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Abstract. Let K be an imaginary cyclic quartic number field whose 2-class group is of
type (2, 2, 2), i.e., isomorphic to Z/2Z×Z/2Z×Z/2Z. The aim of this paper is to determine

the structure of the Iwasawa module of the genus field K(∗) of K.
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1. Introduction

Let k be an algebraic number field and p be a prime number. A Zp-extension of k

is an extension k∞/k with Gal(k∞/k) ≃ Zp, the additive group of p-adic integers. It

is also possible to regard a Zp-extension as a sequence of fields

k = k0 ⊂ k1 ⊂ . . . ⊂ k∞ =
⋃

n>0

kn with Gal(kn/k) ≃ Z/pnZ.

Note that the field kn is called the nth layer of Zp-extension of k. Let An be the

p-part of the class group of kn. From the beautiful theorem of Iwasawa (see [12],

Theorem 13.13, page 276), there exist integers λ, µ > 0 and ν, all independent of n,

and n0 such that

|An| = pλn+µpn+ν for all n > n0.

The integers λ, µ > 0 and ν are called the Iwasawa invariants of k∞. Let A∞
denote the projective limit of An. It is not easy to give the structure or an explicit

description of the p-Iwasawa module A∞ which can be finite as well as infinite. It

is one of classical and difficult problems in the Iwasawa theory. However, Greenberg

conjectured that A∞ is finite if k is totally real, cf. [7], page 263.
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Let K be an imaginary cyclic quartic number field whose 2-class group is of

type (2, 2, 2). In the present paper, we first give explicitly the structure of the

2-Iwasawa module A∞ of the genus field of K, as a result. Next, we give some pre-

liminary results that will be useful in the proof. Finally, we prove our result using

Kida’s formula.

2. Notations

Let k be a number field and p be a prime number. The next notations are used

for the rest of this article:

⊲ n : an integer > 0;

⊲ Qn : the maximal real subfield of Q(ζ2n+2);

⊲ kn : the nth layer of the Z2-extension of k;

⊲ k∞ =
⋃

n>0

kn;

⊲ Ln : the Hilbert 2-class field of kn;

⊲ Xn = Gal(Ln/kn);

⊲ X∞ = lim←−Xn;

⊲ An : the 2-part of the class group of kn;

⊲ A∞ = lim←−An;

⊲ τ : a topological generator of Gal(k∞/k);

⊲ Λ = Z2[[T ]] for T = τ − 1;

⊲ ωn = (T + 1)2
n − 1;

⊲ µ(M), λ(M) : the Iwasawa invariants for a Λ-torsion module M ;

⊲ µ(k) = µ(A∞);

⊲ λ(k) = λ(A∞);

⊲ λ−(k) = λ(A−
∞) (the definition of A−

∞ is given in Section 4);

⊲ h(k) : the class number of k;

⊲ hn = h(kn);

⊲ Ek : the unit group of k;

⊲ Wk : the group of roots of unity contained in k;

⊲ k+ : the maximal real subfield of a CM-field k;

⊲ Qk = [Ek : WkEk+ ] : the Hasse’s unit index of a CM-field k;

⊲ NL/k : the relative norm for an extension L/k;

⊲ Ck(2) : the 2-part of the class group of k;

⊲
(

x
p

)

: the quadratic residue symbol for k;

⊲
(

x,y
p

)

: the Hilbert symbol for k;

⊲
(

a
p

)

: the quadratic residue (Legendre) symbol;

⊲
(

a
p

)

4
: the biquadratic residue symbol.

1146



3. Main theorem

Let q and l be two primes satisfying the conditions

(1) q ≡ 3 (mod 4), l ≡ 5 (mod 8),
(q

l

)

= 1, and
(q

l

)

4
= 1.

Denote by ε the fundamental unit of Q
(
√
l
)

. Let K = Q
(

√

−qε
√
l
)

be an imag-

inary cyclic quartic field. From [2], Theorem 3, page 66, we have that the 2-class

group CK(2) of K is of type (2, 2, 2).

Definition 3.1. The genus field k(∗) of a number field k is the maximal abelian

extension of k, which is a composite of an absolute abelian number field F with k

and is unramified at all the finite and infinite primes of k.

Lemma 3.2. Let q ≡ 3 (mod 4) and l ≡ 5 (mod 8) be two primes. Then the

genus field of K = Q
(

√

−qε
√
l
)

is K(∗) = K
(√

q,
√
−1

)

.

P r o o f. As l and q are the unique primes of Q different from 2, which ram-

ify in K, of ramification indices el = 4 and eq = 2, respectively; then, from [8],

Theorem 4, pages 48–49, we have K(∗) = MlMqK, where Ml (or Mq) is the

unique subfield of the lth (or qth) cyclotomic number field Q(ζl) (or Q(ζq)) of

degree el = 4 (or eq = 2, respectively). Moreover, it is known that Ml =

Q
(
√

−ε
√
l
)

(cf. [10], Proposition 5.9, page 160) and Mq = Q
(√−q

)

. Thus,

K(∗) = K
(√

q,
√
−1

)

.

�

The main result of this paper is the following theorem.

Theorem 3.3. Let q and l be two primes satisfying the conditions (1). Let An

denote the 2-class group of the nth layer of the cyclotomic Z2-extension of the genus

field K(∗) = K
(√

q,
√
−1

)

. Then:

(1) The structure of the Iwasawa module A∞ is given by

A∞ ≃
{

Z3
2 if q ≡ 3 (mod 8),

Z7
2 if q ≡ 7 (mod 16).

(2) The 2-rank of An is given by

rank2(An) =

{

3 for all n > 3 if q ≡ 3 (mod 8),

7 for all n > 7 if q ≡ 7 (mod 16).
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4. Preliminary results

Let us first collect some results that will be useful in the sequel.

Proposition 4.1 ([4], page 3). Let n > 2 be a positive integer. Then we have:

(1) If p is a prime such that p ≡ 3 (mod 8), then p decomposes into the product

of 2 prime ideals of Q(ζ2n+2) while it is inert in Qn.

(2) If p is a prime such that p ≡ 7 (mod 16), then p decomposes into the product

of 4 prime ideals of Q(ζ2n+2) while it decomposes into the product of 2 prime

ideals of Qn.

Definition 4.2. Let K/k be a cyclic extension of number fields of prime degree p

and Gal(K/k) = 〈σ〉.
(1) An ideal a of K is called ambiguous (with respect to k), if it is fixed by

σ : aσ = a.

(2) An ideal class [a] of K is called ambiguous (with respect to k), if it is fixed by

σ : [a]σ = [a].

(3) An ideal class [a] of K is called strongly ambiguous (with respect to k), if it

contains an ambiguous ideal.

Let us define A+
n as the group of strongly ambiguous classes with respect to the

extension kn/k
+
n , where k+n is the totally real subfield of kn and A−

n = An/A
+
n .

Let A−
∞ denote the projective limit of A

−
n . We have:

Theorem 4.3 ([11], Theorem 2.5, page 374). Let k be a CM-field containing the

fourth roots of unity. Then there is no finite Λ-submodule in A−
∞.

Lemma 4.4. If the extension kn/k
+
n is unramified and h(k

+
n ) is odd for all n > 0,

then A−
∞ = A∞.

P r o o f. By the definition of the part plus A+
n , it is clear that A

+
n is generated

by the ramified primes and the inert primes in kn/k
+
n . Since the extension kn/k

+
n

is unramified and h(k+n ) is odd, then A+
n is trivial. Therefore, A

−
n = An. In the

projective limit we obtain A−
∞ = A∞. �

Theorem 4.5 ([9], Theorem 3, page 341). Let L/F be a finite 2-extension of

abelian CM-fields. Then we have

(2) λ−(L)− δ(L) = [L∞ : F∞] · (λ−(F )− δ(F )) +
∑

β∤2

(eβ − 1)−
∑

β+∤2

(eβ+ − 1),

where δ(k) takes the values 1 or 0 according to whether k∞ contains the fourth roots

of unity or not, and eβ (or e
+
β ) is the ramification index in L∞/F∞ (or L+

∞/F+
∞) of

a finite prime β of L∞ (or β+ of L+
∞, respectively).
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Theorem 4.6 ([3], Theorem 3.3, page 8). Let k∞ be a Z2-extension of a number

field k and assume that any prime of k lying above 2 is totally ramified in k∞/k. If

µ(k) = 0 and A∞ is an elementary Λ-module, then rank2(An) = λ(k) for all n > λ(k).

Proposition 4.7 ([12], Proposition 13.22, page 284). Let k∞ be a Z2-extension

of a number field k and assume that there exists only one prime of k lying above 2

and that this prime is totally ramified in k∞/k. Then

An ≃ X∞/ωnX∞ and 2 ∤ h0 ⇔ 2 ∤ hn for all n > 0.

Proposition 4.8 ([1], pages 270–271). Let q and l be two primes satisfying the

conditions (1), and consider L = Q
(
√

ε
√
l,
√
−1

)

and F = Q
(
√

ε
√
l,
√
q
)

. Then we

have:

(1) The class number h(L+) of L+ is odd. Moreover, QL the Hasse’s unit index

of L equals 2 and h(L) is odd too.

(2) The class number h(F ) of F is odd.

4.1. Quadratic residue symbol and Hilbert symbol. Let k be a number

field. The quadratic residue symbol is defined as follows: let p be a prime ideal of k.

For all x ∈ k∗,

(x

p

)

=











1 if x is a square in k or if p splits in k
(√

x
)

,

−1 if x is not a square in k and p remains inert in k
(√

x
)

,

0 if x is not a square in k and p ramifies in k
(√

x
)

.

Lemma 4.9 ([6], page 205). If the prime ideal p is unramified in the extension

k
(√

x
)

/k, the quadratic residue symbol can be written in terms of Artin symbols as

(x

p

)

=

(

k
(√

x
)

/k

p

)

(√
x
)

/
√
x.

Proposition 4.10 ([10], Proposition 4.2, page 112). Let K be a finite normal

extension of k, p be a prime ideal of k and P be a prime ideal of K dividing p.

(1) If the inertia degree f(P/p) = 1, then for all x ∈ k∗

( x

P

)

=
(x

p

)

.

(2) If K/k is abelian and f(P/p) = [K : k], then for all y ∈ K∗

( y

P

)

=
(NK/k(y)

p

)

.
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Remark 4.11. For k = Q, the quadratic residue symbol defines the Legendre

symbol.

We now define the Hilbert symbol of number field k in terms of Hasse symbols by

(x, y

p

)

=

(

y, k
(√

x
)

/k

p

)

(√
x
)

/
√
x,

where x, y ∈ k∗ and p is a prime ideal of k.

Proposition 4.12 ([6], page 106). Let K/k be a finite extension, x ∈ k∗ and

y ∈ K∗. Let p denote a prime ideal of k and P denote a prime ideal of K. Then

(1)
(

x,y
P

)

=
(

x
P

)vP(y)
if P is unramified in K(

√
x),

(2)
∏

P|p

(

x,y
P

)

=
(x,NK/k(y)

p

)

.

For more details, see [6], [10].

5. Proof of the main theorem

In this section, we prove the main result of this paper. Recall that ε is the

fundamental unit of Q
(
√
l
)

. Let L = Q
(
√

mε
√
l
)

be a real cyclic quartic field

with m being a square free integer. We need the following results.

Theorem 5.1. The class number of L is odd if and only if m takes one of the

following forms:

(1) m is a prime p congruent to 3 (mod 4),

(2) m is an even prime,

(3) m is equal to 1.

P r o o f. Let us look at the forms of m such that the class number h(L) of L is

odd; to this end, assume that h(L) is odd. Then, from [5], page 25, the 2-rank of

the class group CL of L is given by the formula

(3) rank2(CL) = t− 1− e = 0,

where t is the number of primes of Q
(
√
l
)

which ramify in L and

2e = [EQ(
√
l) : EQ(

√
l) ∩NL/Q(

√
l)(L

×)].

In the following, we compute the value of e. Recall that an element x of Q
(√

l
)×
is

a norm in L if x ∈ NL/Q(
√
l)(L

×). So, by [6], Hasse’s norm theorem, page 179, x is

a norm in L if and only if
(

x,mε
√
l

p

)

= 1 for all prime ideals p of Q
(
√
l
)

. So we have:
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(1) Let r be a positive integer and α ∈ {1, 2}. Then −1 is a norm in L if and only
if m takes one of the following forms:

(a) m = α
r
∏

i=1

pi such that
(

pi

l

)

= −1, where pi is a prime;

(b) m = α
r
∏

i=1

pi such that pi ≡ 1 (mod 4) and
(

pi

l

)

= 1, where pi is a prime;

(c) m = α
s
∏

i=1

qi ·
r
∏

i=s+1

pi such that pi ≡ 1 (mod 4) and
(

pi

l

)

= −
(

qi
l

)

= 1,

where qi and pi are two primes;

(d) m = α.

In fact:

(i) If p ∤ l and p ∤ m, then vp
(

mε
√
l
)

= 0, so

(−1,mε
√
l

p

)

=
(−1

p

)vp(mε
√
l)

(by Proposition 4.12 (1))

= 1.

(ii) If p | l, then p =
(
√
l
)

and vp(mε
√
l) = 1. So

(−1,mε
√
l

p

)

=
(−1

p

)vp(mε
√
l)

(by Proposition 4.12 (1))

=
(−1√

l

)

=
(−1

l

)

(by Proposition 4.10 (1))

=(−1)(l−1)/2 = 1,

because l ≡ 1 (mod 4).

(iii) If p | m and
(

l
p

)

= 1, where p ∩ Z = (p 6= 2), then vp
(

mε
√
l
)

= 1. So

(−1,mε
√
l

p

)

=
(−1

p

)vp(mε
√
l)

(by Proposition 4.12 (1))

=
(−1

p

)

=
(−1

p

)

(by Proposition 4.10 (1))

=(−1)(p−1)/2.
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(iv) If p | m and
(

l
p

)

= −1, where p ∩ Z = (p 6= 2), then vp
(

mε
√
l
)

= 1. So

(−1,mε
√
l

p

)

=
(−1

p

)vp

(

mε
√
l
)

(by Proposition 4.12 (1))

=
(−1

p

)

=

(

NQ(
√
l)/Q(−1)
p

)

(by Proposition 4.10 (2))

=1.

(v) If p | 2, then

(−1,mε
√
l

p

)

=

(−1, NQ(
√
l)/Q

(

mε
√
l
)

2

)

(by Proposition 4.12 (2))

=
(−1,m2l

2

)

=
(−1, l

2

)

=
(−1

l

)

(cf. [10], Lemma 2.27, page 63)

=1,

because l ≡ 1 (mod 4).

(2) ε is not a norm in L. In fact:

(a) If p ∤ l and p ∤ m, then vp(mε
√
l) = 0, so

(

ε,mε
√
l

p

)

=
(ε

p

)vp(mε
√
l)

(by Proposition 4.12 (1))

= 1

(b) If p | l, then p =
(
√
l
)

and vp
(

mε
√
l
)

= 1. So

(

ε,mε
√
l

p

)

=
(ε

p

)vp(mε
√
l)

(by Proposition 4.12 (1))

=

(

ε√
l

)

=
(2

l

)

(cf. [1], Proof of Proposition 4.1)

=− 1,

because l ≡ 5 (mod 8).
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Thus,

EQ(
√
l)/EQ(

√
l) ∩NL/Q(

√
l)(L

×)

=

{

{1, ε} if and only if m takes one of the forms (1) (a)–(1) (d);

{1, ε,−1,−ε} elsewhere.

Therefore,

e =

{

1 if and only if m takes one of the forms (1) (a)–(1) (d);

2 elsewhere;

because 2e = [EQ(
√
l) : EQ(

√
l) ∩NL/Q(

√
l)(L

×)].

From the equality (3), we have two cases to discuss:

(1) If e = 1, then we have t = 2.

(2) If e = 2, then we have t = 3.

From [2], Paragraph 2, page 63, we get

(1) t = 2 if and only if m takes one of the following forms:

(a) m is a prime p congruent to 3 (mod 4) and
(

p
l

)

= −1 (t = #{
√
l, p}, where

p | p),
(b) m ∈ {1, 2} (t = #{

√
l, 2}, where 2 | 2),

(2) t = 3 if and only if m is a prime p congruent to 3 (mod 4) and
(

p
l

)

= 1 (in this

case, t = #{
√
l, p1, p2}, where pi | p).

Therefore, h(L) is odd if and only if m takes one of the following forms:

(1) m is a prime p congruent to 3 (mod 4),

(2) m ∈ {1, 2}. �

Proposition 5.2. Let Ln be the nth layer of the cyclotomic Z2-extension of L.

Then, the class number of Ln is odd if and only if m takes one of the following forms:

(1) m is a prime p congruent to 3 (mod 4),

(2) m is an even prime,

(3) m is equal to 1.

P r o o f. In order to use Proposition 4.7, we need to count the number of primes

of L above 2. For this, let 2 be a unique prime ideal of Q
(
√
l
)

lying above 2.

(1) If m ∈ {1, 2}, it is clear that 2 ramifies in L, then there is only one prime of L
lying above 2.
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(2) If m is a prime p ≡ 3 (mod 4), then there is only one prime of L lying above 2.

In fact,
(

mε
√
l

2

)

=

(

mε
√
l, 2

2

)

(by Proposition 4.12 (1))

=

(

NQ(
√
l)/Q(mε

√
l), 2

2

)

(by Proposition 4.12 (2))

=
(m2l, 2

2

)

=
( l, 2

2

)

=
(2

l

)

(cf. [10], Lemma 2.27, page 63)

=− 1.

Let us now come back to the proof of Proposition 5.2 using Theorem 5.1 and

Proposition 4.7. If h(Ln) is odd for all n > 0, then h(L) is odd (in particular,

n = 0), hence m takes one of the forms: (1), (2) and (3). Conversely, if m takes one

of the forms of Proposition 5.2, then h(L) is odd, hence A0 ≃ X∞/TX∞ = 0, where

T = ω0, this implies that X∞/(2, T )X∞ = 0, thus X∞ = 0 by Nakayama’s lemma,

therefore the class number of Ln is odd. �

Remark 5.3. If m takes one of the forms of Theorem 5.1, then Greenberg’s

conjecture holds for L. Moreover, ν = 0.

Now, we can prove the main theorem.

P r o o f of the main theorem. We begin by computing the value of λ−(K(∗)) using

Kida’s formula (2). For this, consider Figure 1, where L = K(∗). By Proposition 4.8,

the class number of F is odd. Moreover, there is only one prime of F lying above 2.

In fact, let 2 be a unique prime ideal of F+ lying above 2, so we have
(−ε

√
l

2

)

=

( −ε
√
l

2Q(
√
l)

)

= −1,

L = Q
(
√

ε
√
l,
√
q,
√
−1

)

❯❯
❯❯

❯❯
❯❯

❯❯

✐✐
✐✐
✐✐
✐✐
✐✐

L+ = Q
(
√

ε
√
l,
√
q
)

❯❯
❯❯

❯❯
❯❯

❯❯

H = Q
(
√

ε
√
l,
√−q

)

❯❯
❯❯

❯❯
❯❯

❯❯

F = Q
(
√

ε
√
l,
√
−1

)

✐✐
✐✐
✐✐
✐✐
✐✐

F+ = Q
(
√

ε
√
l
)

K = Q
(

√

−qε
√
l
)

Figure 1.

then 2 stays inert in F . Thus, the class numbers of the layers of the cyclotomic

Z2-extension of F are odd by Proposition 4.7. Therefore λ−(F ) = 0, because
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λ+(F ) = λ(F+) = 0 by Proposition 5.2. On the other hand, we have q splits

into 4 prime ideals of F . In fact, let q be one of the two prime ideals of F+ lying

above q, so we have
(−1

q

)

=

(

NF+/Q(
√
l)(−1)

qQ(
√
l)

)

= 1.

⊲ If q ≡ 3 (mod 8), by Proposition 4.1 we have q splits into 2 primes of Q(ζ2n+2)

and it is inert in Qn with n > 2, then q splits into the product of 8 primes in Fn =

FQn = Q
(
√

ε
√
l, ζ2n+2

)

while it decomposes into 4 primes in F+
n = Qn

(
√

ε
√
l
)

.

⊲ If q ≡ 7 (mod 16), proceeding as above, then q splits into the product of 16 primes

in Fn while it decomposes into 8 primes in F+
n .

Note that [L∞ : F∞] = [L+
∞ : F+

∞] = 2 and eβ = e+β = 2, then by Theorem 4.5

we have:

λ−(L)− 1 =

{

2 · (0− 1) + 8− 4 if q ≡ 3 (mod 8),

2 · (0− 1) + 16− 8 if q ≡ 7 (mod 16).

Thus,

λ−(L) =

{

3 if q ≡ 3 (mod 8),

7 if q ≡ 7 (mod 16).

By definition, we recall that λ+(L) = λ(L+). One can show that λ+(L) = 0 using

Proposition 4.7. Therefore,

λ(L) = λ+(L) + λ−(L) =

{

3 if q ≡ 3 (mod 8),

7 if q ≡ 7 (mod 16).

Since the extension L/L+ is unramified, then Ln/L
+
n is unramified too. Thus, by

Lemma 4.4, A−
∞ = A∞ because h(L+

n ) is odd for all n > 0. By Theorem 4.3 there is

no finite Λ-submodule in A−
∞. Hence, A∞ is a Λ-module without finite part. So,

A∞ ≃
{

Z3
2 if q ≡ 3 (mod 8),

Z7
2 if q ≡ 7 (mod 16).

Finally, we have

A∞ ≃ Z
λ(L)
2 ≃

⊕

j

Λ/(gj(T )),

where each gj is distinguished and
∑

j

deg gj = λ(L), and we have that L/Q is an

abelian extension. Then, by Theorem 4.6,

rank2(An) =

{

3 for all n > 3 if q ≡ 3 (mod 8),

7 for all n > 7 if q ≡ 7 (mod 16).

This completes the proof of the theorem. �
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Example 5.4. Let K = Q
(

√

−11ε
√
5
)

, where ε = 1
2

(

1 +
√
5
)

. Since 5 ≡ 5

(mod 8), 11 ≡ 3 (mod 8) and (115 )4 = 1, we have A∞ ≃ Z3
2, where A∞ is attached

to K(∗).

Example 5.5. Let K = Q
(

√

−7ε
√
37
)

, where ε = 6 +
√
37. Since 37 ≡ 5

(mod 8), 7 ≡ 7 (mod 16) and ( 7
37 )4 = 1, we have A∞ ≃ Z7

2, where A∞ is attached

to K(∗).
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