=1

(

1 +
∑

v>1

(2v + 1)lz

pv

)

(

1− 1

p

)βz ∏

p∤d(K)
p>3

(d/p)=−1

(

1 +
z

p− 1

)(

1− 1

p

)βz

×
∏

p|d(K)

(

1 +
z

p− 1

)(

1− 1

p

)βz

and the implied constant depends on l, B and ε only.

To prove the above conclusions, we will study the partial holomorphic continua-

tion of functions
∑

n>1

aK(n)
lzω(n)n−s and

∑

n>1

aK(n
2)lzω(n)n−s, z ∈ C, l ∈ Z+, into

the critical strip 0 < ℜs < 1. We prove the asymptotic estimations in the short

intervals of the arithmetic functions aK(n)
lzω(n) and aK(n

2)lzω(n) in Lemmas 2.3

and 2.4, respectively. These two estimations will play a key role in the proof of

Theorems 1.1–1.4.

In particular, let z = 1 in Lemma 2.3. We have

Vl(x, y) =
∑

x<n6x+y

aK(n)
l = y(log x)2

l−1−1
{

πj(1) +Oε

( 1

log x

)}

.

This generalizes the result of Lü and Wang (see [8]) in short intervals over quadratic

field. And when l = 2, we give a more precise asymptotic formula which improves

the result of Zhai, see [14].
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We can also deduce that

Ul(x, y) =
∑

x<n6x+y

aK(n
2)l = y(log x)β

{

λj(1) +Oε

( 1

log x

)}

by taking z = 1 in Lemma 2.4. That is, we generalize Lü and Yang’s result (see [9])

to the case of short intervals over a quadratic field.

2. Some preliminary lemmas

In this section, let us fix some notations:

⊲ ε is an arbitrarily small positive constant,

⊲ r ∈ N, α > 0, δ > 0, A > 0, M > 0 (constants),

⊲ z := (z1, . . . , zr) ∈ Cr and ω := (ω1, . . . , ωr) ∈ Cr,

⊲ κ := (κ1, . . . , κr) ∈ (R+∗)r with 1 6 κ1 < . . . < κr 6 2κ1,

⊲ χ := (χ1, . . . , χr) and the χi are non principal Dirichlet characters,

⊲ B := (B1, . . . ,Br) ∈ (R+∗)r and C := (C1, . . . ,Cr) ∈ (R+∗)r,

⊲ the notation |z| 6 B means that |zi| 6 Bi for 1 6 i 6 r.

Assume f(n) is an arithmetic function and its associated Dirichlet series is de-

fined by

F(s) :=
∑

n>1

f(n)n−s.

The Dirichlet series F(s) is called of typeP(κ, z,ω,B,C, α, δ,A,M) if it satisfies

the following conditions:

(a) For any ε > 0 we have

|f(n)| ≪ε Mnε, n > 1,

where the implied constant depends only on ε.

(b) We have
∑

n>1

|f(n)|n−σ 6M
(

σ − 1

κ1

)−α
, σ >

1

κ1
.

(c) The Dirichlet series F(s) has the expression

F(s) = ζ(κs)zL(κs;χ)ωG(s),

where

ζ(κs)z :=
∏

16i6r

ζ(κis)
zi , L(κs;χ)ω :=

∏

16i6r

L(κis, χi)
ωi
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and the Dirichlet series G(s) is a holomorphic function in (some open set con-

taining) σ > (2κ1)
−1. Moreover, in this region, G(s) satisfies the bound

|G(s)| 6M(|τ |+ 1)max{δ(1−κ1σ),0} logA(|τ | + 1)

uniformly for |z| 6 B and |ω| 6 C. In the sequel, we implicitly define the real

numbers σ and τ through the relation s = σ+iτ and choose the principal value

of the complex logarithm.

Usually, we remember that N(σ, T ) is the number of zeros of ζ(s) in the region

ℜs > σ and |Ims| 6 T . It is well known that there are two constants ψ and η such

that

N(σ, T ) ≪ Tψ(1−σ)(logT )η

for 1
2 6 σ 6 1 and T > 2. Huxley in [5] showed that ψ = 12

5 and η = 9 are admissible.

The following result is Corollary 1.2 of [11], which constitutes one of the key tools.

Lemma 2.1. If the Dirichlet series F(s) is of type P(κ, z,ω,B,C, α, δ,A,M),

then for any ε > 0 we have

∑

x<n6x+x1−1/κ1y

f(n) = y′(log x)z−1
{

λ0(κ, z,ω,χ) +O
( M

log x

)}

uniformly for x > 3, x(1−(ψ+δ)−1)/κ1+ε 6 y 6 x1/κ1 , |z| 6 B, |ω| 6 C, where

y′ := κ1((x+ x1−1/κ1y)1/κ1 − x1/κ1),

λ0(κ, z,ω,χ) :=
G(1/κ1)

κz11 Γ(z1)

∏

26i6r

ζ
( κi
κ1

)zi ∏

16i6r

L
(κi
κ1
, χi

)ωi

and the implied constant in the O-term depends only on A, B, C, α, δ and ε. Note

that ψ = 12
5 is admissible.

We will give a formula for aK(n) which will be used in Lemma 2.3.

Lemma 2.2. LetK/Q be a Galois extension of degree q,m be an integer satisfying

(m, q) = r. Then

aK(p
m) =







(

(q +m)/f − 1

m/f

)

if f | r,

0 if f ∤ r

holds true for all unramified primes p.

P r o o f. See Lemma 2.2 in [9]. �
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Lemma 2.3. Let B > 0 and ε ∈ (0, 5
12 ). Then we have

(2.1)
∑

x<n6x+y

aK(n)
lzω(n) = y(log x)2

l−1z−1
{

zπj(z) +OB,ε

( 1

log x

)}

uniformly for x > 3, x7/12+ε 6 y 6 x and |z| 6 B, where πj(z) (j = 1, 2, 3) are

defined as in (1.5). In particular, taking z = 1 we get

(2.2) Vl(x, y) =
∑

x<n6x+y

aK(n)
l = y(log x)2

l−1−1
{

πj(1) +Oε

( 1

log x

)}

, j = 1, 2, 3

uniformly for x > 3 and x7/12+ε 6 y 6 x, where πj(z) are defined in Theorem 1.2.

P r o o f. Case 1 : d ≡ 1 (mod 4).

Subcase 1.1 : d ≡ 1 (mod 8).

Since the function aK(n) is multiplicative for ℜs > 1 we can write

F1(s; z) :=
∑

n>1

aK(n)
lzω(n)

ns
=

∏

p

(

1 +
zaK(p)

l

ps
+
zaK(p

2)l

p2s
+
zaK(p

3)l

p3s
+ . . .

)

=
(

1 +
2lz

2s
+

3lz

22s
+

4lz

23s
+ . . .

)

×
∏

p|d(K)

(

1 +
z

ps
+

z

p2s
+

z

p3s
+ . . .

)

×
∏

p∤d(K)
p>3

(d/p)=1

(

1 +
2lz

ps
+

3lz

p2s
+

4lz

p3s
+ . . .

)

×
∏

p∤d(K)
p>3

(d/p)=−1

(

1 +
z

p2s
+

z

p4s
+

z

p6s
+ . . .

)

=

(

1 +
∑

v>1

(v + 1)lz

2vs

)

×
∏

p∤d(K)
p>3

(d/p)=1

(

1 +
∑

v>1

(v + 1)lz

pvs

)

×
∏

p∤d(K)
p>3

(d/p)=−1

(

1 +
z

p2s − 1

)

×
∏

p|d(K)

(

1 +
z

ps − 1

)

.

Let χ′ be the real primitive Dirichlet character of modulo |d(K)| and L(s, χ′) be

the Dirichlet L-function corresponding to χ′. According to the discusssion in Bump’s

book (see [1], Chapter 1, Section 7), we have

aK(p) =
∑

m|p
χ′(m) = 1 + χ′(p).
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Then for ℜs > 1 we have

L(s, χ′) =
∏

p

(

1− χ′(p)

ps

)−1

=
(

1− 1

2s

)−1 ∏

p∤d(K)
p>3

(d/p)=1

(

1− 1

ps

)−1 ∏

p∤d(K)
p>3

(d/p)=−1

(

1 +
1

ps

)−1

.

For simplicity, we put

γ =
3l − 1

2
in what follows. Thus, we can write

F1(s; z) = ζ(s)2
l−1zζ(2s)(β−2l−1)z−22l−2z2L(s, χ′)2

l−1zL(2s, χ′)γz−22l−2z2G(s; z),

where G(s; z) = G1(s; z)G2(s; z)G3(s; z)G4(s; z) and

G1(s; z) :=

(

1 +
∑

v>1

(v + 1)lz

2vs

)

(

1− 1

2s

)2lz(

1− 1

22s

)(3l−2l−1)z−22l−1z2

,

G2(s; z) :=
∏

p∤d(K)
p>3

(d/p)=1

(

1 +
∑

v>1

(v + 1)lz

pvs

)

(

1− 1

ps

)2lz(

1− 1

p2s

)(3l−2l−1)z−22l−1z2

,

G3(s; z) :=
∏

p∤d(K)
p>3

(d/p)=−1

(

1 +
z

p2s − 1

)(

1 +
1

p2s

)−z(
1− 1

p4s

)βz−22l−2z2

,

G4(s; z) :=
∏

p|d(K)

(

1 +
z

ps − 1

)(

1− 1

ps

)2l−1z(

1− 1

p2s

)(β−2l−1)z−22l−2z2

.

It is clear that there is a positive constant M1 =M1(B) depending on B such that

(2.3) |G1(s; z)| 6M1

uniformly for ℜs > 1
2 and |z| 6 B.

The Euler product G2(s; z) is expandable as a Dirichlet series

G2(s; z) =
∑

n>1

g2(n)

ns
=

∏

p∤d(K)
p>3

(d/p)=1

(

1 +
∑

v>1

g2(p
v)

pvs

)

,

where g2(n) is the multiplicative function whose values on prime powers are given

by the identity

1+
∑

v>1

g2(p
v)ξv =

(

1+
∑

v>1

(v+1)lzξv
)

(1− ξ)2lz(1− ξ2)(3l−2l−1)z−22l−1z2 (|ξ| < 1).
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In particular, for all the prime numbers that satisfy the conditions p ∤ d(K), p > 3

and (d/p) = 1, we have

(2.4) g2(p) = g2(p
2) = 0

and

(2.5)

|g2(pv)| =
∣

∣

∣

∣

1

2πi

∮

|ξ|=2−1/6

(

1 +
∑

v>1

(v + 1)lzξv
)

(1 − ξ)2
lz(1− ξ2)(3

l−2l−1)z−22l−1z2

ξv+1
dξ

∣

∣

∣

∣

6M0(B)2v/6 (v > 3, |z| 6 B)

with

M0(B) := max
|z|6B

max
|ξ|=2−1/6

∣

∣

∣

∣

(

1 +
∑

v>1

(v + 1)lzξv
)

(1− ξ)2
lz(1− ξ2)(3

l−2l−1)z−22l−1z2
∣

∣

∣

∣

.

In view of (2.4), we easily deduce that

log |G2(s; z)| = log

∣

∣

∣

∣

∏

p∤d(K)
p>3

(d/p)=1

(

1 +
∑

v>3

g2(p
v)

pvs

)
∣

∣

∣

∣

6
∑

p∤d(K)
p>3

(d/p)=1

∑

v>3

|g2(pv)|
pvσ

.

Therefore, when σ > 1
3 and |z| 6 B, by (2.5), we have

log |G2(s; z)| 6M0(B)
∑

p∤d(K)
p>3

(d/p)=1

∑

v>3

(2(1/6)p−σ)v 6
M0(B)21/2

1− 2−1/6

∑

p∤d(K)
p>3

(d/p)=1

1

p3σ
.

This shows that the Euler product G2(s; z) converges absolutely for σ >
1
3 and

(2.6) |G2(s; z)| 6M2 (σ > 1
2 , |z| 6 B)

with

M2 =M2(B) := exp

(

M0(B)21/2

1− 2−1/6

∑

p∤d(K)
p>3

(d/p)=1

1

p3/2

)

.

Similarly, we can prove that there is a positive constant M3 =M3(B) such that

(2.7) |G3(s; z)| 6M3 (σ > 1
2 , |z| 6 B),

and since the ramified primes are finite, we can deduce that

(2.8) |G4(s; z)| 6M4 (σ > 1
2 , |z| 6 B),

where M4 =M4(B) is a positive constant.
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Combining (2.3), (2.6), (2.7) and (2.8), we have

|G(s; z)| 6M1M2M3M4 =:M

for ℜs > 1
2 and |z| 6 B.

From the above proof we get:

(a) For any ε > 0,

|zω(n)| 6 B(1+o(1))logn/ log logn = n(1+o(1)) logB/ log logn ≪ nε/2.

Chandrasekharan and Narasimhan in [3] proved that aK(n) is a multiplica-

tive function and aK(n) ≪ (d(n))q−1. When K = Q
(
√
d
)

, we have aK(n)
l ≪

d(n)l ≪ nε/2. Then

|aK(n)lzω(n)| ≪ε Mnε (n > 1).

(b)
∑

n>1

|aK(n)lzω(n)|
nσ

6M(σ − 1)−2l−1|z| (σ > 1).

(c) The Dirichlet series G(s; z) satisfies the bound |G(s; z)| 6 M for ℜs > 1
2 and

|z| 6 B.

This shows that the Dirichlet series F1(s; z) is of type P(κ, z,ω,B,C, 2l−1|z|,
0, 0,M) with κ = (1, 2), z = (2l−1z, (β−2l−1)z−22l−2z2), ω = (2l−1z, γz−22l−2z2),

B = (2l−1B, (β − 2l−1)B + 22l−2B2), C = (2l−1B, γB + 22l−2B2), χ = (χ′, χ′).

Thus, substituting ψ = 12
5 into Lemma 2.1, we get the case where j = 1 in the

required asymptotic formula (2.1).

Subcase 1.2 : d ≡ 5 (mod 8)

F2(s; z) :=
(

1 +
z

22s − 1

)

∏

p∤d(K)
p>3

(d/p)=1

(

1 +
∑

v>1

(v + 1)lz

pvs

)

∏

p∤d(K)
p>3

(d/p)=−1

(

1 +
z

p2s − 1

)

×
∏

p|d(K)

(

1 +
z

ps − 1

)

= ζ(s)2
l−1zζ(2s)(β−2l−1)z−22l−2z2L(s, χ′)2

l−1zL(2s, χ′)γz−22l−2z2G′(s; z),

where

G′(s; z) =
(

1 +
z

22s − 1

)(

1 +
1

22s

)−z(
1− 1

24s

)βz−22l−2z2

G2(s; z)G3(s; z)G4(s; z)

= G′
1(s; z)G2(s; z)G3(s; z)G4(s; z).
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Similarly to the estimation of G1(s; z), we can prove that there is a positive con-

stant M ′
1 =M ′

1(B) such that

(2.9) |G′
1(s; z)| 6M ′

1 (σ > 1
2 , |z| 6 B).

In Subcase 1.1, we have shown that

|G2(s; z)| 6M2, |G3(s; z)| 6M3, |G4(s; z)| 6M4 (σ > 1
2 , |z| 6 B).

Thus, we can deduce that

|G′(s; z)| 6M ′
1M2M3M4 =:M ′

for ℜs > 1
2 and |z| 6 B.

This shows that the Dirichlet series F2(s; z) is of type P(κ, z,ω,B,C, 2l−1|z|,
0, 0,M ′) and the values of κ, z, ω, B, C, χ are the same as in Subcase 1.1.

Thus, substituting ψ = 12
5 into Lemma 2.1, we get the case, where j = 2 in the

required asymptotic formula (2.1).

Case 2 : d ≡ 2, 3 (mod 4)

F3(s; z) :=
∏

p∤d(K)
p>3

(d/p)=1

(

1 +
∑

v>1

(v + 1)lz

pvs

)

∏

p∤d(K)
p>3

(d/p)=−1

(

1 +
z

p2s − 1

)

∏

p|d(K)

(

1 +
z

ps − 1

)

= ζ(s)2
l−1zζ(2s)(β−2l−1)z−22l−2z2L(s, χ′)2

l−1zL(2s, χ′)γz−22l−2z2G′′(s; z),

where

G′′(s; z) = G2(s; z)G3(s; z)G4(s; z).

Thus, we can deduce that

|G′′(s; z)| 6M2M3M4 =:M ′′

for ℜs > 1
2 and |z| 6 B.

This shows that the Dirichlet series F3(s; z) is of type P(κ, z,ω,B,C, 2l−1|z|,
0, 0,M ′′) and the values of κ, z, ω, B, C, χ are the same as in Subcase 1.1.

Thus, substituting ψ = 12
5 into Lemma 2.1, we get the case, where j = 3 in the

required asymptotic formula (2.1). �
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Lemma 2.4. Let B > 0 and ε ∈ (0, 5
12 ). Then we have

(2.10)
∑

x<n6x+y

aK(n
2)lzω(n) = y(log x)βz−1

{

zλj(z) +OB,ε

( 1

log x

)}

uniformly for x > 3, x7/12+ε 6 y 6 x and |z| 6 B, where λj(z) (j = 1, 2, 3) are

defined as in (1.9). In particular, taking z = 1 we get the following result:

(2.11) Ul(x, y) =
∑

x<n6x+y

aK(n
2)l = y(log x)γ

{

λj(1) +Oε

( 1

log x

)}

, j = 1, 2, 3

uniformly for x > 3 and x7/12+ε 6 y 6 x, where λj(z) are defined in Theorem 1.4.

Since the proofs of Lemmas 2.3 and 2.4 are very similar, the proof of Lemma 2.4

can be derived by analogy with Lemma 2.3.

The next lemma is the Berry-Esseen inequality, see [10], Theorem II.7.14.

Lemma 2.5. Let F , G be two distribution functions with respective characteristic

functions f and g. Suppose that G is differentiable and that G′ is bounded on R.

Then we have

‖F −G‖∞ 6 16
‖G′‖∞
T

+ 6

∫ T

−T

∣

∣

∣

f(τ)− g(τ)

τ

∣

∣

∣
dτ

for all T > 0, where ‖F‖∞ := sup
λ∈R

|F (λ)|.

3. Proof of Theorem 1.2

By the definition of Vk,l(x, y) in (1.3), we have

∑

x<n6x+y

aK(n)
lzω(n) =

∑

k

Vk,l(x, y)z
k.

Applying Cauchy formula, it can be deduced that

Vk,l(x, y) =
1

2πi

∮

|z|=r

(

∑

x<n6x+y

aK(n)
lzω(n)

)

dz

zk+1
,

where r := k/2l−1 log log x.
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By Lemma 2.3, it follows that

(3.1) Vk,l(x, y) =
y

log x
Jk,l(x; r) +Ol,B,ε

( y

(log x)2
(2l−1 log log x)k

k!

)

uniformly for x > 3, x7/12+ε 6 y 6 x and 1 6 k 6 2l−1B log log x, where

Jk,l(x; r) :=
1

2πi

∮

|z|=r

(log x)2
l−1zπj(z)

zk
dz, j = 1, 2, 3.

Using the Stirling formula, the error term of Vk,l(x, y) in (3.1) can be estimated as

≪
∮

|z|=r

y

(log x)2
(log x)ℜ(2l−1z) |dz|

|z|k+1
≪ y

(log x)2
1

rk

∫ 2π

0

ek cos θ dθ

≪ y

(log x)2
1

rk

(
∫

π/2

0

ek cos θ dθ + 1

)

(t = k(1− cos θ))

≪ y

(log x)2
1

rk

(

ek√
k

∫ k

0

e−tt−1/2 dt+ 1

)

≪ (2l−1 log log x)k

k!

y

(log x)2
.

Then we will estimate the Jk,l(x; r) of the main term in the case of k = 1 and

k > 2, separately.

When k = 1, since z 7→ πj(z) (j = 1, 2, 3) is analytic for |z| 6 B, we have

(3.2) J1,l(x; r) =
1

2πi

∮

|z|=r

(log x)2
l−1zπj(z)

z
dz = πj(0) = 2l−1.

When k > 2, since z 7→ πj(z) (j = 1, 2, 3) is analytic for |z| 6 B, we have

Jk,l(x; r) = Jk,l(x; r0) with r0 := (k − 1)/(2l−1 log log x) and the Taylor expansion

of πj(z) at z = r0:

(3.3) πj(z) = πj(r0) + π′
j(r0)(z − r0) + (z − r0)

2

∫ 1

0

(1− t)π′′
j (r0 + t(z − r0)) dt

we shall estimate the contributions of three terms on the right-hand side of (3.3) as

Jk,l(x; r0). Firstly, we will estimate the first two terms separately:

(3.4)
πj(r0)

2πi

∮

|z|=r

(log x)2
l−1z

zk
dz =

(2l−1 log log x)k−1

(k − 1)!
πj

( k − 1

2l−1 log log x

)

,

and

(3.5)
π′
j(r0)

2πi

∮

|z|=r

(log x)2
l−1z(z − r0)

zk
dz

= π′
j(r0)

( (2l−1 log log x)k−2

(k − 2)!
− r0

(2l−1 log log x)k−1

(k − 1)!

)

= 0.
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For 0 6 t 6 1 and |z| = r0 we have

|r0 + t(z − r0)| = |r0(1− t) + tz| 6 r0(1− t) + t|z| = r0 6 B.

Since z 7→ πj(z) is analytic for |z| 6 B, there is a positive constant Cl such that

|π′′
j (z)| 6 Cl for |z| 6 B. Thus, the contribution of the third term on the right-hand

side of (3.3) to Jk,l(x; r0) is

≪
∮

|z|=r0

(log x)ℜ(2l−1z)|eiθ − 1|2
|z|k−2

| dz| ≪ 1

rk−3
0

∫ 2π

0

e(k−1) cos θ(1− cos θ) dθ

≪ 1

rk−3
0

(
∫

π/2

0

e(k−1) cos θ(1− cos θ) dθ + 1

)

(t = (k − 1)(1− cos θ))

≪ 1

r0k−3

(

ek−1

(k − 1)3/2

∫ k−1

0

e−tt1/2 dt+ 1

)

≪ (2l−1 log log x)k−1

(k − 1)!

k − 1

(2l−1 log log x)2
.

By combining (3.2), (3.4), (3.5) and (3.6), it follows that

(3.6) Jk,l(x; r) =
(2l−1 log log x)k−1

(k − 1)!
πj

( k − 1

2l−1 log log x

)

+Ol,B,ε

( k − 1

(2l−1 log log x)2
(2l−1log logx)k−1

(k − 1)!

)

for x > 3 and 1 6 k 6 2l−1B log log x.

Therefore, the asymptotic formula (1.4) can be given by (3.1) and (3.7).

4. Proof of Theorem 1.1

Put

Fx,y(λ) :=
1

Vl(x, y)

∑

x<n6x+y

ω(n)−2l−1 log log x6λ(2l−1 log log x)1/2

aK(n)
l.

And ϕx,y(τ) be the characteristic function of Fx,y(λ), i.e.,

(4.1) ϕx,y(τ) :=

∫ ∞

−∞
eiτλ dFx,y(λ)

=
1

Vl(x, y)

∑

x<n6x+y

aK(n)
l exp

{

iτ
ω(n)− 2l−1 log log x

(2l−1 log log x)1/2

}

=
e−iτT

Vl(x, y)

∑

x<n6x+y

aK(n)
lei(τ/T )ω(n),

where T := (2l−1 log log x)1/2.
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Let (F,G) = (Fx,y,Φ), by using Lemma 2.5, it follows that

‖Fx,y − Φ‖∞ 6
16√
2πT

+ 6

∫ T

−T

∣

∣

∣

ϕx,y(τ) − e−τ
2/2

τ

∣

∣

∣
dτ.

Thus, it suffices to show that

(4.2)

∫ T

−T

∣

∣

∣

ϕx,y(τ) − e−τ
2/2

τ

∣

∣

∣
dτ ≪ 1

T

uniformly for x > 3 and x7/12+ε 6 y 6 x.

Applying Lemma 2.3 with z = eit we have

1

Vl(x, y)

∑

x<n6x+y

aK(n)
leitω(n) = (log x)2

l−1(eit−1)A(eit) +Oε

( 1

log x

)

uniformly for t ∈ R, x > 3, x7/12+ε 6 y 6 x, and

A(z) :=
zπj(z)

πj(1)

is an entire function of z such that A(1) = 1, where πj(z) (j = 1, 2, 3) are defined as

in (1.5) . Taking t = τ/T , we can deduce that

(4.3) ϕx,y(τ) = (log x)2
l−1(ei(τ/T )−1)A(ei(τ/T ))e−iτT +Oε

( 1

log x

)

uniformly for x > 3 , x7/12+ε 6 y 6 x and |τ | 6 T .

In view of the inequality cos t− 1 6 −2(t/π)2 (|t| 6 1), we have

|(log x)2l−1(ei(τ/T )−1)| = e(cos(τ/T )−1)T 2

6 e−2(τ/π)2 ,

from which we can conclude that

ϕx,y(τ) ≪ε e
−2(τ/π)2

uniformly for x > 3 , x7/12+ε 6 y 6 x and |τ | 6 T . Thus,

(4.4)

∫ ±T

±T 1/3

∣

∣

∣

ϕx,y(τ) − e−τ
2/2

τ

∣

∣

∣
dτ ≪

∫ T

T 1/3

e−2(τ/π)2 + e−τ
2/2 dτ

≪
∫ T

T 1/3

e−2(τ/π)2 dτ ≪ 1

T
.
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By the Taylor developments

A(ei(τ/T )) = 1 +O(|τ |/T ), ei(τ/T ) − 1 = i(τ/T )− 1
2 (τ/T )

2 +O((|τ |/T )3),

when |τ | 6 T 1/3, we can deduce that

(log x)2
l−1(ei(τ/T )−1)A(ei(τ/T ))e−iτT = e−τ

2/2+O(|τ |3/T )
{

1 +O
( |τ |
T

)}

= e−τ
2/2

{

1 +O
( |τ |3 + |τ |

T

)}

.

Inserting this into (4.3), it follows that

(4.5) ϕx,y(τ) = e−τ
2/2

{

1 +O
( |τ |3 + |τ |

T

)}

+Oε

( 1

log x

)

uniformly for x > 3, x7/12+ε 6 y 6 x and |τ | 6 T 1/3. With the help of this

evaluation, we can conclude that

(4.6)

∫ ±T 1/3

±1/ log x

∣

∣

∣

ϕx,y(τ) − e−τ
2/2

τ

∣

∣

∣
dτ ≪

∫ T 1/3

1/ log x

(

e−τ
2/2 τ

2 + 1

T
+

1

τ log x

)

dτ

≪ 1

T
+

log log x

log x
≪ 1

T
.

For |τ | 6 (log x)−1 we have

∣

∣

∣

τ(ω(n)− 2l−1 log log x)

(2l−1 log log x)1/2

∣

∣

∣
≪ |τ | log x

T
,

thus, we can write

exp
{

iτ
ω(n)− 2l−1 log log x

(2l−1 log log x)1/2

}

= 1 +O
( |τ | log x

T

)

.

Inserting this into (4.1), it follows that

(4.7) ϕx,y(τ) = 1 +O
( |τ | log x

T

)

.

From this and the relation e−τ
2/2 = 1 +O(τ2), we deduce that

(4.8)

∫ 1/ log x

−1/ log x

∣

∣

∣

ϕx,y(τ) − e−τ
2/2

τ

∣

∣

∣
dτ ≪

∫ 1/ log x

−1/ log x

( log x

T
+ |τ |

)

dτ ≪ 1

T
.
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Now (4.2) follows from (4.4), (4.6) and (4.8) immediately.

4.1. Optimality of the error term. In this subsection, we will prove that the

error term in (1.2) is optimal. For λ ∈ R, define

Rλ(x, y) :=
1

Vl(x, y)

∑

x<n6x+y

ω(n)−2l−1 log log x6λ(2l−1 log log x)1/2

aK(n)
l − Φ(λ),

and

R(x, y) := sup
λ∈R

|Rλ(x, y)|.

Let k := [2l−1 log log x] and θ := k − 2l−1 log log x, then we have

(4.9)
Vk,l(x, y)

Vl(x, y)
= Fx,y

(

θ
√

2l−1 log log x

)

− Fx,y

(

θ − 1/2
√
2π

√

2l−1 log log x

)

6 Φ

(

θ
√

2l−1 log log x

)

− Φ

(

θ − 1/2
√
2π

√

2l−1log logx

)

+ 2R(x, y)

6

∫ θ/
√

2l−1 log logx

(θ−1/2
√
2π)/

√
2l−1 log log x

e−τ
2/2 dτ + 2R(x, y)

6
1

2
√

π2l log log x
+ 2R(x, y).

On the other hand, using the Stirling formula, it can be deduced from Theorem 1.2

and formula (2.2) that

(4.10)
Vk,l(x, y)

Vl(x, y)
∼ (2l−1 log log x)k−1

(log x)2l−1(k − 1)!
∼ 1

√

π2l log log x
.

From (4.9) and (4.10), we derive that

R(x, y) >
1 + o(1)

2
√

π2l log log x
− 1

4
√

π2l log log x
=

1 + o(1)

4
√

π2l log log x

uniformly for x > 3 and x7/12+ε 6 y 6 x.

This completes the proof of Theorem 1.1. �

The proofs of Theorems 1.4 and 1.3 are very similar to those of Theorems 1.2

and 1.1, we only point out the differences.
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5. Proof of Theorem 1.4

Similarly to (3.1), by Lemma 2.4 we can deduce that

(5.1) Uk,l(x, y) =
y

log x
Ik,l(x; r) +Ol,B,ε

( y

(log x)2
(β log log x)k

k!

)

uniformly for x > 3, x7/12+ε 6 y 6 x and 1 6 k 6 βB log log x (i.e., r :=

k/β log log x), where

Ik,l(x; r) :=
1

2πi

∮

|z|=r

(log x)βzλj(z)

zk
dz, j = 1, 2, 3.

On the other hand, by the same argument for evaluating Jk,l(x; r), we can prove

that

(5.2) Ik,l(x; r) =
(β log log x)k−1

(k − 1)!
λj

( k − 1

β log log x

)

+Ol,B,ε

( k − 1

(β log log x)2
(β log log x)k−1

(k − 1)!

)

for x > 3 and 1 6 k 6 βB log log x.

Therefore, the asymptotic formula (1.8) can be given by (5.1) and (5.2).

6. Proof of Theorem 1.3

Put

Gx,y(λ) :=
1

Ul(x, y)

∑

x<n6x+y

ω(n)−β log log x6λ(β log log x)1/2

aK(n
2)l.

Then its characteristic function is given by

ϕx,y(τ) :=
e−iτT

Ul(x, y)

∑

x<n6x+y

aK(n
2)lei(τ/T )ω(n),

where T := (β log log x)1/2.

Similarly to (4.4), (4.6) and (4.8), we can prove that

(6.1)

∫ T

−T

∣

∣

∣

ϕx,y(τ) − e−τ
2/2

τ

∣

∣

∣
dτ ≪ 1

T
.

Now the required result (1.7) follows from (6.1) thanks to the Berry-Esseen in-

equality.

Finally, with Theorem 1.4 and (2.11) we can prove, as before, that the error term

in (1.7) is optimal.
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