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Abstract. Let f be a normalized primitive holomorphic cusp form of even integral weight
for the full modular group Γ = SL(2,Z). Denote by λf (n) the nth normalized Fourier
coefficient of f . We are interested in the average behaviour of the sum

∑

a2+b26x

λ
j
f (a
2 + b

2)

for x > 1, where a, b ∈ Z and j > 9 is any fixed positive integer. In a similar manner,
we also establish analogous results for the normalized coefficients of Dirichlet expansions of
associated symmetric power L-functions and Rankin-Selberg L-functions.

Keywords: Fourier coefficient; automorphic L-function, Langlands program

MSC 2020 : 11F11, 11F30, 11F66

1. Introduction

The Fourier coefficients of modular forms are important and interesting objects

in number theory. Let H∗
k be the set of all normalized primitive holomorphic cusp

forms of even integral weight k > 2 for the full modular group Γ = SL(2,Z). Then

the Hecke eigenform f(z) ∈ H∗
k has the following Fourier expansion at the cusp ∞:

f(z) =
∞∑

n=1

λf (n)n
(k−1)/2e2πinz, ℑ(z) > 0,
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where λf (n) is the nth normalized Fourier coefficient (Hecke eigenvalue) such that

λf (1) = 1. Then λf (n) is real and satisfies the multiplicative property

λf (m)λf (n) =
∑

d|(m,n)

λf

(mn

d2

)
,

where m > 1 and n > 1 are positive integers. In 1974, Deligne in [4] proved the

Ramanujan-Petersson conjecture

(1.1) |λf (n)| 6 d(n),

where d(n) is the divisor function. By (1.1), Deligne’s bound is equivalent to the

fact that there exist αf (p), βf (p) ∈ C satisfying

(1.2) αf (p) + βf (p) = λf (p), αf (p)βf (p) = |αf (p)| = |βf (p)| = 1.

More generally, for all positive integers l > 1 one has

λf (p
l) = αf (p)

l + αf (p)
l−1βf (p) + . . .+ αf (p)βf (p)

l−1 + βf (p)
l.

In 1927, Hecke in [11] proved that

(1.3)
∑

n6x

λf (n) ≪ x1/2.

Later, the upper bound in (1.3) has been improved by several authors, see e.g. [4],

[9], [34]. The record to date is given by Wu, see [46]:

∑

n6x

λf (n) ≪ x1/3 log̺ x,

where

̺ =
102 + 7

√
21

210

(
6−

√
21

5

)1/2

+
102− 7

√
21

210

(
+
√
21

5

)1/2

− 33

35
= −0.118 . . .

In 1930s, Rankin in [33] and Selberg in [42] independently proved the asymptotic

formula

(1.4)
∑

n6x

λ2
f (n) = cfx+O(x3/5),

where cf > 0 is a positive constant depending on f and ε > 0 is an arbitarily small

positive number. Very recently, the exponent in (2.2) has been improved to 3
5 − δ

in place of 3
5 by Huang (see [12]), where δ 6 1/560. This remains the best known

result in this direction.
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Later, based on the works about symmetric power L-functions, Moreno and

Shahidi in [30] were able to prove

(1.5)
∑

n6x

τ40 (n) ∼ c1x log x, x → ∞,

where τ0(n) = τ(n)/n11/2 is the normalized Ramanujan tau-function and c1 > 0 is

a positive constant. Moreno and Shahidi’s result also holds true if we replace τ0(n)

with the normalized Fourier coefficient λf (n).

Let f ∈ H∗
k be a Hecke eigenform and denote its nth normalized Fourier coefficient

by λf (n). Define

Sj(f ;x) =
∑

n6x

λj
f (n),

where j ∈ Z+ and x > 1.

Based on the work of Moreno and Shahidi concerning the symmetric power

L-functions L(symjf, s) for j = 1, 2, 3, 4, Fomenko in [5] established the estimates

S3(f ;x) ≪f,ε x
5/6+ε, S4(f ;x) = cfx log x+ dfx+Of,ε(x

9/10+ε),

where cf > 0 and df are suitable constants depending on f . Here ε is an arbitrarily

small positive number. Later, Lü (see e.g. [26], [28], [23]) considered higher moments

Sj(f ;x) for 3 6 l 6 8, which improved and generalized the work of Fomenko. Later

Lau, Lü and Wu in [25] proved that

Sj(f ;x) = xP ∗
j (log x) +Of,ε(x

θj+ε), 3 6 j 6 8,

where P ∗
j (t) ≡ 0 are the zero functions for j = 3, 5, 7, and P ∗

4 (t), P
∗
6 (t), P

∗
8 (t) are

polynomials of degree 1, 4, 13, respectively, and

θ3 =
7

10
, θ5 =

40

43
, θ7 =

176

179
, θ4 =

151

175
, θ6 =

175

181
, θ8 =

2933

2957
.

Lau and Lü in [24] derived general results for Sj(f ;x) for all j > 2 under the

assumption that L(symlf, s) is automorphic cuspidal for a positive l. Now we know

that L(symjf, s) is automorphic for all j > 1 due to the recent celebrated works of

Newton and Thorne, see [31], [32].

In 2013, Zhai in [47] considered the average behaviour of the power sum

Uj(f ;x) :=
∑

a2+b26x

λf (a
2 + b2)j

for x > 1, 2 6 j 6 8 and a, b, j ∈ Z. He proved that

Uj(f ;x) = xP̃j(log x) +O(xαj+ε),
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where P̃j(t) with j = 2, . . . , 8 are polynomials of t with degrees deg P̃2(t) = 0,

deg P̃4(t) = 1, deg P̃6(t) = 4, deg P̃8(t) = 13, and deg P̃j(t) ≡ 0 are the zero functions

for j = 3, 5, 7. The powers αj are given by

α2 =
8

11
, α3 =

17

20
, α4 =

43

46
, α5 =

83

86
, α6 =

184

187
, α7 =

355

357
, α8 =

752

755
.

In this paper, we firstly consider the asymptotic behavior of Uj(f ;x) for positive

integers j > 9. More precisely, we will be able to establish the following results.

Theorem 1.1. Let f ∈ H∗
k be a Hecke eigenform. Let j > 9 be any fixed positive

integer. Then the following hold:

(i) For j = 2m we have

Uj(f ;x) = xPAm−1(log x) +Of,ε(x
1−2−j+ε)

for any ε > 0, where Pω(t) denotes a polynomial in t of degree ω and Am is

defined by

Am =
(2m)!

m! (m+ 1)!
, m > 1.

(ii) For j = 2m+ 1 we have

Uj(f ;x) ≪f,ε x
1−2−j+ε

for any ε > 0.

Let λsymjf (n) denote the nth normalized coefficient of the Dirichlet expansion of

the jth symmetric power L-function. Fomenko in [6] proved that

∑

n6x

λsym2f (n) ≪ x1/2(log x)2.

Later, this sum has been studied by many authors, see e.g. [18], [29], [41]. The

analogous cases for symmetric power lifting symjπf for large j were considered by

Lau and Lü (see [24]), and Tang and Wu, see [45].

On the other hand, Fomenko in [7] studied the sum of λ2
sym2f (n). Later, this

result has been improved and generalized by a number of authors, see e.g. [10],

[22], [40], [44]. Recently, Sankaranarayanan, Singh and Srinivas [40] proved that

∑

n6x

λ2
sym3f (n) = c1x+O(x15/17+ε), and

∑

n6x

λ2
sym4f (n) = c2x+O(x12/13+ε),
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where c1, c2 > 0 are some suitable constants. Very recently, Luo et al. in [22] estab-

lished the following asymptotic formulas:

∑

n6x

λ2
symjf (n) = c̃jx+O(xθ̃j+ε), 3 6 j 6 6,

∑

n6x

λ2
symjf (n) = c̃jx+O(xθ̃j ), j = 7, 8,

where c̃j (3 6 j 6 8) is a suitable constant, and θ̃3 = 551
635 , θ̃4 = 929

1013 , θ̃5 = 1391
1475 ,

θ̃6 = 979
1021 , θ̃7 = 63

65 , θ̃8 = 40
41 .

Define

U∗
j (f ;x) :=

∑

a2+b26x

λ2
symjf (a

2 + b2)

for x > 1, j > 2 and a, b ∈ Z.

The second purpose of this paper is to prove the following theorem.

Theorem 1.2. Let f ∈ H∗
k be a Hecke eigenform. Let j > 2 be any fixed positive

integer. Then

U∗
j (f ;x) = Cf,jx+Of,ε(x

1−1/(j+1)2+ε),

where Cf,j > 0 is a suitable constant.

Let f ∈ H∗
k1
and g ∈ H∗

k2
be two distinct Hecke eigenforms. Denote by

λsymif×symjf (n) and λsymif×symjg(n) the nth normalized coefficients of the Dirichlet

expansions of the associated Rankin-Selberg L-functions L(symif × symjf, s) and

L(symif × symjg, s), respectively. Define

Ui,j(f, f ;x) :=
∑

a2+b26x

λ2
symif×symjf (a

2 + b2)

and

Ui,j(f, g;x) :=
∑

a2+b26x

λ2
symif×symjg(a

2 + b2)

for x > 1, 1 6 i 6 j and a, b ∈ Z.

In a similar manner, we can also establish the following analogous results.

Theorem 1.3. Let f ∈ H∗
k be a Hecke eigenform. Let 1 6 i 6 j be any fixed

positive integers. Then

Ui,j(f, f ;x) = Cf,i,jPi(log x) +Of,ε(x
1−1/((i+1)(j+1))2+ε),

where Cf,i,j > 0 is a suitable constant and Pω(t) denotes a polynomial in t of

degree ω.
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Theorem 1.4. Let f ∈ H∗
k1
and g ∈ H∗

k2
be two distinct Hecke eigenforms.

Let 1 6 i 6 j be any fixed positive integers. Assume that symlπf ≇ symlπg for

1 6 l 6 2i. Then we have

Ui,j(f, g;x) = Cf,g,i,jx+Of,g,ε(x
1+ε−1/((i+1)(j+1))2 ),

where Cf,g,i,j > 0 is some suitable constant.

Remark 1.1. By applying Perron’s formula (see [14], Proposition 5.54) and

using better individual or average subconvexity bounds for the automorphic L-func-

tions, we can improve the upper bounds and the remainder terms in Theorems 1.1–1.4

slightly. But here we emphasize the methods for dealing with such kinds of problems.

Throughout the paper, we always assume that f ∈ H∗
k1
and g ∈ H∗

k2
be two

distinct Hecke eigenforms. Denote by ε > 0 an arbitrarily small positive constant

that may vary in different occurrences.

2. Preliminaries

In this section, we introduce some background on the analytic properties of aut-

morphic L-functions and give some useful lemmas which play important roles in the

proof of the main results of this paper.

Let f ∈ H∗
k1
be a Hecke eigenform of even integral weight k for the full modular

group Γ = SL(2,Z), and let λf (n) denote its nth normalized Fourier coefficient. The

Hecke L-function L(f, s) associated to f is defined by

L(f, s) =

∞∑

n=1

λf (n)

ns
=

∏

p

(1− λf (p)p
−s + p−2s)−1

=
∏

p

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1

, ℜ(s) > 1,

where αf (p), βf (p) are the local parameters satisfying (1.2). The jth symmetric

power L-function associated with f is defined by

L(symjf, s) =
∏

p

j∏

m=0

(1− αf (p)
j−mβf (p)

mp−s)−1, ℜ(s) > 1.

We may expand it into a Dirichlet series

(2.1) L(symjf, s) =

∞∑

n=1

λsymjf (n)

ns

=
∏

p

(
1 +

λsymjf (p)

ps
+ . . .+

λsymjf (p
k)

pks
+ . . .

)
, ℜ(s) > 1.
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Obviously, λsymjf (n) is a real multiplicative function. For j = 1 we have

L(sym1f, s) = L(f, s).

Let g ∈ H∗
k2
be a Hecke eigenform. The Rankin-Selberg L-function L(symif ×

symjg, s) attached to symif and symjg is defined as

(2.2) L(symif × symjg, s) =
∏

p

i∏

m=0

j∏

m′=0

(
1−αf (p)

i−mβf (p)
mαg(p)

j−m′

βg(p)
m′

ps

)−1

=
∞∑

n=1

λi
symf × symjg(n)

ns
, ℜ(s) > 1.

Here f ∈ H∗
k1
and g ∈ H∗

k2
are not necessarily different.

It is standard that

λf (p
j) = λsymjf (p) =

αf (p)
j+1 − βf (p)

j+1

αf (p)− βf (p)
=

j∑

m=0

αf (p)
j−mβf (p)

m,

which can be written as

λf (p
j) = λsymjf (p) = Ũj

(λf (p)

2

)
,

where Ũj(x) is the jth Chebyshev polynomial of the second kind. For any prime

number p, we also have

(2.3) λsymif×symjg(p) = λsymif (p)λsymjg(p) = λf (p
i)λg(p

j).

As is well-known, an automorphic cuspidal representation πf of GL2(AQ) and

hence an automorphic L-function L(πf , s) which coincides with L(f, s) is associated

to a primitive form f . It is predicted that πf gives rise to a symmetric power lift—

an automorphic representation whose L-function is the symmetric power L-function

attached to f .

For 1 6 j 6 8, the special Langlands functoriality conjecture which states that

symjf is automorphic cuspidal has been established in a series of important works

of Gelbart and Jacquet (see [8]), Kim (see [19]), Kim and Shahidi (see [20], [21]),

Shahidi (see [39]), Clozel and Thorne, see [1], [2], [3]. Very recently, Newton and

Thorne in [31], [32] proved that symjf corresponds with a cuspidal automorphic

representation of GLj+1(AQ) for all j > 1 (with f being a holomorphic cusp form).

From the works about the Rankin-Selberg theory developed by Jacquet, Piatetski-

Shapiro, and Shalika (see [15]), Jacquet and Shalika (see [16], [17]), Shahidi (see [43],
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[36], [37], [38]), and the reformulation of Rudnick and Sarnak (see [35]), we know

that L(symjf, s), L(symif × symjg, s) (1 6 i 6 j) have analytic continuations to

the whole complex plane except possibly for simple poles at s = 0, 1 (in this case

symjπf
∼= symjπg) and satisfy certain Riemann-type functional equations. We refer

the interested reader to [14], Chapter 5 for a more comprehensive treatment.

We firstly state some basic definitions and analytic properties of general L-func-

tions. Let L(ϕ, s) be a Dirichlet series (associated with the object ϕ) that admits an

Euler product of degree m > 1, namely

L(ϕ, s) =

∞∑

n=1

λϕ(n)

ns
=

∏

p<∞

m∏

j=1

(
1− αϕ(p, j)

ps

)−1

,

where αϕ(p, j), j = 1, 2, . . . ,m are the local parameters of L(ϕ, s) at a finite prime p.

Suppose that this series and its Euler product are absolutely convergent for ℜ(s) > 1.

We denote the gamma factor by

L∞(ϕ, s) =

m∏

j=1

π−s+µϕ(j)/2Γ
(s+ µϕ(j)

2

)

with local parameters µϕ(j), j = 1, 2, . . . ,m of L(ϕ, s) at ∞. The complete L-func-
tion Λ(ϕ, s) is defined by

Λ(ϕ, s) = q(ϕ)s/2L∞(ϕ, s)L(ϕ, s),

where q(ϕ) is the conductor of L(ϕ, s). We assume that Λ(ϕ, s) admits an analytic

continuation to the whole complex plane C and is holomorphic everywhere except

for possible poles of finite order at s = 0, 1. Furthermore, we assume that it satisfies

a functional equation of the Riemann-type

Λ(ϕ, s) = εϕΛ(ϕ̃, 1− s),

where εϕ is the root number with |εϕ| = 1 and ϕ̃ is the dual of ϕ such that λϕ̃(n) =

λϕ(n), L∞(ϕ̃, s) = L∞(ϕ, s) and q(ϕ̃) = q(ϕ). We write ϕ ∈ S#
e if it is satisfies

with the above conditions. We say the L-function L(ϕ, s) satisfies the Ramanujan

conjecture if λϕ(n) ≪ nε for any ε.

Here we state a very general theorem due to Lau and Lü, see [24].

Lemma 2.1 ([24], Lemma 2.4). Let L(f, s) be a product of two L-functions

L1, L2 ∈ S#
e with both degLi > 2, i = 1, 2 and suppose that L(f, s) satisfies the

Ramanujan conjecture. Then for any ε > 0 we have
∑

n6x

λf (n) = M(x) +O(x1−2/m+ε),

where M(x) = Ress=1{L(f, s)xs/s} and m = degL.
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Define r2(n) by

r2(n) = ♯
{
(a, b) ∈ Z2 : n = a2 + b2},

then it is well-known that

(2.4) r2(n) = 4
∑

d|n

χ4(d),

where χ4 is the nontrivial character to modulus 4. In fact, we have

∞∑

n=0

r2(n)e(nz) = θ2(z),

here e(z) = e2πiz, where θ(z) is the classical theta function defined by

θ(z) = 1 + 2
∞∑

n=1

e(n2z).

It is well-known that θ2(z) is a modular form of weight 1 for Γ0(4) with character χ4.

We set

r(n) =
1

4
r2(n) =

∑

d|n

χ4(d).

Then for each prime p we have

(2.5) r(p) = 1 + χ4(p), r(p2) = 1 + χ4(p) + χ4(p
2).

For simplicity, we write χ := χ4. In fact, we have

Uj(f ;x) =
∑

n6x

λj
f (n)r2(n) = 4

∑

n6x

λj
f (n)r(n).

We define the generating function Lj(f, s) by

(2.6) Lj(f, s) :=

∞∑

n=1

λj
f (n)r(n)

ns

for ℜ(s) > 1 and j > 1.

Lemma 2.2. Let f ∈ H∗
k be a Hecke eigenform. For j > 9 being an integer we

have

Lj(f, s) = Fj(s)Hj(s),

where

(2.7) F2m(s) = ζ(s)AmL(sym2mf, s)L(s, χ)AmL(sym2mf × χ, s)

×
∏

16r6m−1

L(sym2rf, s)Cm(r)L(sym2rf × χ, s)Cm(r) (j = 2m),
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and

(2.8) F2m+1(s) = L(f, s)BmL(sym2m+1f, s)L(f × χ, s)BmL(sym2m+1f × χ, s)

×
∏

16r6m−1

L(sym2r+1f, s)Dm(r)L(sym2r+1f × χ, s)Dm(r),

(j = 2m+ 1),

where Am, Bm, Cm(r), Dm(r) are suitable constants, and

(2.9) Am =
(2m)!

m! (m+ 1)!
, m > 1,

where the function Hj(s) is a Dirichlet series which converges uniformly and abso-

lutely in the half-plane ℜ(s) > 1
2 + ε and Hj(s) 6= 0 if ℜ(s) = 1.

P r o o f. Since λj
f (n)r(n) is a multiplicative function and satisfies the trivial

bound O(nε), then for ℜ(s) > 1 we have the Euler product

(2.10) Lj(f, s) =
∏

p

(
1 +

∑

k>1

λj
f (p

k)r(pk)

pks

)
.

We only give the proof of the cases j = 2m, since other cases follow similar

approach. For j = 2m and ℜ(s) > 1, the L-function

(2.11) Fj(s) = ζ(s)AmL(sym2mf, s)L(s, χ)AmL(sym2mf × χ, s)

×
∏

16r6m−1

L(sym2rf, s)Cm(r)L(sym2rf × χ, s)Cm(r)

can be represented as

(2.12) Fj(s) :=
∏

p

(
1 +

∑

k>1

b(pk)

pks

)
.

By the relations (2.5), (2.11), (2.12) and Lau-Lü (see [24], Lemma 7.1), we know

that

(2.13)

λj
f (p)r(p) =

(
Am +

∑

16r6m−1

Cm(r)λsym2rf (p) + λsym2mf (p)

)
(1 + χ(p)) = b(p),
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where Am is determined by (2.9), and Cm(r) are some suitable coefficients. Com-

bining (2.10)–(2.13) for ℜ(s) > 1 we obtain

Lj(f, s) = Fj(s)×
∏

p

(
1 +

λj
f (p

2)r(p2)− b(p2)

p2s
+ . . .

)

:= ζ(s)AmL(sym2mf, s)L(s, χ)AmL(sym2mf × χ, s)

×
∏

16r6m−1

L(sym2rf, s)Cm(r)L(sym2rf × χ, s)Cm(r)Hj(s).

It is not hard to find that

|λj
f (p

2)r(p2)− b(p2)| 6 c1

for a suitable constant c1 > 0. Hence, Hj(s) admits a Dirichlet series which converges

absolutely and uniformly in the half-plane ℜ(s) > 1
2 + ε for any ε > 0. �

We also define

(2.14) L(symjf, s) :=

∞∑

n=1

λ2
symjf (n)r(n)

ns
, ℜ(s) > 1.

We have the following lemma concerning the decomposition of L(symjf, s).

Lemma 2.3. Let f ∈ H∗
k be a Hecke eigenform. For j > 2 we have

L(symjf, s) = Lf,j(s)Gj(s),

where

Lf,j(s) = ζ(s)L(s, χ)

j∏

r=1

L(sym2rf, s)L(sym2rf × χ, s),

where the function Gj(s) is a Dirichlet series which converges uniformly and abso-

lutely in the half-plane ℜ(s) > 1
2 + ε and Gj(s) 6= 0 with ℜ(s) = 1.

P r o o f. This follows the same argument as in the proof of Lemma 2.2 by noting

the relation

λ2
symjf (p) = λ2

f (p
j) = 1 + λsym2f (p) + . . .+ λsym2jf (p).

�
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Let f ∈ H∗
k1
and g ∈ H∗

k2
be two distinct Hecke eigenforms. In a similar manner,

we define

(2.15) L(f, f, i, j, s) :=
∞∑

n=1

λ2
symif×symjf (n)r(n)

ns

and

(2.16) L(f, g, i, j, s) :=

∞∑

n=1

λ2
symif×symjg(n)r(n)

ns

for ℜ(s) > 1, where 1 6 i 6 j and i, j ∈ Z+.

Lemma 2.4. Let f ∈ H∗
k1
and g ∈ H∗

k2
be two distinct Hecke eigenforms. For

1 6 i 6 j being any fixed positive integers, we have

L(f, f, i, j, s) = ζ(s)L(s, χ)

i∏

l1=1

j∏

l2=1

L(sym2l1f, s)

× L(sym2l2f, s)L(sym2l1f × sym2l2f, s)

× L(sym2l1f × χ, s)L(sym2l2f × χ, s)

× L(sym2l1f × sym2l2f × χ, s)U∗
f,f,i,j(s)

and

L(f, g, i, j, s) = ζ(s)L(s, χ)

i∏

l1=1

j∏

l2=1

L(sym2l1f, s)

× L(sym2l2g, s)L(sym2l1f × sym2l2g, s)

× L(sym2l1f × χ, s)L(sym2l2g × χ, s)

× L(sym2l1f × sym2l2g × χ, s)U∗
f,g,i,j(s),

where the functions U∗
f,f,i,j(s), U

∗
f,g,i,j(s) are Dirichlet series which converge uni-

formly and absolutely in the half-plane ℜ(s) > 1
2 + ε and U∗

f,f,i,j(s), U
∗
f,g,i,j(s) 6= 0

if ℜ(s) = 1.

P r o o f. This follows the arguments of Lao and Luo (see [27], Proposition 3.1)

with some modifications. �
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3. Proofs of Theorems 1.1–1.4

Now we are ready to establish the main results of this paper. We only give the

proof of Theorem 1.1, and the other theorems follow essentially the same arguments

by applying Lemmas 2.1–2.4.

Let j > 9 be any fixed integer. For j = 2m, by (2.7) in Lemma 2.2, define

F2m(s) :=
∞∑

n=1

b(n)

ns
,

then the L-function F2m(s) is of degree 22m+1 and can be extended to a meromorphic

function on the whole complex plane except for a pole of order Am at s = 1. Then

by Lemma 2.1 we can derive that

∑

n6x

b(n) = xP ′′
Am−1(log x) +Of,ε(x

1−2−2m+ε),

where the main term xP ′′
Am−1(log x) is given by

xP ′′
Am−1(log x) = Ress=1

{
F2m(s)

xs

s

}
.

Here P ′′
ω (t) denotes a polynomial in t of degree ω, and Am is defined by (2.9).

By Lemma 2.2 we know that

λj
f (n)r(n) =

∑

n=uv

c(v)b(u)

satisfies the relations

(3.1)
∑

v>1

|c(v)|v−σ ≪σ 1 for any σ >
1

2
.

Hence, we can obtain

∑

n6x

λj
f (n)r(n) =

∑

v6x

c(v)
∑

u6x/v

b(u)

=
∑

v6x

c(v)
(x
v
P ′′
Am−1

(
log

x

y

)
+O

((x
y

)1−2−2m+ε))

= xPAm−1(log x) +O(x1−2−2m+ε)

by noting relation (3.1). Here Pω(t) denotes another polynomial in t of degree ω,

and Am is defined by (2.9).
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For j = 2m+1 we know from (2.8) that the L-function F2m+1(s) can be extended

to an entire function. Then again by applying Lemma 2.1 and arguing as above, we

obtain

Uj(f ;x) ≪f,ε x
1−2−(2m+1)+ε.

This completes the proof of Theorem 1.1. �
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