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Abstract. Let R be a commutative ring with a nonzero identity. In this study, we
present a new class of ideals lying properly between the class of n-ideals and the class of
(2, n)-ideals. A proper ideal I of R is said to be a quasi n-ideal if

√

I is an n-ideal of R.

Many examples and results are given to disclose the relations between this new concept and
others that already exist, namely, the n-ideals, the quasi primary ideals, the (2, n)-ideals
and the pr-ideals. Moreover, we use the quasi n-ideals to characterize some kind of rings.
Finally, we investigate quasi n-ideals under various contexts of constructions such as direct
product, power series, idealization, and amalgamation of a ring along an ideal.

Keywords: n-ideal; quasi n-ideal; (2, n)-ideal

MSC 2020 : 13A15, 13A18

1. Introduction

In this article, we focus only on commutative rings with a nonzero identity and

nonzero unital modules. Let R always denote such a ring and M denote such an

R-module. The principal ideal generated by a ∈ R is denoted by (a). Also the

radical of I is defined as
√
I := {r ∈ R : rk ∈ I for some k ∈ N}. In particular,√

0 := {r ∈ R : rk = 0 for some k ∈ N} is the set of all nilpotent elements of R. For
a subset S of R and an ideal I of R, we define (I :R S) := {r ∈ R : rS ⊆ I}. In
particular, we use Ann(S) instead of (0 :R S).Moreover, for any a ∈ R and any ideal I

of R we use (I : a) and Ann(a) to denote (I :R {a}) and Ann({a}), respectively.
An element a ∈ R is called a regular (or zerodivisor) element if Ann(a) = (0)

(or Ann(a) 6= (0)). The set of all regular (or zerodivisor) elements of R is denoted

by r(R) (or zd(R)).

In 2015, Mohamadian presented the notion of r-ideals in commutative rings with

a nonzero identity as follows: an ideal I of a commutative ring with identity R
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is called r-ideal (or pr-ideal) if ab ∈ I and a is regular element implies that b ∈ I

(or bn ∈ I, for some natural number n) for each a, b ∈ R, see [9]. In 2017, the authors

introduced the concept of n-ideals of a commutative ring with a nonzero identity R

as follows: let I be a proper ideal of R. If whenever ab ∈ I and a /∈
√
0, then b ∈ I,

we say I is an n-ideal of R, see [11]. It is clear that every n-ideal is an r-ideal since√
0 ⊆ zd(R). In [10], Tamekkante and Bouba introduced a generalization of the class

of n-ideals called (2, n)-ideals. A proper ideal I of R is said to be a (2, n)-ideal if

whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈
√
0 or bc ∈

√
0. They proved

that an ideal I of R is a (2, n)-ideal if and only if I is 2-absorbing primary ideal and

I ⊆
√
0, see [10], Theorem 2.4.

On the other hand, the concept of quasi primary ideals in commutative rings was

introduced and investigated by Fuchs in [7]. The author called an ideal I of R as

a quasi primary ideal if
√
I is a prime ideal. In [12], the notion of 2-absorbing quasi

primary ideals is introduced as follows: a proper ideal I of R is 2-absorbing quasi

primary if
√
I is a 2-absorbing ideal of R.

In this paper, our aim is to introduce a generalization of the concepts of n-ideals

in commutative rings with a nonzero identity. For this, firstly with Definition 2.1,

we introduce the concept of quasi n-ideals of R as follows: let I be a proper ideal

of R, if
√
I is an n-ideal of R, then I is said to be a quasi n-ideal of R. In addition

to giving main properties of quasi n-ideals, we give a characterization for them, see

Theorem 2.1. At this point, we observe that quasi n-ideals exist in a ring R only

when
√
0 is a prime ideal. On the other hand, we have the following figure with

nonreversible arrows, see Examples 2.1 and 2.2

n-ideal → quasi n-ideal → (2, n)-ideal.

Moreover, we study the rings over which every proper ideal is a quasi n-ideal. Finally,

we give an idea about quasi n-ideals of the localization of rings, the power series rings,

the trivial ring extensions and the amalgamated of rings along an ideal.

2. Quasi n-ideals of commutative rings

Definition 2.1. Let R be a commutative ring with a nonzero identity and I be

a proper ideal of R. If
√
I is an n-ideal of R, then I is said to be a quasi n-ideal of R.

It can be easily seen that every n-ideal of a ring R is a quasi n-ideal. But the

converse is not true. For this, we can give the following example, which is a quasi

n-ideal but not n-ideal.
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Example 2.1. Let R = Z[X,Y ]/(Y 4). For x = X + (Y 4) and y = Y + (Y 4),

consider I = (xy, y2). It is clear that
√
0R = (y). Since (x+ y)y ∈ I but x+ y /∈ √

0R
and y /∈ I, we get that I is not an n-ideal of R. On the other hand,

√
0R = (y) is

a prime ideal of R. By [11], Corollary 2.9 (i), we say
√
0R is an n-ideal. Moreover,√

I =
√
0R as I ⊆ √

0R. Hence,
√
I is an n-ideal, i.e., I is a quasi n-ideal of R.

The following theorem provides necessary and sufficient conditions for a proper

ideal to be a quasi n-ideal.

Theorem 2.1. Let R be a ring and I be a proper ideal of R. Then the following

statements are equivalent:

(1) I is a quasi n-ideal.

(2) I is a quasi primary ideal and I ⊆
√
0.

(3) For two ideals I1, I2 of R, if I1I2 ⊆
√
I and I1 ∩ (R−

√
0) 6= ∅, then I2 ⊆

√
I.

P r o o f. (1) ⇒ (2): Let I be a quasi n-ideal of R. Suppose that I *
√
0, then

we can pick an element a ∈ I −
√
0 and we consider a · 1 ∈ I ⊆

√
I. As

√
I is an

n-ideal and a /∈
√
0, we must have 1 ∈

√
I, a contradiction. Thus, I ⊆

√
0 and hence√

I =
√
0 is a prime ideal.

(2) ⇒ (3): Let I1I2 ⊆
√
I and I1 ∩ (R−

√
0) 6= ∅ for two ideals I1, I2 of R. There

exists a ∈ I1 −
√
0. Then we say aI2 ⊆

√
I, i.e., I2 ⊆ (

√
I : a). By assumption, we

have I2 ⊆ (
√
I : a) =

√
I, as needed.

(3) ⇒ (1): Choose a, b ∈ R such that ab ∈
√
I and a /∈

√
0. Consider I1 = (a) and

I2 = (b). By our hypothesis, (b) ⊆
√
I, that is, b ∈

√
I. �

Corollary 2.1. Let R be a ring.

(1) (0) is a quasi n-ideal of R if and only if
√
0 is a prime ideal of R.

(2) Let R be a reduced ring. Then R is an integral domain if and only if (0) is the

only quasi n-ideal of R.

P r o o f. (1) It is clear.

(2) Suppose that R is an integral domain, then as
√
0 = (0) is prime, (0) is a quasi

n-ideal by (1). On the other hand, if I is a quasi n-ideal of R, then I ⊆
√
0 = (0) by

Theorem 2.1. For the converse, one can see that if (0) is a quasi n-ideal, then R is

an integral domain. �

Remark 2.1. It should not be surprising that a ring R does not have a quasi

n-ideal. For instance, R = Z6 has no quasi n-ideals. Indeed, let I be a quasi n-ideal.

By Theorem 2.1, we say I ⊆
√
0̄ = (0̄), so I = (0̄). Moreover, since 2̄ · 3̄ ∈

√
0̄, 2̄ /∈

√
0̄

and 3̄ /∈
√
0̄, we conclude (0̄) is not a quasi n-ideal.

As an immediate consequence of Theorem 2.1, we give a characterization of rings

that admit quasi n-ideals.
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Corollary 2.2. Let R be a ring. There is a quasi n-ideal of R if and only if
√
0

is a prime ideal of R.

The following proposition shows that the class of quasi n-ideals is a subclass of

(2, n)-ideals.

Proposition 2.1. Every quasi n-ideal of a ring R is a (2, n)-ideal.

P r o o f. Let I be a quasi n-ideal, then
√
I =

√
0 is a prime. By Theorem 2.8

of [2], I is a 2-absorbing primary ideal and hence I is a (2, n)-ideal of R by Theo-

rem 2.4 of [10], as needed. �

The following example proves that the converse of the previous proposition is not

true, in general.

Example 2.2. Consider the ideal I := (0̄) of the ring R = Z6. Then, by Exam-

ple 2.3 of [10], I is a (2, n)-ideal. However, R has no quasi n-ideals by Remark 2.1.

Note that similarly to the concept of quasi n-ideals, we can define the concept

of “quasi r-ideals” of R as follows: if
√
I is an r-ideal, we say I is a quasi r-ideal

of R. On the other hand, Mohamadian proved that I is a pr-ideal if and only if
√
I

is an r-ideal, see [9], Proposition 2.16. Thus, we conclude the two concepts, quasi

r-ideals and pr-ideals, are identical. In this study for this concept, we will use “quasi

r-ideals“ to catch the similarity of the concept of “quasi n-ideals”.

Proposition 2.2. Let I be a proper ideal of R. If I is a quasi n-ideal, then I is

a quasi r-ideal.

P r o o f. Suppose that I is a quasi n-ideal, so
√
I is an n-ideal. Since every

n-ideal is an r-ideal,
√
I is also an r-ideal. It is done. �

As
√
0 ⊆ zd(R), one can easily show that if (0) is a primary ideal of R, then

√
0 =

zd(R). Thus, the n-ideals and r-ideals are identical in any commutative ring such that

(0) is primary. By the help of the same argument, one can see the following remark.

Remark 2.2. The quasi n-ideals and quasi r-ideals are identical in any commu-

tative ring, where (0) is a primary ideal.

Proposition 2.3. The intersection of any family of quasi n-ideals of R is a quasi

n-ideal of R.

P r o o f. Let {Iα}α∈∆ be a family of quasi n-ideals of R. We will show that
√

⋂

α∈∆

Iα is an n-ideal of R. As Iα is a quasi n-ideal of R, we know
√
Iα is an

n-ideal of R. Thus,
√

⋂

α∈∆

Iα =
⋂

α∈∆

√
Iα implies that

√

⋂

α∈∆

Iα is an n-ideal by [11],

Proposition 2.4. �

1136



Proposition 2.4. Let R be a ring. If I is a proper ideal of R and P is a prime

ideal of R such that I∩P is a quasi n-ideal, then either I is a quasi n-ideal or P =
√
0.

P r o o f. If I ⊆ P , then I = I ∩ P is a quasi n-ideal. Now, we suppose that

I 6⊆ P and take a, b ∈ R with ab ∈ P and a /∈
√
0. By hypothesis, we can pick an

element x ∈ I − P , hence abx ∈ I ∩ P . The fact that I ∩ P is a quasi n-ideal and

a /∈
√
0 implies that bx ∈

√
I ∩ P . Thus, b ∈ P and so P is an n-ideal of R, which

shows that P =
√
0. This completes the proof. �

Theorem 2.2. Let R be a ring and I1, . . . , In be ideals of R, where n > 2. If Ii

and Ij are co-primes for each i 6= j, then
n
⋂

k=1

Ik is not a quasi-n-ideal of R.

P r o o f. Suppose that
n
⋂

k=1

Ik is a quasi-n-ideal. We will prove that Ij is a quasi

n-ideal for each j. Let a, b ∈ R such that ab ∈
√

Ij and a /∈
√
0. Since Ij and Ik are

co-primes for each k 6= j, we have that Ij and
⋂

k 6=j

Ik must be co-primes. Then there

exist x ∈ Ij and y ∈ ⋂

k 6=j

Ik such that 1 = x+ y. Thus, aby ∈
√

n
⋂

k=1

Ik, which implies

that bmym ∈
n
⋂

k=1

Ik for a positive integer m. So, bmym−1 = bmym−1x + bmym ∈ Ij .

By induction, we can prove that b ∈
√

Ij . It follows that Ij is a quasi n-ideal. By

Theorem 2.1, we obtain 1 ∈
√
0, a desired contradiction. �

Proposition 2.5. Let R be a ring and S be a nonempty subset of R. If I is

a quasi n-ideal of R with S *
√
I, then (I : S) is a quasi n-ideal of R.

P r o o f. It suffices to show that
√
I ⊆

√

(I : S) ⊆ (
√
I : S) =

√
I. This, in turn,

follows from the fact that I is a quasi n-ideal of R and S 6⊆
√
0, as needed. �

Let R be a ring. We call a quasi n-ideal I of R a maximal quasi n-ideal if there

is no quasi n-ideal which contains I properly. We observe that
√
0 is the unique

maximal quasi n-ideal in a ring R.

Theorem 2.3. Let R be a ring. If I is a maximal quasi n-ideal of R, then I =
√
0.

P r o o f. Let I be a maximal quasi n-ideal. We claim that I is an n-ideal. Choose

a, b ∈ R such that ab ∈ I and a /∈
√
0. Then, by Proposition 2.5, (I : a) is a quasi

n-ideal of R. Since I is a maximal quasi n-ideal of R, it must be (I : a) = I, hence

b ∈ I. Consequently, I is a maximal n-ideal, that is, I =
√
0 by [11], Theorem 2.11.

�

Proposition 2.6. Let R be a zero dimensional ring. Then R admits a quasi

n-ideal if and only if (R,
√
0) is a local ring.
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P r o o f. Let R be a zero dimensional ring which admits a quasi n-ideal. Then,

by Theorem 2.2,
√
0 is a prime ideal. Moreover, if P is a prime ideal of R, then√

0 = P by maximality of
√
0. Hence, R is a local ring. For the converse, it can be

easily seen that if (R,
√
0) is a local ring, then

√
0 is the unique prime ideal of R.

Thus, every proper ideal of R is an n-ideal (so a quasi n-ideal), as desired. �

Corollary 2.3. Let R be a ring. Then the following statements are equivalent:

(1) R is a field.

(2) R is a Boolean ring and (0) is a quasi n-ideal.

(3) R is a von Neumann regular ring and (0) is a quasi n-ideal.

P r o o f. (1) ⇒ (2) and (2) ⇒ (3) are clear.

(3) ⇒ (1): Assume that R is a von Neumann regular ring and (0) is a quasi

n-ideal. So, R is a reduced ring and is zero dimensional. Hence, R is a field by

Proposition 2.6. �

Corollary 2.4 ([11], Proposition 3.1). Let m be a positive integer. Then the

following statements are equivalent:

(1) Zm has a quasi n-ideal.

(2) Zm has an n-ideal.

(3) m = pk for some k ∈ Z+, where p is a prime number.

According to [3], a ring R is called an UN-ring if every nonunit element a of R is

a product of a unit and a nilpotent element.

Proposition 2.7. Let R be a ring. Then the following statements are equivalent:

(1) R is an UN-ring.

(2) Every proper principal ideal of R is a quasi n-ideal.

(3) Every proper ideal of R is a quasi n-ideal.

P r o o f. (1) ⇒ (2) follows from Proposition 2.25 of [11].

(2) ⇒ (3): Let I be a proper ideal of R. Assume that ab ∈ I for some elements

a ∈ R −
√
0 and b ∈ R. Then, by assumption, b ∈

√

(ab) ⊆
√
I. Thus, I is a quasi

n-ideal.

(3) ⇒ (1): Let P be a prime ideal of R, then P is a quasi n-ideal and so P =
√
0,

which implies that
√
0 is the unique prime ideal of R. It follows that R is an UN-ring

by [3], Proposition 2 (3). �

Theorem 2.4. Let I, I1, I2, . . . , Im be ideals of R such that I ⊆ I1 ∪ I2 ∪ . . .∪ Im.

If Ii is a quasi n-ideal and the others have nonnilpotent elements such that I *
⋃

j 6=i

Ij ,

then I ⊆ √
Ii.
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P r o o f. Without loss of generality, let i = 1. By our hypothesis, I * I2∪. . .∪Im.

Thus, there is x ∈ I but x /∈ I2 ∪ . . . ∪ Im. This means that x ∈ I1. Now, we

claim I ∩
m
⋂

k=2

Ik ⊆ I1. Choose α ∈ I ∩
m
⋂

k=2

Ik. Note that x /∈ Ik and α ∈ Ik for

k = 2, . . . ,m. This implies x + α /∈ Ik. Thus, x + α ∈ I −
m
⋃

j=2

Ij , which implies

x + α ∈ I1. Then we conlclude α ∈ I1. On the other hand, by Theorem 2.2,
√
0

is a prime ideal of R. Hence, R −
√
0 is a multiplicatively closed subset of R, so

the product of nonnilpotent elements is a nonnilpotent element. This means that
m
∏

k=2

Ik ∩ (R −
√
0) 6= ∅. Now, note that I

( m
∏

k=2

Ik

)

⊆ I ∩
( m
∏

k=2

Ik

)

⊆ I1. Consider

I
( m
∏

k=2

Ik

)

⊆ √
I1 and

m
∏

k=2

Ik ∩ (R−
√
0) 6= ∅. By Theorem 2.1, we conclude I ⊆ √

I1.

�

Proposition 2.8. Let R be a ring and J be an ideal of R such that J ∩
(R−

√
0) 6= ∅. Then:

(1) If I1 and I2 are two quasi n-ideals ofR such that
√
I1J =

√
I2J, then

√
I1 =

√
I2.

(2) If
√
IJ is a quasi n-ideal of R, then

√
IJ =

√
I.

P r o o f. (1) Consider
√
I1J ⊆ √

I2. By Theorem 2.1,
√
I1 ⊆ √

I2. Similarly, we

conclude
√
I2 ⊆ √

I1.

(2) By the assumption,
√
IJ is a quasi n-ideal and also consider

√
IJ ⊆

√√
IJ .

By Theorem 2.1, we have
√
I ⊆

√√
IJ. As

√√
IJ =

√√
I ∩

√
J =

√
IJ, we obtain√

I ⊆
√
IJ, as required. �

Theorem 2.5. Let f : R → S be a homomorphism. Then:

(1) Suppose f is an epimorphism. If I is a quasi n-ideal of R such that Ker(f) ⊆ I,

then f(I) is a quasi n-ideal of S.

(2) Suppose f is a monomorphism. If J is a quasi n-ideal of S, then f−1(J) is

a quasi n-ideal of S.

P r o o f. (1) Choose x, y ∈ S such that xy ∈
√

f(I) and x /∈ √
0S . Then there

are a, b ∈ R with x = f(a) and y = f(b). It is clear that f(ab) ∈
√

f(I). Also,

Ker(f) ⊆ I implies ab ∈
√
I. Note that a /∈ √

0R as x /∈ √
0S . Thus, as I is a quasi

n-ideal, we conclude b ∈
√
I, that is, y ∈

√

f(I).

(2) Take a, b ∈ R with ab ∈
√

f−1(J) and a /∈ √
0R. Then there is k ∈ N such that

(ab)k ∈ f−1(J), that is, f(ab)k ∈ J. On the other hand, as f is a monomorphism,

a /∈
√
0 means f(a) /∈ √

0S. Then we get f(a)
k /∈ √

0S . Thus, by hypothesis, we

obtain f(b)k ∈ J, i.e., b ∈
√

f−1(J), which completes the proof. �
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Corollary 2.5. Let I and J be two ideals of R such that J ⊆ I.

(1) If I is a quasi n-ideal of R, then I/J is a quasi n-ideal of R/J.

(2) If I/J is a quasi n-ideal of R/J and J ⊆ √
0R, then I is a quasi n-ideal of R.

(3) If I/J is a quasi n-ideal of R/J and J is a quasi n-ideal of R, then I is a quasi

n-ideal of R.

P r o o f. (1) Let π : R → R/J be the natural homomorphism. Since Ker(f) =

J ⊆ I, by Theorem 2.5, we say π(I) = I/J is a quasi n-ideal of R/J.

(2) Choose a, b ∈ R with ab ∈
√
I and a /∈ √

0R. This implies that (a+J)(b+J) ∈√
I/J =

√

I/J. Also, note that a+ J /∈ √

0R/J , otherwise it would contradict with

a /∈ √
0R since J ⊆ √

0R. Hence, b+J ∈
√

I/J, so b ∈
√
I. Consequently, I is a quasi

n-ideal of R.

(3) Since J is a quasi n-ideal, by Theorem 2.1, J ⊆ √
0R. Thus, with item (2), it

is done. �

Corollary 2.6. Let S be a subring of R. If I is a quasi n-ideal of R such that

S * I, then I ∩ S is a quasi n-ideal of S.

P r o o f. Let i : S → R be the injection homomorphism. Clearly, i−1(I) = I ∩S.

By Theorem 2.5, I ∩ S is a quasi n-ideal of S. �

Proposition 2.9. Let R be a ring and S be a multiplicatively closed subset of R.

Then the following statements hold:

(1) If I is a quasi n-ideal of R, then S−1I is a quasi n-ideal of S−1R.

(2) Suppose that S = r(R). If J is a quasi n-ideal of S−1R, then Jc is a quasi

n-ideal of R.

P r o o f. (1) Choose a/s, b/t ∈ S−1R such that (a/s)(b/t) ∈
√
S−1I = S−1

√
I

and a/s /∈ √
0S−1R. Then we have uab ∈

√
I for some u ∈ S. Also, a/s /∈ √

0S−1R

implies that a /∈ √
0R. Since I is a quasi n-ideal of R, we conclude ub ∈

√
I, i.e.,

b/t = ub/(ut) ∈ S−1
√
I.

(2) Take a, b ∈ R with ab ∈
√
Jc and a /∈ √

0R. Then (ab)k ∈ Jc for some k ∈ N.

Consider (a/1)k(b/1)k ∈ J. Now, we claim (a/1)k /∈ √
0S−1R. Let (a/1)

k ∈ √
0S−1R.

There exists t ∈ N such that (a/1)kt = 0S−1R. Thus, for some u ∈ S = r(R), we

have uakt = 0R. This implies that a
kt ∈ Ann(u) = 0R, i.e., a ∈ √

0R. This gives

us a contradiction. Thus, as J is a quasi n-ideal of S−1R, we conclude (b/1)k ∈ J.

Consequently, b ∈
√
Jc. �

Theorem 2.6. Let R and S be two commutative rings. Then R×S has no quasi

n-ideals.
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P r o o f. Let I × J be a quasi n-ideal of R × S. Then
√
I × J =

√
I ×

√
J is an

n-ideal of R × S. But this result contradicts with Proposition 2.26 of [11]. �

Proposition 2.10. Let R be a ring and I be an ideal. Then:

(1) R has a quasi n-ideal if and only if R[X ] has a quasi n-ideal.

(2) If I[X ] is a quasi n-ideal of R[X ], then I is a quasi n-ideal of R.

(3) (I,X) is never a quasi n-ideal of R[X ].

P r o o f. (1) Combine Theorem 2.2 with Lemma 3.6 of [10].

(2) Assume that I[X ] is a quasi n-ideal of R[X ]. Then, by Corollary 2.6, I =

I[X ] ∩R is a quasi n-ideal of R.

(3) It follows from the fact that
√

(I,X) 6⊆ √

0R[X]. �

Recall that an ideal I of a ring is said to be a strong finite type (or an SFT -ideal)

if there exist a natural number k and a finitely generated ideal J ⊆ I such that

xk ∈ J for each x ∈ I.

Proposition 2.11. Let R be a ring and I be an ideal of R. Then the following

statements hold:

(1) If R[[X ]] admits a quasi n-ideal, then R admits a quasi n-ideal. The converse

holds provided that
√
0R is an SFT-ideal.

(2) If I[[X ]] is a quasi n-ideal of R[[X ]], then I[X ] is a quasi n-ideal of R[X ] (so I

is a quasi n-ideal of R).

P r o o f. (1) If R[[X ]] has a quasi n-ideal, then
√
0R =

√

0R[[X]]∩R is an n-ideal

of R and so
√
0R is a prime ideal of R. For the converse, we assume that

√
0R

is an SFT-ideal. Then, by [8], Corollary 2.4,
√

0R[[X]] =
√
0R[[X ]]. On the other

hand, since R admits a quasi n-ideal, then
√

0R[[X]] is a prime ideal, which implies

that R[[X ]] admits a quasi n-ideal.

(2) Suppose that I[[X ]] is a quasi n-ideal of R[[X ]], then I[X ] = I[[X ]] ∩ R[X ] is

a quasi n-ideal by Corollary 2.6. Hence, I is a quasi n-ideal. �

Let R be a commutative ring with a nonzero identity and M be an R-module.

Then the idealization R(+)M = {(a,m) : a ∈ R, m ∈ M} is a commutative ring
with componentwise addition and multiplication (a,m)(b, n) = (ab, an+bm) for each

a, b ∈ R and m,n ∈ M. In addition, if I is an ideal of R and N is a submodule ofM ,

then I(+)N is an ideal of R(+)M if and only if IM ⊆ N , see [1].

Theorem 2.7. Let R be a ring and M be an R-module.

(1) A proper ideal J of R(+)M is a quasi n-ideal if and only if JR is a quasi n-ideal

of R, where JR = {r ∈ R : (r,m) ∈ J for some m ∈ M}.
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(2) I is a quasi n-ideal of R if and only if I(+)N is a quasi n-ideal of R(+)M for

each submodule N of M such that IM ⊆ N.

P r o o f. (1) Let J be a proper ideal of R(+)M . It is well known from [1],

Theorem 3.2 (3) that
√
J =

√
JR(+)M , where JR = {r ∈ R : (r,m) ∈ J for some

m ∈ M}. On the other hand, by Theorem 2.1, J is a quasi n-ideal if and only if√
JR(+)M =

√
0(+)M is a prime ideal if and only if JR is a quasi n-ideal of R. It

is done.

(2) It follows from (1). �

The following is an example of a quasi n-ideal that is not an n-ideal.

Example 2.3. Let R = Z and M = Zpq, where p and q are prime numbers.

Then, the zero ideal of R(+)M is a quasi n-ideal which is not an n-ideal. Indeed,
√

0R(+)M = 0(+)M is prime. However, (p, 0)(0, q) ∈ (0, 0) but (p, 0) /∈ √

0R(+)M

and (0, q) /∈ (0, 0).

Let R and S be two rings, J be an ideal of S and f : R → S be a ring homomor-

phism. In this setting, we can consider the subring of R× S

R ⊲⊳f J = {(r, f(r) + j) : r ∈ R and j ∈ J}

called the amalgamation ofR with S along J with respect to f . This construction has

been first indroduced and studied by D’Anna, Finocchiaro, and Fontana in [6], [4].

In particular, if I is an ideal of R and idR : R → R is the identity homomorphism

on R, then R ⊲⊳ J = R ⊲⊳idR J = {(r, r + j) : r ∈ R and j ∈ J} is the amalgamated
duplication of R along J (introduced and studied by D’Anna and Fontana in [5]).

For all ideals I of R and ideals K of S, set:

I ⊲⊳f J = {(r, f(r) + j) : r ∈ I and j ∈ J},
K

f
= {(r, f(r) + j) : r ∈ R, j ∈ J and f(r) + j ∈ K}.

Theorem 2.8. Let R and S be a pair of rings, J be an ideal of S and f : R → S

be a ring homomorphism. Let I be an ideal of R and K be an ideal of S. The

following statements hold:

(1) If I ⊲⊳f J is a quasi n-ideal (or n-ideal) of R ⊲⊳f J , then I is a quasi n-ideal

(or n-ideal) of R. The converse is true if J ⊆ √
0S.

(2) Assume that f is an epimorphism. Then the fact that K
f
is a quasi n-ideal

(or n-ideal) of R ⊲⊳f J implies that K is a quasi n-ideal (or n-ideal) of S. The

converse holds provided that f−1(J) ⊆ √
0R.

1142



P r o o f. (1) Assume that I ⊲⊳f J is a quasi n-ideal of R ⊲⊳f J . Let

a, b ∈ R such that ab ∈
√
I and a /∈ √

0R. Then (a, f(a))(b, f(b)) ∈
√
I ⊲⊳f J

with (a, f(a)) /∈ √
0R⊲⊳fJ . This implies that (b, f(b)) ∈

√
I ⊲⊳f J and hence b ∈

√
I.

Now, we will prove the converse under additional hypothesis that J ⊆ √
0S . Suppose

that (a, f(a) + j)(b, f(b) + j′) ∈
√
I ⊲⊳f J for some (a, f(a) + j) /∈ √

0R⊲⊳fJ and

(b, f(b) + j′) ∈ R ⊲⊳f J . By hypothesis, we must have a /∈ √
0R. Therefore, b ∈

√
I

and thus (b, f(b) + j′) ∈
√
I ⊲⊳f J. Similarly, one can prove that if I ⊲⊳f J is an

n-ideal of R ⊲⊳f J , then I is an n-ideal of R, and the converse is true if J ⊆ √
0S .

(2) Let x, y ∈ S with x = f(a) and y = f(b). Suppose that xy ∈
√
K and x /∈ √

0S .

So, (a, f(a))(b, f(b)) ∈
√
Kf and (a, f(a)) /∈ √

0R⊲⊳fJ . Since K
f is a quasi n-ideal, we

then have (b, f(b)) ∈
√
Kf and so y = f(b) ∈

√
K. For the converse, suppose that K

is a quasi n-ideal of S and f−1(J) ⊆ √
0R. Let (a, f(a) + j), (b, f(b) + j′) ∈ R ⊲⊳f J

such that (a, f(a) + j)(b, f(b) + j′) ∈
√
Kf and (a, f(a) + j) /∈ √

0R⊲⊳fJ . Then

(f(a)+j)(f(b)+j′) ∈
√
K. The fact that (a, f(a)+j) /∈ √

0R⊲⊳fJ ensures that f(a)+

j /∈ √
0S. Suppose, on the contrary, that f(a) + j ∈ √

0S . As f is an epimorphism,

then there exists c ∈ R such that f(c) = j. It is obvious that c ∈ √
0R and hence

j ∈ √
0S, which proves that a

m ∈ Ker(f) for a positive integerm. Moreover, a ∈ √
0R

since f−1(J) ⊆ √
0R, that is, (a, f(a) + j) ∈ √

0R⊲⊳fJ , a contradiction. We conclude

that (f(b) + j′) ∈
√
K since K is a quasi n-ideal of S. Thus, Kf is a quasi n-ideal

of R ⊲⊳f J. Similarly, one can prove that if Kf is an n-ideal of R ⊲⊳f J , then K is

an n-ideal of S, and the converse is true in the case, where f−1(J) ⊆ √
0R. This

completes the proof. �

Corollary 2.7. Let R be a ring and let I and J be ideals of R.

(1) If I ⊲⊳ J is a quasi n-ideal (or n-ideal) of R ⊲⊳ J , then I is a quasi n-ideal

(or n-ideal) of R. The converse is true if J ⊆ √
0R.

(2) If I := {(a, a+ i) : a ∈ R, j ∈ J and a + j ∈ I} is a quasi n-ideal (or n-ideal)
of R ⊲⊳ J , then I is a quasi n-ideal (or n-ideal) of R. The converse is true if

J ⊆ √
0R.

The following example shows that the converse of Theorem 2.8 (1) fails if one

deletes the hypothesis that J ⊆ √
0S .

Example 2.4. Let R = Z(+)Zpq, where p and q are prime numbers, and let

J = pZ(+)Zpq . It is clear that I = 0(+)Zpq is an n-ideal (and so is a quasi n-ideal)

of R. However, I ⊲⊳ J is not a quasi n-ideal (and so is not an n-ideal). Indeed,

((0, 1̄), (p, 1̄))((1, 0̄), (1, 0̄)) = ((0, 1̄), (p, 1̄)) ∈ I ⊲⊳ J . But ((0, 1̄), (p, 1̄)) /∈ √
0R⊲⊳J

and ((1, 0̄), (1, 0̄)) /∈
√
I ⊲⊳ J.

In the following example, we prove that the condition f−1(J) ⊆ √
0R cannot be

discarded in the proof of the converse of Theorem 2.8 (2).
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Example 2.5. Let R = Z(+)Zpq , where p and q are prime numbers, S = Z, and

let J = pZ. Consider the canonical epimorphism f : R → S defined by f(r,m) = r.

Note that f−1(J) = pZ(+)Zpq 6⊆ √
0R. On the other hand, K = (0) is an n-ideal

of S. However,Kf is not a quasi n-ideal of R ⊲⊳f J because ((p, 0̄), 0)((1, 0̄), 1) ∈ Kf ,

((p, 0̄), 0) /∈ √
0R⊲⊳fJ and ((1, 0̄), 1) 6∈

√
Kf .
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