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Abstract. Let f , g and h be three distinct primitive holomorphic cusp forms of even
integral weights k1, k2 and k3 for the full modular group Γ = SL(2,Z), respectively,
and let λf (n), λg(n) and λh(n) denote the nth normalized Fourier coefficients of f , g
and h, respectively. We consider the cancellations of sums related to arithmetic func-
tions λg(n), λh(n) twisted by λf (n) and establish the following results:

∑

n6x

λf (n)λg(n)
i
λh(n)

j
≪f,g,h,ε x

1−1/2i+j
+ε

for any ε > 0, where 1 6 i 6 2, j > 5 are any fixed positive integers.
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1. Introduction

The Fourier coefficients of modular forms are important and interesting objects in

number theory. Let Sk(Γ) be the space of holomorphic cusp forms of even integral

weight k for the full modular group Γ = SL(2,Z). Suppose that ϕ(z) is an eigen-

function of all Hecke operators belonging to Sk(Γ). Then the Hecke eigenform ϕ(z)

has the following Fourier expansion at the cusp ∞:

ϕ(z) =
∞
∑

n=1

λϕ(n)n
(k−1)/2e2πinz , ℑ(z) > 0,

where λϕ(n) are the normalized Fourier coefficients such that λϕ(1) = 1.
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Then λϕ(n) is real and satisfies the multiplicative property

(1.1) λϕ(m)λϕ(n) =
∑

d|(m,n)

λϕ

(mn

d2

)

,

where m > 1 and n > 1 are positive integers. In 1974, Deligne in [4] proved the

Ramanujan-Petersson conjecture

(1.2) |λϕ(n)| 6 d(n),

where d(n) is the divisor function. By (1.2), Deligne’s bound is equivalent to the

fact that there exist αϕ(p), βϕ(p) ∈ C satisfying

(1.3) αϕ(p) + βϕ(p) = λϕ(p), αϕ(p)βϕ(p) = |αϕ(p)| = |βϕ(p)| = 1.

More generally, for all positive integers l > 1 one has

λϕ(p
l) = αϕ(p)

l + αϕ(p)
l−1βϕ(p) + . . .+ αϕ(p)βϕ(p)

l−1 + βϕ(p)
l.

The average behaviour of Fourier coefficients has attracted a large number of

investigations in the literature. There is a long history of the investigation of the

upper estimate for

S(x) =
∑

n6x

λf (n).

In 1927, Hecke in [7] proved that

∑

n6x

λf (n) ≪ x1/2.

Subsequently, there are a number of improvements on S(x) (see e.g. [4], [25],

[33], [34]), and the current best estimate is due to Wu, see [34]

∑

n6x

λf (n) ≪ x1/3 log̺ x,

where

̺ =
102 + 7

√
21

210

(

6−
√
21

5

)1/2

+
102− 7

√
21

210

(

6 +
√
21

5

)1/2

− 33

35
= −0.118 . . .

In the 1930s, Rankin in [24] and Selberg in [27] inverted the powerful Rankin-

Selberg method and they successfully showed that

(1.4)
∑

n6x

λ2
f (n) = cfx+Of (x

3/5),
∑

n6x

λf (n)λg(n) = Of,g(x
3/5) (f 6= g).
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Very recently, the exponent of the first result in (1.4) has been sharpened to 3
5 − δ in

place of 3
5 by Huang (see [8]), where δ 6 1

560 . This remains the best possible result

in this direction.

Later, based on the works about symmetric power L-functions, Moreno and

Shahidi in [19] proved that

∑

n6x

τ40 (n) ∼ c1x log x, x → ∞,

where c1 > 0 is a suitable constant and τ0(n) = τ(n)/n11/2 is the normalized Ra-

manujan tau-function. Obviously, Merono and Shahidi’s result also holds true if we

replace τ0(n) with the normalized Fourier coefficient λf (n).

Based on work of Gelbart and Jacquet (see [6]), we know that the automorphy

of symmetric power lifting symjπf attached to f is proved for j = 2, and similarly

for g. In 2001, Fomenko in [5] refined and generalized the above results by showing

that
∑

n6x

λf (n)
4 = c2x log x+ c3x+Of,ε(x

9/10+ε)

and

(1.5)
∑

n6x

λ2
f (n)λ

2
g(n) = c4x+Of,g,ε(x

9/10+ε)

for any ε > 0, where the result in (1.5) required the condition that sym2πf ≇ sym2πg,

and he also established some other results.

Let f ∈ Sk1
(Γ), g ∈ Sk2

(Γ) and h ∈ Sk3
(Γ) be three distinct primitive Hecke cusp

forms, and denote by λf (n), λg(n) and λh(n) the nth normalized Fourier coefficients

of f , g and h, respectively. In 2013, Lü in [17] by using Ramakrishnan’s modularity

theorem (see [22]) on the Rankin-Selberg L-function and some analytic properties of

automorphic L-functions showed that

∑

n6x

λf (n)λg(n)λh(n) ≪f,g,h,ε x
7/9+ε

and

(1.6)
∑

n6x

λf (n)λg(n)λ
l
h(n) ≪f,g,h,ε x

(2l+1−1)/2l+1+ε

for any ε > 0, where 2 6 l 6 4 is any fixed positive integer. In the case l = 3, the

estimate (1.6) holds with the assumption that sym3πh ≇ πf⊗g.
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Later, Lü and Sankaranarayanan [18] in another paper generalized this to other

cases by showing that
∑

n6x

λf (n)λ
2
g(n)λ

j
h(n) ≪f,g,h,ε x

1−1/2j+2+ε

for any ε > 0, where 2 6 j 6 4 is any fixed positive integer.

In this paper, we consider the sums of arithmetic functions of the type
∑

n6x

λf (n)λ
i
g(n)λ

j
h(n),

where 1 6 i 6 2, j > 5 are any fixed positive integers. More precisely, we are able

to establish the following theorem.

Theorem 1.1. Let f ∈ Sk1
(Γ), g ∈ Sk2

(Γ) and h ∈ Sk3
(Γ) be three distinct

primitive Hecke cusp forms. For any ε > 0, by assuming the conditions πf×g ≇

sym3πh and πf×sym2g ≇ sym5πh, we have

∑

n6x

λf (n)λ
i
g(n)λ

j
h(n) ≪f,g,h,ε x

1−1/2i+j+ε,

where 1 6 i 6 2, j > 5 are any fixed positive integers.

Our proof of Theorem 1.1 is based on two important progress on Langlands pro-

gram, namely Ramakrishnan’s modularity theorem (see [22]) and functorial products

for GL2 ×GL3 (see [13]), together with the celebrated series of vital works of Gel-

bart and Jacquet (see [6]), Kim (see [13]), Kim and Shahidi (see [14], [15]), Shahidi

(see [31]), Clozel and Thorne (see [1], [2], [3]), and Newton and Thorne (see [20], [21]).

The analytic properties of the automorphic L-functions plays an important role in

the proof of the main results in this paper.

Throughout the paper, we always assume that f ∈ Sk1
(Γ), g ∈ Sk2

(Γ) and

h ∈ Sk3
(Γ) be three distinct primitive Hecke eigenforms and denote by ε > 0 the

arbitrarily small positive number that may vary from one occurrence to other occur-

rence. The symbol p always denotes a prime number.

2. Preliminaries

Let f ∈ Sk1
(Γ) be a Hecke eigenform of even integral weight k1 for the full modular

group Γ = SL(2,Z), and let λf (n) denote its nth normalized Fourier coefficient. It

is natural to define the Hecke L-function L(f, s) associated to f by

L(f, s) =
∞
∑

n=1

λf (n)

ns
=

∏

p

(1−λf(p)p
−s+p−2s)−1 =

∏

p

(

1−αf (p)

ps

)−1(

1− βf (p)

ps

)−1

,
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ℜ(s) > 1, where αf (p), βf (p) are the local parameters satisfying (1.3). The jth

symmetric power L-function associated with f is defined by

(2.1)

L(symjf, s) =
∏

p

j
∏

m=0

(1− αf (p)
j−mβf (p)

mp−s)−1 :=
∏

p

Lp(sym
jf, s), ℜ(s) > 1.

We may expand it into Dirichlet series

L(symjf, s) =

∞
∑

n=1

λsymjf (n)

ns

=
∏

p

(

1 +
λsymjf (p)

ps
+ . . .+

λsymjf (p
k)

pks
+ . . .

)

, ℜ(s) > 1.

Apparently λsymjf (n) is a real multiplicative function. For j = 1 we have

L(sym1f, s) = L(f, s). The Rankin-Selberg L-function L(symif × symjg, s) at-

tached to symif and symjg is defined as

(2.2)

L(symif × symjg, s) =
∏

p

i
∏

m=0

j
∏

m′=0

(

1− αf (p)
i−mβf (p)

mαg(p)
j−m′

βg(p)
m′

ps

)−1

=

∞
∑

n=1

λsymif×symjg(n)

ns
, ℜ(s) > 1.

For i = j = 1 we have L(sym1f × sym1g, s) = L(f × g, s).

Associated to a primitive cusp form f , there is an automorphic cuspidal represen-

tation πf of GL2(AQ) and hence, an automorphic L-function L(πf , s) which coincides

with L(f, s), namely

L(πf , s) = L(f, s).

It is predicted by the Langlands functoriality conjecture that πf gives rise to

a symmetric power lift symjπf – an automorphic representation whose L-function is

the symmetric power L-function attached to f ,

L(symjπf , s) = L(symjf, s).

It is conjectured that there exists an automorphic cuspidal self-dual representation

symjπf of GLj+1(AQ) whose L-function is the same as L(sym
jf, s).

For 1 6 j 6 8, this special Langlands functoriality conjecture that symjf is

automorphic cuspidal is shown by a series of important works by Gelbart and Jacquet

(see [6]), Kim (see [13]), Kim and Shahidi (see [14], [15]), Shahidi (see [31]), Clozel
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and Thorne, see [1], [2], [3]. Very recently, Newton and Thorne in [20], [21] proved

that symjf corresponds with a cuspidal automorphic representation of GLj+1(AQ)

for all j > 1 (with f being holomorphic cusp forms). Then we know that for all

j > 1 there exists an automorphic cuspidal self-dual representation, denoted by

symjπf = ⊗′symjπf,v, of GLj+1(AQ), whose local L-factors L(sym
jπf,p, s) agree

the local L-factors Lp(sym
jf, s) in (2.1). In particular, L(symjf, s) has an analytic

continuation to the whole complex plane as an entire function and satisfies a certain

Riemann-type functional equation for all j > 1.

From the works about the Rankin-Selberg theory associated with two automor-

phic cuspidal representations developed by Jacquet, Piatetski-Shapiro and Shalika

(see [10]), Jacquet and Shalika (see [11], [12]), Shahidi (see [28], [29], [30], [32], and

the reformulation of Rudnick and Sarnak (see [26]), we know the analytic properties

for the Rankin-Selberg L-functions L(symif × symjg, s) with i, j > 1.

Lemma 2.1. Let f ∈ Sk1
(Γ) and g(z) ∈ Sk2

(Γ) be two distinct primitive Hecke

cusp forms and the Rankin-Selberg L-function L(f × g, s) let be defined by (2.2).

Then there exists a cuspidal representation πf×g on GL4(AQ) such that

L(f × g, s) = L(πf×g, s).

In particular, L(f × g, s) has an analytic continuation to the whole complex plane

as an entire function and satisfies the functional equation of Riemann-type.

P r o o f. This is a special case of Ramakrishnan’s modularity theorem on the

Rankin-Selberg L-function, see [22]. �

Lemma 2.2. Let f(z) ∈ Sk1
(Γ) and g(z) ∈ Sk2

(Γ) be two distinct primitive

Hecke cusp forms, and be L(πf × sym2πg, s) the Rankin-Selberg L-function associ-

ated with πf on GL2(AQ) and sym2πg on GL3(AQ). Then there exists a cuspidal

representation πf ⊠ sym2πg on GL6(AQ) such that

L(πf × sym2πg, s) = L(πf ⊠ sym2πg, s).

P r o o f. Let π2 and π3 be unitary automorphic cuspidal representations of

GL2(AQ) and GL3(AQ), respectively. Then, by Kim and Shahidi (see [13]), π2⊠π3 is

an automorphic representation of GL6(AQ). It is isobaric and cuspidal or irreducibly

induced from unitary cuspidal representations. When π2 is not dihedral, π2 ⊠ π3

is cuspidal unless π3 is a twist of Ad(π2) by a grössencharacter, see [23]. Then

the lemma follows the assertions. Interested readers can also consult in Lemma 2.3

of [18]. �
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Lemma 2.3. For ℜ(s) > 1, define

Li,j(s) =
∞
∑

n=1

λf (n)λ
i
g(n)λ

j
h(n)

ns
,

where 1 6 i 6 2 and j > 5 are any fixed positive integers. Then we have

Li,j(s) =

{

∏

l,r

L((f × symlg)× symrh, s)

}

Ui,j(s),

where the product of the L-functions L((f × symlg)× symrh, s) is another automor-

phic L-function of degree 21+i+j with 0 6 l 6 i and 0 6 r 6 j, here 1 6 i 6 2

and j > 5 are any fixed positive integers, and the Ui,j(s) is a Dirichlet series which

converges uniformly and absolutely in the half-plane ℜ(s) > 1
2 + ε for any ε > 0.

Here L((f × symlg)× symrh, s) with 1 6 l 6 2 and r > 1 are well-defined Rankin-

Selberg L-functions associated with corresponding automorphic cuspidal representa-

tions.

P r o o f. Since λf (n)λ
i
g(n)λ

j
h(n) are multiplicative functions and satisfy the trivial

bound O(nε), then for ℜ(s) > 1 we have the Euler product

Li,j(s) =
∏

p

(

1 +
∑

k>1

λf (p
k)λi

g(p
k)λj

h(p
k)

pks

)

.

In the half-plane ℜ(s) > 1
2 , the corresponding coefficients of p

−s determine analytic

properties of Li,j(s).

By the Hecke relation (1.1) and Lau-Lü (see [16], Lemma 7.1), we know that

λf (p)λ
i
g(p)λ

j
h(p) can be decomposed into the sums of types λf (p)λsymlg(p)λsymrh(p)

with 0 6 l 6 2, r > 0. Then the assertions follow from Lemmas 2.1 and 2.2 and

these identities. �

3. Proof of Theorem 1.1

From the Rankin-Selberg theory mentioned in Section 2, by assuming the con-

ditions πf×g ≇ sym3πh and πf×sym2g ≇ sym5πh, the Rankin-Selberg L-functions

L((f × g) × symjh, s) and L((f × sym2g) × symjh, s) with j > 1 can be analyti-

cally continued to the whole complex plane as entire functions and satisfy certain

Riemann-type functional equations.
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By Lemma 2.3, we define the general L-function

L∗
i,j(s) =

∏

l,r

L((f × symlg)× symrh, s) :=

∞
∑

n=1

b(n)

ns
, and Ui,j(s) :=

∞
∑

n=1

c(n)

ns

for ℜ(s) > 1, where Ui,j(s) is the Dirichlet series which converges absolutely and

uniformly in the half-plane ℜ(s) > 1
2 + ε for any ε > 0, and 0 6 l 6 2 and j > 5.

We learn from the Rankin-Selberg theory that L∗
i,j(s) is an automorphic L-function

(see [9], Chapter 5), which can be analytically continued to the whole complex plane

as an entire function and satisfies Riemann-type functional equation. In particular,

these general L-functions L∗
i,j(s) satisfy the conditions in Lau and Lü (see [16],

Lemma 2.4), which states that if we suppose that L(f, s) is a product of two general

L-functions L1, L2 with both degree degLi > 2, and L(s, f) satisfies the Ramanujan

conjecture, then for ε > 0 we have

∑

n6x

λf (n) = M(x) +O(x1−2/m+ε),

whereM(x) = Ress=1{L(f, s)xs/s} and m = degL. Then we know from Lemma 2.3

that
∑

n6x

b(n) ≪ x1−1/2i+j+ε.

By Lemma 2.3 we know that

λf (n)λ
i
g(n)λ

j
h(n) =

∑

n=uv

c(v)b(u)

which satisfies the relation

(3.1)
∑

v>1

|c(v)|v−σ ≪σ 1 for any σ >
1

2
.

Hence, we can obtain

∑

n6x

λf (n)λ
i
g(n)λ

j
h(n) =

∑

v6x

c(v)
∑

u6x/v

b(u)

≪ x1−1/2i+j+ε
∑

v6x

c(v)

v1−1/2i+j+ε
≪ x1−1/2i+j+ε

by noting relation (3.1). This completes the proof of Theorem 1.1. �
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