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Abstract. Let R be a commutative ring with identity. A proper ideal I is said to be an
n-ideal of R if for a, b ∈ R, ab ∈ I and a /∈

√
0 imply b ∈ I . We give a new generalization

of the concept of n-ideals by defining a proper ideal I of R to be a semi n-ideal if whenever
a ∈ R is such that a2 ∈ I , then a ∈

√
0 or a ∈ I . We give some examples of semi n-ideal and

investigate semi n-ideals under various contexts of constructions such as direct products,
homomorphic images and localizations. We present various characterizations of this new
class of ideals. Moreover, we prove that every proper ideal of a zero dimensional general
ZPI-ring R is a semi n-ideal if and only if R is a UN-ring or R ∼= F1 ×F2 × . . .×Fk, where
Fi is a field for i = 1, . . . , k. Finally, for a ring homomorphism f : R → S and an ideal J
of S, we study some forms of a semi n-ideal of the amalgamation R ⊲⊳f J of R with S along
J with respect to f .

Keywords: semi n-ideal; semiprime ideal; n-ideal

MSC 2020 : 13A15, 13A99

1. Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero

identity. We recall that a proper ideal I of a ring R is called semiprime if whenever

a ∈ R is such that a2 ∈ I, then a ∈ I. It is well-known that I is semiprime in R if and

only if I is a radical ideal, that is I =
√
I = {x ∈ R : xm ∈ I for some m ∈ Z}. More

generally, Badawi in [1] defined I to be weakly semiprime if a ∈ R and 0 6= a2 ∈ I

imply a ∈ I. In 2017, Tekir, Koc and Oral in [10] introduced the concept of n-ideals

of commutative rings. A proper ideal I of a ring R is called an n-ideal if whenever

a, b ∈ R are such that ab ∈ I and a /∈
√
0, then b ∈ I. Recently, Khashan and Bani-

Ata in [7] generalized n-ideals by defining and studying the class of J-ideals. A proper

ideal I of R is called a J-ideal if ab ∈ I and a /∈ J(R) imply b ∈ I for a, b ∈ R,

where J(R) denotes the Jacobson radical of R. Later, some other generalizations of

n-ideals and J-ideals have been introduced, see for example [3], [8] and [9].
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In this paper, we define a proper ideal I of a ring R to be a semi n-ideal if whenever

a ∈ R is such that a2 ∈ I, then either a ∈
√
0 or a ∈ I. The class of semi n-ideals

is a generalization of nil, semiprime and n-ideals. We start Section 2 by giving some

examples (see Example 2.1) to show that this generalization is proper. Next, we

determine several characterizations of semi n-ideals, see Theorem 2.1. Among many

other results, in Theorem 2.3, we prove that every proper ideal of a zero dimensional

general ZPI-ring R is a semi n-ideal if and only if R is a UN-ring (every nonunit

element a of R is a product of a unit and a nilpotent) or R ∼= F1 × F2 × . . . × Fk,

where Fi is a field for i = 1, . . . , k. Moreover, we characterize all ideals of the

ring Zm that are not semi n-ideals. In Section 2, we investigate semi n-ideals under

various contexts of constructions such as homomorphic images and localizations,

see Propositions 3.1 and 3.4. Moreover, for a direct product of rings R = R1 ×
R2 × . . .×Rk, we determine all semi n-ideals of R, see Theorems 3.2 and 3.3.

Recall that the idealization of an R-module M , denoted by R(+)M , is the com-

mutative ring R×M with the coordinate-wise addition and multiplication defined as

(r1,m1)(r2,m2) = (r1r2, r1m2+r2m1). For an ideal I of R and a submodule N ofM ,

I(+)N is an ideal of R(+)M if and only if IM ⊆ N . It is well known that if I(+)N

is an ideal of R(+)M , then
√

I(+)N =
√
I(+)M and, in particular,

√

0R(+)M =√
0(+)M . In Proposition 3.5, we clarify the relation between semi n-ideals of the

idealization ring R(+)M and those of R. Let R and S be two rings, J be an ideal of

S and f : R → S be a ring homomorphism. We finally study some forms of a semi

n-ideal of the amalgamation ring R ⊲⊳f J of R with S along J with respect to f .

2. Properties of semi n-ideals

This section deals with many properties of semi n-ideals. We justify the relations

among the concepts of semiprime ideals, n-ideals, nil ideals and our new class of ide-

als. Moreover, several characterizations and examples are presented. In particular,

we characterize zero dimensional general ZPI-rings for which every proper ideal is

semi n-ideal.

Definition 2.1. Let R be a ring. A proper ideal I of R is called a semi n-ideal

if whenever a ∈ R with a2 ∈ I, then a ∈
√
0 or a ∈ I.

The following properties of semi n-ideals can be easily observed.

Proposition 2.1. For a ring R, the following statements hold.

(1) Every n-ideal is a semi n-ideal.

(2) Every (weakly) semiprime ideal I is a semi n-ideal. The converse also holds if√
0 ⊆ I.
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(3) For every proper ideal I of R,
√
I is a (semiprime) semi n-ideal. In particular,√

0 is a semi n-ideal of R.

(4) Any nil ideal I of R (that is I ⊆
√
0) is a semi n-ideal.

(5) An ideal I of a reduced ring R is a semi n-ideal if and only if I is semiprime.

However, the converses of (1) and (2) in Proposition 2.1 are not true in general.

Example 2.1.

(1) Any nonzero prime ideal of a reduced ring (in particular, an integral domain)

is a semi n-ideal that is not an n-ideal.

(2) The ideal 〈16〉 of Z32 is a semi n-ideal that is not (weakly) semiprime.

Next, we give some equivalent conditions that characterize semi n-ideals.

Theorem 2.1. Let I be a proper ideal of a ring R. The following statements are

equivalent.

(1) I is a semi n-ideal of R.

(2) Whenever a ∈ R with 0 6= a2 ∈ I, then a ∈
√
0 or a ∈ I.

(3) Whenever a ∈ R with am ∈ I for some positive integerm, then a ∈
√
0 or a ∈ I.

(4) Whenever J is an ideal of R with Jm ⊆ I for some positive integer m, then

J ⊆
√
0 or J ⊆ I.

P r o o f. (1) ⇔ (2). Suppose that (2) holds. Let a2 ∈ I for some a ∈ R \ I. If
a2 6= 0, then we are done. If a2 = 0, then a ∈

√
0. The converse part is obvious.

(1) ⇒ (3). Let am ∈ I and suppose that a /∈
√
0. To prove the assertion we use

the mathematical induction method. If m 6 2, then the claim is clear as I is a semi

n-ideal. Assume that the claim of (3) holds for all 2 < k < m. We show that it is

also true for m. Suppose m is even, say, m = 2t for some positive integer t. Since I is

a semi n-ideal of R, then am = (at)2 ∈ I and at /∈
√
0 imply at ∈ I. By the induction

hypothesis, we conclude that a ∈ I. Now, suppose m is odd. Then m + 1 = 2s for

some s < m. Similarly, since (as)2 ∈ I and as /∈
√
0, we get as ∈ I and again by the

induction hypothesis, we conclude a ∈ I, so we are done.

(3) ⇒ (4). Suppose that Jm ⊆ I and J *
√
0 for some ideal J of R. Then clearly

Jm *
√
0, so we can choose a nonnilpotent element a in Jm. Let b ∈ J . If b /∈

√
0,

then bm ∈ I implies that b ∈ I by (3). Suppose b ∈
√
0. Since (a+b)m ∈ I and clearly

a+ b /∈
√
0, we conclude that a+ b ∈ I and so b ∈ I. It follows that J ⊆ I as needed.

(4) ⇒ (1). Let a2 ∈ I for a ∈ R. The result follows directly by putting J = 〈a〉
and m = 2 in (4). �

Unlike n-ideals, if I is a semi n-ideal of a ring R, then I need not be contained

in
√
0, see Example 2.1 (1).
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Proposition 2.2. Let I be a proper ideal of a ring R. Then I is a semi n-ideal

if and only if
√
I =

√
0 or

√
I = I.

P r o o f. Suppose that I is a semi n-ideal and a ∈
√
I. Then an ∈ I for some

n > 1. By Theorem 2.1, we conclude that a ∈
√
0 or a ∈ I. Thus,

√
I ⊆

√
0 ∪ I.

Since the converse inclusion always holds, the claim is clear.

Conversely, if
√
I = I, then I is semiprime, so it is a semi n-ideal by Proposi-

tion 2.1. Suppose that
√
I =

√
0. Let a ∈ R such that a2 ∈ I but a /∈ I. Since clearly

a ∈
√
I =

√
0, I is a semi n-ideal. �

Next, we prove the following lemma which we need for the characterization of

UN-rings.

Lemma 2.1. Let I and J be ideals of R with I, J *
√
0. Then

(1) If I and J are semi n-ideals with I2 = J2, then I = J .

(2) If I2 is a semi n-ideal, then I2 = I.

P r o o f. (1) Since I2 ⊆ J and I *
√
0, then by Theorem 2.1, we have I ⊆ J .

Similarly, since J2 ⊆ I and J *
√
0, we have J ⊆ I. Thus, we have the equality.

(2) Since I2 ⊆ I2, I *
√
0 and I2 is a semi n-ideal, we have I ⊆ I2 and so I2 = I.

�

Following [2], a ring R is called a UN-ring if every nonunit element a of R is

a product of a unit and a nilpotent element. We now characterize UN-rings in terms

of semi n-ideals.

Theorem 2.2. The following statements are equivalent for a ring R.

(1)
√
0 is the unique prime ideal of R.

(2) R is a UN-ring.

(3) Every proper ideal of R is an n-ideal.

(4) R is quasi-local and every proper ideal of R is a semi n-ideal.

P r o o f. (1) ⇒ (2) ⇒ (3). Follows by [10], Proposition 2.25.
(3) ⇒ (4). Let M be a maximal ideal of R and x ∈ M . Since x · 1 ∈ M and M

is an n-ideal, then we must have x ∈
√
0 and so M ⊆

√
0 ⊆ J(R) ⊆ M . It follows

that M = J(R) and R is quasi-local. The other part of (4) follows directly by

Proposition 2.1 (1).

(4)⇒ (1). SupposeM is the unique maximal ideal of R and P is a prime ideal ofR.
Assume that P *

√
0. Since P 2 is a semi n-ideal, by Lemma 2.1 (2), we conclude

P 2 = P. By the Krull intersection theorem, we have P =
∞
⋂

n=1
Pn ⊆

∞
⋂

n=1
Mn = 0 which

is a contradiction. Thus P ⊆
√
0, and so P =

√
0. �
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We note that the condition “R is quasi-local” in (4) of Theorem 2.2 cannot be

omitted. For example, in the ring Z6 every proper ideal is a semi n-ideal but Z6 has

no n-ideals. Also, it is known from [7], Proposition 2.3 that if a ring R is quasi-local,

then every proper ideal of R is a J-ideal. In the following example, we see that we

may find a non semi n-ideal in a quasi-local ring.

Example 2.2. Consider the quasi-local ring R = Z〈2〉 = {a/b : a, b ∈ Z, 2 ∤ b}
and let I = 〈4〉〈2〉 = {a/b : a ∈ 〈4〉, 2 ∤ b}. Then I is not a semi n-ideal of R. For

example, (23 )
2 ∈ I but 2

3 /∈
√
0 = {0} and 2

3 /∈ I.

A ring R is said to be a ZPI-ring (Zerlegung Primideale) if each nonzero ideal I

of R is uniquely expressible as a product of prime ideals of R. The ring R is said to

be a general ZPI-ring if each ideal of R can be expressed as a finite product of prime

ideals of R. Dedekind domains and special primary rings are particular examples for

general ZPI-rings. A general ZPI-ring R is Noetherian and each primary ideal of R

is a prime power. For more details, the reader can refer to [6].

Theorem 2.3. Let R be a zero dimensional general ZPI-ring. The following

statements are equivalent.

(1) Every proper ideal of R is a semi n-ideal.

(2) Either 0 = P r for some prime ideal P of R and r ∈ N or 0 = P1P2 . . . Pk, where

P1, P2, . . . , Pk are distinct prime ideals of R.

(3) Either 0 = M r for some maximal ideal M of R and r ∈ N or 0 = M1M2 . . .Mk,

where M1,M2, . . . ,Mk are distinct maximal ideals of R.

(4) R is a UN-ring or R ∼= F1 × F2 × . . .× Fk, where Fi is a field for i = 1, . . . , k.

P r o o f. (1) ⇒ (2). Suppose every proper ideal of R is a semi n-ideal. If

0 = P r for some prime ideal P of R and r ∈ N, then we are done. Suppose

0 = P r1
1 P r2

2 . . . P rk
k , where P1, P2, . . . , Pk are distinct prime ideals and k > 2. Assume

that ri > 2 for some i. Since P ri
i ⊆ P ri

i but Pi *
√
0 and Pi * P ri

i , then P ri
i is

a non semi n-ideal of R by Theorem 2.1. By this contradiction, we conclude that 0

is a product of distinct prime ideals as required.

(2) ⇒ (3). It follows immediately by the assumption that R is zero dimensional.
(3) ⇒ (4). Suppose that 0 = M r for some maximal ideal M of R and r ∈ N. If

there is another maximal ideal M1 of R, then 0 = M r ⊆ M1 implies M ⊆ M1, so

we conclude the equality. Since M ⊆
√
0, then by the maximality of M , we have

M =
√
0. It follows that (R,

√
0) is a quasi-local ring, and so R is a UN-ring. Now

suppose that 0 = M1M2 . . .Mk, where M1,M2, . . . ,Mk are distinct maximal ideals

of R. Apply the Chinese Remainder Theorem to get R ∼= R/0 = R/M1M2 . . .Mk
∼=

R/M1 × R/M2 × . . . × R/Mk. Now, we conclude the claim by putting Fi = R/Mi

for all i = 1, . . . , k.
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(4)⇒ (1). If R is a UN-ring, then every proper ideal of R is a semi n-ideal by The-
orem 2.2. Suppose that R ∼= F1×F2×. . .×Fk, where Fi’s are fields. Let I be a proper

ideal of R. Then I = I1 × I2 × . . .× Ik, where Ii = 0 or Ii = Fi for all i = 1, . . . , k.

Since I is clearly radical, it is a semi n-ideal of R, which completes the proof. �

By [10], Theorem 2.12, a ring R has n-ideals if and only if
√
0 is a prime ideal.

Thus, R has n-ideals if and only if 0 is a power of a prime ideal of R. Therefore, we

have the following corollary of Theorem 2.3.

Corollary 2.1. Every proper ideal of a zero dimensional general ZPI-ring R is

a semi n-ideal that is not an n-ideal if and only if R ∼= F1 × F2 × . . .× Fk, where Fi

is a field for i = 1, . . . , k.

As a particular case, in the following corollary, we determine all m ∈ N such that

every proper ideal of the ring Zm is a semi n-ideal.

Corollary 2.2. Every proper ideal of the ring Zm is a semi n-ideal if and only if

either m is a power of a prime or m is a product of distinct primes.

In the following, we precisely characterize all ideals of the ring Zm that are not

semi n-ideals.

Theorem 2.4. Consider the ring Zm, where m = pr11 pr22 . . . prkk , k > 2 and ri > 2

for at least one i ∈ {1, 2, . . . , k}. Then I = 〈ps11 ps22 . . . pskk 〉 is not a semi n-ideal of Zm

if and only if si > 2 and sj = 0 for at least one i and one j.

P r o o f. Suppose I = 〈ps11 ps22 . . . pskk 〉 is not a semi n-ideal of Zm. If sj 6= 0

for all j ∈ {1, 2, . . . , k}, then I ⊆ 〈p1p2 . . . pk〉 =
√
0 is nil, so it is a semi n-ideal

by Proposition 2.1 (5) which is a contradiction. If si 6 1 for all i, then clearly I is

a radical ideal, so it is a semi n-ideal which is also a contradiction. Conversely, assume

with no loss of generality that sk = 0 and s1 > 2. Then (ps1−1
1 ps22 . . . p

sk−1

k−1 )
2 ∈ I

but ps1−1
1 ps22 . . . p

sk−1

k−1 /∈
√
0 and ps1−1

1 ps22 . . . p
sk−1

k−1 /∈ I. Therefore, I is not a semi

n-ideal of Zm. �

In view of Corollary 2.1, we have the following result for the ring Zm.

Corollary 2.3. Every proper ideal of the ring Zm is a semi n-ideal that is not an

n-ideal if and only if m is a product of distinct primes.
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3. Quotients, localizations, products and amalgamations

In this section, we study the behavior of semi n-ideals under homomorphisms,

quotient rings, localizations, direct product of rings, idealization rings and amalga-

mation rings. We also observe that the intersection and the sum of two semi n-ideals

are also semi n-ideals but their product and the Cartesian product need not be so.

Proposition 3.1. Let f : R1 → R2 be a ring epimorphism. Then the following

statements hold.

(1) If I1 is a semi n-ideal of R1 with Ker(f) ⊆ I1, then f(I1) is a semi n-ideal of R2.

(2) If I2 is a semi n-ideal of R2 and Ker(f) ⊆ √
0R1
, then f−1(I2) is a semi

n-ideal of R1.

P r o o f. (1) Let a ∈ R2 such that a
2 ∈ f(I1) and a /∈ f(I1). Then there exists

x ∈ R1 \ I1 such that a = f(x). Since f(x2) = a2 ∈ f(I1) and Ker(f) ⊆ I1,

we have x2 ∈ I1. As I1 is a semi n-ideal of R1, we get x ∈ √
0R1
and so clearly

a = f(x) ∈ √
0R2
as required.

(2) Suppose I2 is a semi n-ideal of R2. Let x ∈ R1 such that x
2 ∈ f−1(I2)

and x /∈ f−1(I2). Then f(x2) = f(x)2 ∈ I2 and f(x) /∈ I2 imply f(x) ∈ √
0R2

.

Hence, f(x)m = f(xm) = 0R2
for some positive integer m. Since Ker(f) ⊆ √

0R1
, we

conclude that x ∈ √
0R1
. �

In view of Proposition 3.1, we have the following result for quotient rings.

Corollary 3.1. Let I and J be ideals of a ring R with J ⊆ I.

(1) If I is a semi n-ideal of R, then I/J is a semi n-ideal of R/J .

(2) If I/J is a semi n-ideal of R/J and J is a semi n-ideal of R, then I is a semi

n-ideal of R.

P r o o f. (1) Consider the natural epimorphism π : R → R/J with Ker(π) = J

and apply Proposition 3.1.

(2) Let a ∈ R such that a2 ∈ I and a /∈
√
0. Then (a + J)2 = a2 + J ∈ I/J .

If a + J ∈ √

0I/J , then ak + J = (a + J)k = J for some integer k and so ak ∈ J .

Since J is a semi n-ideal of R, we get a ∈ J ⊆ I. If a+J /∈ √

0I/J , then a+J ∈ I/J

as I/J is a semi n-ideal of R/J and so again a ∈ I. �

In particular, (2) in Corollary 3.1 holds if J ⊆
√
0.

Proposition 3.2. If {Iα : α ∈ Λ} is a family of semi n-ideals of a ring R, then so
is

⋂

α∈Λ

Iα.
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P r o o f. Let a2 ∈ ⋂

α∈Λ

Iα and a /∈ ⋂

α∈Λ

Iα. Then a /∈ Iγ for some γ ∈ Λ. Since Iγ

is a semi n-ideal, we have a ∈
√
0 and so

⋂

α∈Λ

Iα is a semi n-ideal. �

Proposition 3.3. Let I and J be two semi n-ideals in a ring R. If I+J is proper

in R, then I + J is a semi n-ideal of R.

P r o o f. By (1) of Corollary 3.1, I/I ∩ J is a semi n-ideal of R/I ∩ J . Thus,

(I +J)/J ∼= I/I ∩J is also a semi n-ideal of R/J. Therefore, by (2) of Corollary 3.1,

we conclude that I + J is a semi n-ideal of R. �

However, if I and J are two semi n-ideals in a ring R, then IJ need not be a semi

n-ideal. For example, while 〈2〉 is a semi n-ideal of Z, 〈2〉2 = 〈4〉 is not so.
Let I be a proper ideal of R. In the following proposition, the notations Z(R)

and ZI(R) denote the set of zero divisors of R and the set {r ∈ R : rs ∈ I for some

s ∈ R \ I}, respectively.

Proposition 3.4. Let S be a multiplicatively closed subset of a ring R. Then the

following holds.

(1) If I is a semi n-ideal of R such that I ∩ S = ∅, then S−1I is a semi n-ideal

of S−1R.

(2) If S−1I is a semi n-ideal of S−1R and S ∩ Z(R) = S ∩ ZI(R) = ∅, then I is

a semi n-ideal of R.

P r o o f. (1) Suppose for a/s ∈ S−1R that (a/s)2 ∈ S−1I and (a/s) /∈ S−1I.

Then there exists u ∈ S such that ua2 ∈ I and so (ua)2 ∈ I. Since clearly ua /∈ I

and I is a semi n-ideal, we have ua ∈
√
0. Thus, (ua)m = 0 for some positive

integer m. It follows that (a/s)m = (ua/(us))m = 0S−1R and so a/s ∈
√
0S−1R.

(2) Suppose a2 ∈ I for a ∈ R \ I. Since S−1I is a semi n-ideal of S−1R and

(a/1)2 ∈ S−1I , we have either a/1 ∈ S−1I or a/1 ∈ √
0S−1R. If a/1 ∈ S−1I, then

there exists u ∈ S such that ua ∈ I. Since S ∩ ZI(R) = ∅, we conclude that a ∈ I.

If a/1 ∈ √
0S−1R, then there is a positive integer k such that (ua)

k = ukak = 0.

Since S ∩ Z(R) = ∅, we conclude that ak = 0 and so a ∈
√
0. Therefore, I is a semi

n-ideal of R. �

Lemma 3.1. Let R be a ring and S be a nonempty subset of R where S ∩
Z√

0(R) = ∅. If I is a semi n-ideal of R with S * I, then (I : S) is a semi n-ideal of R.

P r o o f. Let a ∈ R such that a2 ∈ (I : S) but a /∈
√
0. Then (as)2 ∈ I for all

s ∈ S. As I is a semi n-ideal of R, we have either as ∈
√
0 or as ∈ I for all s ∈ S.

If as ∈
√
0, then S ∩ Z√

0(R) 6= ∅, a contradiction. Thus, as ∈ I for all s ∈ S and so

a ∈ (I : S) as required. �
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Theorem 3.1. If an ideal I of a ring R is a maximal semi n-ideal satisfying

Z√
0(R) ⊆ I, then I is semiprime in R. Additionally, if I ⊆

√
0, then I =

√
0 is

a prime ideal.

P r o o f. Let a ∈ R such that a2 ∈ I. Suppose a /∈ I. Then by assumption,

{a} ∩ Z√
0(R) = ∅ and so (I : a) is a semi n-ideal of R by Lemma 3.1. By the

maximality of I, we get a ∈ (I : a) = I, a contradiction. Therefore, a ∈ I and I

is semiprime in R. Now, suppose that I ⊆
√
0. Let ab ∈

√
0 and a /∈

√
0. Since

Z√
0(R) ⊆ I, we have b ∈ I ⊆

√
0 and so

√
0 is prime. Since I ⊆

√
0 and

√
0 is

clearly a semi n-ideal satisfying Z√
0(R) ⊆

√
0 , the maximality of I implies I =

√
0.

�

Let R = R1 × R2, where R1 and R2 are two rings. It is known from [10], Propo-

sition 2.25 that there are no n-ideals in R. By characterizing semi n-ideals of R,

the next theorem allows us to build some examples for semi n-ideals which are

not n-ideals.

Theorem 3.2. Let R1 and R2 be two rings and R = R1 × R2. Then a proper

ideal I = I1 × I2 is a semi n-ideal of R if and only if one of the following state-

ments holds.

(1) I is a semiprime ideal of R.

(2) I1 is a semi n-ideal of R1 and I2 =
√
0R2
.

(3) I2 is a semi n-ideal of R2 and I1 =
√
0R1
.

P r o o f. (⇒) Suppose that I = I1×I2 is a semi n-ideal ofR that is not semiprime.

Then
√
I 6= I and there exists an element (x, y) ∈

√
I \ I which means (x, y)m ∈ I

for some positive integer m and (x, y) /∈ I. First, we show that I1 =
√
0R1
or

I2 =
√
0R2

. Assume not. If I1 6= √
0R1

and I2 6= √
0R2
, then there exist some

elements a ∈ I1 \
√
0R1
and b ∈ I2 \

√
0R2
. Hence, (x+ a)m ∈ I1 and (y + b)m ∈ I2

which implies that (x + a , y + b)m ∈ I. Since (x, y) /∈ I, without loss of generality

we may assume that x /∈ I1. Then, clearly x+ a /∈ I1 and (x+ a , y+ b) /∈ I. Since I

is a semi n-ideal, we conclude that (x + a, y + b) ∈ √
0R1×R2

=
√
0R1

× √
0R2
. It

follows that x+ a ∈ √
0R1
and y+ b ∈ √

0R2
which imply x /∈ √

0R1
and y /∈ √

0R2
as

a /∈ √
0R1
and b /∈ √

0R2
. Therefore, (x, y) /∈ √

0R1
× √

0R2
, a contradiction. Thus,

I1 =
√
0R1
or I2 =

√
0R2

.

Suppose without loss of generality that I1 6= √
0R1
and I2 =

√
0R2

. Let a2 ∈ I1
and a /∈ I1. Since (a, 0)

2 ∈ I and (a, 0) /∈ I, we have (a, 0) ∈ √
0R1

×√
0R2
. Hence,

a ∈ √
0R1
and I1 is a semi n-ideal of R1. Similarly, if I1 =

√
0R1
and I2 6= √

0R2
, we

conclude that I2 is a semi n-ideal of R2.
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(⇐) If I is semiprime in R, then it is a semi n-ideal by Proposition 2.1. Sup-

pose that I = I1 × √
0R2
, where I1 is a semi n-ideal of R1. Let (a, b)

2 ∈ I and

(a, b) /∈ √
0R1

× √
0R2
. Since b2 ∈ √

0R2
, we get b ∈ √

0R2
and so a /∈ √

0R1
. Since

a2 ∈ I1, a /∈ √
0R1
and I1 is a semi n-ideal of R1, we conclude that a ∈ I1. Thus,

(a, b) ∈ I and I is a semi n-ideal of R. �

Generalizing Theorem 3.2, we have the following result.

Theorem 3.3. Let R1, R2, . . . , Rm be rings and R = R1× . . .×Rm, where m > 2.

Then a proper ideal I of R is a semi n-ideal if and only if one of the following

statements is satisfied.

(1) I is a semiprime ideal of R.

(2) I = I1 × . . .× Im, where Ik is a semi n-ideal of Rk for some k ∈ {1, . . . ,m} and
Ij =

√

0Rj
for all j ∈ {1, . . . ,m} \ {k}.

P r o o f. Suppose I is a semi n-ideal of R that is not semiprime. We prove (2)

by using mathematical induction on m. By Theorem 3.2, the result holds for m = 2.

Now let 3 6 m < ∞ and assume that the result holds for R′ = R1× . . .×Rm−1. We

show that the result also holds for R = R′ × Rm. We have the following two cases

by Theorem 3.2:

Case I : I = J × √
0Rm

where J is a semi n-ideal of R′. If J is a semiprime

ideal of R′, then clearly I is so which is a contradiction. Hence, by our induction

hypothesis, J = I1 × . . . × Im−1, where Ik is a semi n-ideal of Rk for some k ∈
{1, . . . ,m−1} and Ij =

√

0Rj
for all j ∈ {1, . . . ,m−1}\{k}. Therefore, I = J×√

0Rm

is in the desired form.

Case II : J =
√
0R′ × Im, where Im is a semi n-ideal of R. In this case, we have

I =
√
0R1

×√
0R2

× . . .×√

0Rm−1
× Im, so we are done.

The converse part is similar to the proof of Theorem 3.2. �

Next, for an R-module M , we justify the relation between semi n-ideals of R and

those of the idealization ring R(+)M .

Proposition 3.5. Let M be an R-module and I be a proper ideal of R. Then I

is a semi n-ideal of R if and only if I(+)M is a semi n-ideal of the idealization

ring R(+)M.

P r o o f. Suppose that (a,m)2 ∈ I(+)M and (a,m) /∈ √

0R(+)M =
√
0(+)M .

Then a2 ∈ I and a /∈
√
0. Since I is a semi n-ideal, we conclude that a ∈ I. Thus,

(a,m) ∈ I(+)M . Conversely, suppose that I(+)M is a semi n-ideal of R(+)M

and let a2 ∈ I but a /∈ I. Then (a, 0)2 ∈ I(+)M and (a, 0) /∈ I(+)M imply that

(a, 0) ∈ √

0R(+)M . Thus, a ∈ √
0R and we are done. �
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Remark 3.1. Let N be a proper submodule of an R-module M and I be an

ideal of R with IM ⊆ N . In general, if I is a semi n-ideal of R, then I(+)N

need not be a semi n-ideal of R(+)M . For example, consider the idealization ring

Z(+)Z4. Then while 〈2〉 is a semi n-ideal of Z, 〈2〉(+)〈2̄〉 is not a semi n-ideal of
Z(+)Z4. Indeed, (2, 1̄)

2 = (4, 0̄) ∈ 〈2〉(+)〈2̄〉 but (2, 1̄) /∈ √

0Z(+)Z4
= 0(+)Z4 and

(2, 1̄) /∈ 〈2〉(+)〈2̄〉.

Let R and S be two rings, J be an ideal of S and f : R → S be a ring ho-

momorphism. The amalgamation of R and S along J with respect to f is the

subring R ⊲⊳f J = {(a, f(a) + j) : a ∈ R, j ∈ J} of R × S. If f is the iden-

tity homomorphism on R, then we get the amalgamated duplication of R along

an ideal J , R ⊲⊳ J = {(a, a + j) : a ∈ R, j ∈ J}. For more related definitions
and several properties of this kind of rings, one can see [5]. If I is an ideal of

R and K is an ideal of f(R) + J , then I ⊲⊳f J = {(i, f(i) + j) : i ∈ I, j ∈ J}
and Kf = {(a, f(a) + j) : a ∈ R, j ∈ J, f(a) + j ∈ K} are ideals of R ⊲⊳f J ,

see [4]. Next, we determine conditions under which I ⊲⊳f J and Kf are semi n-ideals

of R ⊲⊳f J .

Theorem 3.4. Let R, S, J and f be as above. If I ⊲⊳f J is a semi n-ideal

of R ⊲⊳f J , then I is a semi n-ideal of R. Moreover, the converse is true if

J ⊆ √
0S .

P r o o f. Suppose I ⊲⊳f J is a semi n-ideal of R ⊲⊳f J and let a2 ∈ I for a ∈ R

and a /∈
√
0. Then (a, f(a)) ∈ R ⊲⊳f J with (a, f(a))2 = (a2, f(a2)) ∈ I ⊲⊳f J

and clearly (a, f(a)) /∈ √
0R⊲⊳fJ . As I ⊲⊳f J is a semi n-ideal, we have (a, f(a)) ∈

I ⊲⊳f J and so a ∈ I. Now, suppose J ⊆ √
0S and I is a semi n-ideal of R. Let

(a, f(a) + j) ∈ R ⊲⊳f J such that (a, f(a) + j)2 = (a2, f(a2) + 2jf(a) + j2) ∈ I ⊲⊳f J

and (a, f(a) + j) /∈ √
0R⊲⊳fJ . Then a2 ∈ I and a /∈

√
0 since otherwise f(a) + j is

nilpotent in S as J ⊆ √
0S and so (a, f(a) + j) ∈ √

0R⊲⊳fJ , a contradiction. Since I

is a semi n-ideal of R, then a ∈ I and so (a, f(a) + j) ∈ I ⊲⊳f J . �

Theorem 3.5. Let f : R → S be a ring epimorphism and J , K be ideals of S.

(1) If Kf is a semi n-ideal of R ⊲⊳f J , then K is a semi n-ideal of S.

(2) If J ⊆ √
0S , Ker(f) ⊆ √

0R and K is a semi n-ideal of S, then Kf is a semi

n-ideal of R ⊲⊳f J .

P r o o f. (1) Suppose Kf is a semi n-ideal of R ⊲⊳f J . Let b ∈ S such that

b2 ∈ K and b /∈ √
0S . Choose a ∈ R such that f(a) = b. Then (a, f(a)) ∈ R ⊲⊳f J

with (a, f(a))2 ∈ Kf and clearly (a, f(a)) /∈ √
0R⊲⊳fJ . By assumption, we have

(a, f(a)) ∈ Kf and so b = f(a) ∈ K.
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(2) Suppose J ⊆ √
0S , Ker(f) ⊆ √

0R and K is a semi n-ideal of S. Let

(a, f(a) + j) ∈ R ⊲⊳f J be such that (a, f(a) + j)2 = (a2, (f(a) + j)2) ∈ Kf and

(a, f(a) + j) /∈ √
0R⊲⊳fJ . If f(a) + j ∈ √

0S , then f(a) ∈ √
0S as J ⊆ √

0S . Thus,

f(am) = (f(a))m = 0S for some m ∈ Z and then a ∈
√
0 since Ker(f) ⊆ √

0R. It

follows that (a, f(a) + j) ∈ √
0R⊲⊳fJ , a contradiction. Hence, (f(a) + j)2 ∈ K and

f(a) + j /∈ √
0S imply that f(a) + j ∈ K. Therefore, (a, f(a) + j) ∈ Kf and Kf is

a semi n-ideal of R ⊲⊳f J . �
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