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Abstract. We study a family of quasi periodic p-adic Ruban continued fractions in the
p-adic field Qp and we give a criterion of a quadratic or transcendental p-adic number which
based on the p-adic version of the subspace theorem due to Schlickewei.
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1. Introduction

In 1906, Maillet (see [8]) was the first person to give explicit transcendental contin-

ued fractions with bounded partial quotients. Later, in 1962, Baker (see [4]) extended

Maillet’s results with LeVeque, see [6].

Recently, Bugeaud and Adamczewski in [3] have improved Baker’s results, which

in particular show the transcendence of irrationals, where the development of a con-

tinued fraction has a specific irregularity.

Let (nk)k>0 be an increasing sequence of positive integers. Let (λk)k>0 and (rk)>0

be sequences of positive integers. Assume that the propriety (∗) verifies for all k

nk+1 > nk + λkrk,(∗)

am+rk = am for nk 6 m 6 nk + (λk − 1)rk − 1.

Theorem 1.1 ([3]). Let a = (an)n>0 be a sequence of positive integers which

satisfies (∗) and is not ultimately periodic. Let (pn/qn)n>0 denote the sequence of

convergents to the real number ξ = [a0, a1, . . . , an, . . .].
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Assume that the sequence (q
1/n
n )n>1 is bounded (which is in particular the case

when the sequence a is bounded), and that

lim sup
k→∞

λk

nk
> 0.

Then, the real number ξ is transcendental.

Moreover, Bugeaud and Adamczewski gave in [1], [2] several transcendence criteria

both in the decimal as well as in the continued fraction. The proofs are mainly based

on the Schmidt Subspace Theorem, see [13].

Besides, a continued fraction expansion exists in the p-adic number field Qp. The

p-adic analogue of real continued fractions was first studied by Mahler in 1934,

see [7]. After that, in 1970, Ruban in [11] developed the algorithm given by Mahler

and showed that these p-adic continued fractions enjoy nice elementary properties

similar to the real case. However, the p-adic continued fractions of Ruban have

many important differences with respect to the real case. For example, the p-adic

continued fraction expansion of a rational number might not be finite. Thus, in 1985,

Laohakosol in [5] proved that a number α ∈ Qp is rational if and only if the continued

fraction of α is finite or ultimately periodic with all partial quotients in the period

equal to (p−p−1). Moreover, in Qp, we have not found a characterization of quadratic

p-adic numbers until now. In this context, recently, Ooto in [10] proved that the

analogue of Lagrange’s theorem about the periodicity of real continued fractions

does not hold for Ruban’s continued fractions in Qp.

In this work, we study the family of quasi periodic p-adic Ruban continued frac-

tions and give a criterion of a quadratic or transcendental p-adic number which based

on the p-adic version of subspace theorem, see [12]. More precisely, we investigate

the analogous of Theorem 1.1 in Qp.

The present paper is organized as follows: In Section 2, we introduce the p-adic

field Qp and the expression of a Ruban continued fraction over this field. In Section 3,

we state our transcendence criterion of a p-adic number. After that, we review some

properties, we present some lemmas needed to prove our result, and finally we give

the proof of our main theorem (see Theorem 3.1) and an example to illustrate our

criterion. By the end, we conclude with open questions.

2. Background

The letter p denotes a prime number. The p-adic absolute value in Q noted |·|p is

defined as the unique absolute value satisfying |p|p = p−1 and |p′|p = 1 for all prime

number p′ 6= p (it extends completely multiplicatively to all integers and hence to

rationals). The field Qp is the completion of Q for this absolute p-adic value.
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Consequently, every x ∈ Qp has a unique representation in the form:

x =
∑

i>d

cip
i, d ∈ Z and ci ∈ {0, 1, . . . , p− 1} ∀ i > d.

The p-adic absolute value in Q is extended to Qp as follows:

|x|p = p−inf{i/ci 6=0} for x 6= 0.

Recall that this absolute value is non-archimedean.

Definition 2.1. An element α is called algebraic over Q if there is a polynomial

P (x) = a0 + a1x+ . . .+ anx
n ∈ Q[x] with P (α) = 0.

It turns out that algebraic elements over Q are not necessarily contained in Qp.

In our context, we will only need that |·|p can be extended uniquely from Qp to all of

its algebraic extensions. This follows from the next theorem, which holds generally

in non-archimedean fields.

Theorem 2.1 ([9], Chapter II, Theorem 4.8). Let K be a field which is complete

with respect to |·| has a unique extension to L defined by

|α| = m

√

|NL/K(α)|,

and L is complete with respect to this extension.

Now, we expand elements in Qp in a Ruban continued fraction and we define the

p-adic integral and fractional parts of x by

[x]p = cdp
d + . . .+ c−1p

−1 + c0 and {x}p = c1p
1 + c2p

2 + . . .

According to x, the integral and fractional parts of x are uniquely determined, and

so we can uniquely write x = [x]p + {x}p. The algorithm proceeds as follows:

If {x}p = 0, then x = [x]p = [a0]p. Or else, we write x = a0 + 1/x1, where

a0 = [x]p, x1 = 1/{x}p.

Otherwise, since |x1|p > p, by repeating the previous steps, we can uniquely write

x1 = a1 + 1/x2, where a1 = [x1]p, x2 = 1/{x1}p. If {x1}p = 0 we stop, otherwise

we proceed in the same manner. Since the (ai)i>0 obtained are unique, each x ∈ Qp

has a unique RCF (p-adic Ruban continued fraction) of the form

x = a0 +
1

a1 +
1

. . . +
1

an +
1

. . .

= [a0, a1, . . . , an, . . .]p.
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For an infinite Ruban continued fraction x = [a0; a1, a2, . . .]p, we define nonnega-

tive rational numbers pn, qn by using recurrence equations:

p−1 = 1, p0 = a0, q−1 = 0, q0 = 1

and

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2 for any n > 0.

As we know, we call pn/qn the nth convergent of the RCF of x. Then the Ruban

continued fraction has the following properties which are the same properties as the

continued fraction expansions for real numbers: For all n > 0,

pn
qn

= [a0; a1, . . . , an]p ∀n > 0,(2.1)

[a0; a1, . . . , an−1, xn]p =
xnpn + pn−1

xnqn + qn−1
,(2.2)

pn−1qn − pnqn−1 = (−1)n.(2.3)

3. Main results

Throughout the present paper, let (nk)k>0, (λk)k>0 and (rk)>0 be sequences de-

fined in propriety (∗) mentioned above and consider the p-adic number ξ defined by

ξ = [a0; a1, . . . , an, . . .]p.

Then ξ has a quasi-periodic continued fraction expansion in the following sense: for

any positive integer k, a block of rk consecutive partial quotients is repeated λk

times, such repetition occurs just after the (nk − 1)th partial quotient.

For positive reals a1, . . . , am, denote by Km(a1, . . . , am) the denominator of the

p-adic number [0; a1, a2, . . . , am]p. It is commonly called a continuant.

The main theorem is the following:

Theorem 3.1. Let a = (ak)k>1 be as in the above and not ultimately peri-

odic. Let (pk/qk)k>1 denote the sequence of convergents to the p-adic number

ξ = [0; a1, a2, . . . , ak, . . .]p with Knk
(ank

, . . . , ank+rk−1) is bounded, and that

lim sup
k→∞

λkrk
nk

> 2.

Then ξ is either quadratic or transcendental.

Remark 3.1. If the sequence (rk)k>0 is bounded, then Knk
(ank

, . . . , ank+rk−1)

is bounded.
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Corollary 3.1. Under the same hypothesis of the previous theorem and if the

sequence (rk)k>0 is increasing and

lim sup
k→∞

λk

nk
> 0,

then ξ is either quadratic or transcendental.

The proof of the main theorem of this paper is based on the p-adic version of the

Schmidt subspace theorem, established by Schlickewei (see [12]), which is recalled

below:

Let k > 2 be an integer, X = (X1, . . . , Xk) a k-tuple of rational numbers. Put

|X |∞ = {max |Xi| : 1 6 i 6 k} and |X |p = {max |Xi|p : 1 6 i 6 k}.

Theorem 3.2 ([12]). Let p be a prime number, L1,∞, . . . , Lk,∞ be k linearly

independent forms with variable X and algebraic real coefficients, L1,p, . . . , Lk,p be k

linearly independent forms with algebraic p-adic coefficients and same variables and

ε > 0 a real number. Then, the set of solutions X ∈ Zk of the inequality:

k∏

i=1

(|Li,∞(X)|∞|Li,p(X)|p) 6 |X |−ε
∞

is contained in the union of a finite number of proper subspaces of Qk.

Of equal importance, the proofs of our theorem lean on the following four lemmas:

Lemma 3.1 ([14]).

|qn|p = |a1 . . . an|p ∀n > 1,(3.1)
{

|pn|p = |a0 . . . an|p ∀n > 1 if a0 6= 0,

|p1|p = 1, |pn|p = |a2 . . . an|p ∀n > 2 if a0 = 0,
(3.2)

|qn|p < |qn+1|p and |pn|p < |pn+1|p,(3.3)
∣
∣
∣x−

pn
qn

∣
∣
∣
p
=

1

|an+1|p|qn|2p
∀n > 0.(3.4)

In what follows, equality (3.5) will be referred to as the mirror formula.

Lemma 3.2 ([10]). Let x = [0; a1, a2, . . .]p be a p-adic number with nth convergent

pn/qn. Then

(3.5)
qn

qn−1
= [an, an−1, . . . , a1]p.
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Lemma 3.3. Let x = [a0; a1, a2, . . .]p and y = [a′0; a
′
1, a

′
2, . . .]p be two p-adic

numbers having the same first (n+ 1) partial quotients. Then

|x− y|p 6
1

|qn|2p
.

P r o o f. Since pn/qn is a nth convergent to both x and y, and (7), the lemma

follows. �

Lemma 3.4. Let x = [0; a1, a2, . . .]p be a p-adic number with nth convergent

pn/qn. Then

max(pn, qn) < (p+ 1)n+1.

P r o o f. Using the fact an < p for all n > 0, and the induction on n, we find that

p0 = a0 < p < (p+ 1)0+1, p1 = a1a0 + 1 < p2 + 1 < (p+ 1)1+1.

We suppose that the statement holds true for all k < n. Then, we find

pn = anpn−1 − pn−2 < p(p+ 1)n + (p+ 1)n−1 < (p+ 1)n−1(p(p+ 1) + 1)

< (p+ 1)n−1(p+ 1)2 < (p+ 1)n+1.

The same holds true for qn. �

Notations 3.1. Let ak ∈ Z[1/p] ∩ (0, p). Set ak = bk/ck, where bk ∈ N∗ and

ck = p−νp(ak) ∈ N∗. We take

Pk =

( k∏

j=0

cj

)

pk, Qk =

( k∏

j=0

cj

)

qk, P ′
k =

(k−1∏

j=0

cj

)

p′k and Q′
k =

(k−1∏

j=0

cj

)

q′k.

It is clear that Pk, P
′
k, Qk and Q′

k are integers.

P r o o f of Theorem 3.1. For any k > 0, set

Kk = Knk
(ank

, . . . , ank+rk−1).

By assumption, there exists an infinite set of integers K1, ranged in increasing order,

such that (Kk)k∈K1
is bounded. Since the Kk’s are nonnegative reals, it follows that

infinitely of them take the same value. Then, Lemma 3.4 implies that there exists

a positive integer r, positive integers c0, . . . , cr−1 and an infinite set K2 of positive

integers such that

rk = r, ank+j = cj , 0 6 j 6 r − 1,
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for any k in K2. Let α denote the p-adic number having the purely periodic Ruban

continued fraction expansion with period C = (cr−1, . . . , c0), with cj 6= p − p−1 for

all 0 6 j 6 r − 1, that is,

α = [cr−1, cr−2, . . . , c0, cr−1, . . . , c0, cr−1, . . .]p = [C,C, . . . , C, . . .]p.

Then, α is a quadratic p-adic number. Since we need to introduce some more nota-

tion, we denote pn/qn (or by rn/sn) the nth convergent to ξ (or to α, respectively).

Hence, for any i in K2, set pk = pnk+λkrk−1, qk = qnk+λkrk−1, p
′
k = pnk+λkrk−2,

q′k = qnk+λkrk−2 and sk = sλkrk−1.

By assumption, we already know that ξ is an irrational and not a quadratic p-adic

number. Therefore, we assume that ξ is an algebraic p-adic number of degree d > 2

and we aim at deriving a contradiction.

Let k be in K2. By the theory of continued fractions, we have

(3.6) |qkξ − pk|p 6
1

|qk|p
and |q′kξ − p′k|p 6

1

|q′k|p
.

Furthermore, we obtain

pk
qk

= [0; a1, . . . , ank−1, C, C, . . . , C
︸ ︷︷ ︸

λk

]p.

We get from the mirror formula (see Lemma 3.2)

qk
q′k

= [C,C, . . . , C
︸ ︷︷ ︸

λk

, ank−1, . . . , a1]p.

Since α and qk/q
′
k have the same first (λkrk) partial quotients, then through

Lemma 3.3, we have

(3.7) |αq′k − qk|p 6
|q′k|p
|sk|2p

.

When k → ∞ and |qk|p → ∞, we obtain

(3.8) lim
K2∋k→∞

qk
q′k

= α (in Qp).

Let us consider the eight following independent linear forms with algebraic coeffi-

cients in variable X = (X1, X2, X3, X4).

Li,∞(X) = Xi for 1 6 i 6 4,

L1,p(X) = ξX1 −X3, L2,p(X) = ξX2 −X4,

L3,p(X) = αX2 −X1, L4,p(X) = X1.
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Keeping Notations 3.1, we evaluate the product of these linear forms at the integer

points X = (Qk, ckQ
′
k, Pk, ckP

′
k), and it follows from (3.6) and (3.7) that

4∏

i=1

|Li,p(X)|p 6

∣
∣
∏k

j=0 cj
∣
∣
4

p

|sk|2p
,

we also have
4∏

i=1

|Li,∞(X)|∞ =

∣
∣
∣
∣

k∏

j=1

cj

∣
∣
∣
∣

4

∞

|qkpkq
′
kp

′
k|∞ 6 |X |4∞.

Therefore, we obtain the following inequality:

(3.9)

4∏

i=1

|Li,∞(X)|∞|Li,p(X)|p 6
|X |4∞
|sk|2p

.

For any k in K2, Lemma 3.1 implies

|sk|p > pk = pλkrk−1.

Then,

|sk|p > (p+ 1)(λkrk−1) log p/ log(p+1).

Moreover, we infer from Lemma 3.4 that (p+ 1) > |X |
1/(k+1)
∞ for any k in K2. So

|sk|p > |X |δ∞,

where

δ =
log p

log(p+ 1)

λkrk − 1

nk + λkrk
.

Returing to inequality (3.9), we conclude that

4∏

i=1

|Li,∞(X)|∞|Li,p(X)|p 6
1

|X |ε∞
= |X |−ε

∞ ,

where

ε = 2
log p

log(p+ 1)

λkrk − 1

nk + λkrk
− 4.

By the Theorem hypothesis, we get ε > 0.

Schlickewei’s theorem confirms the existence of nonzero integer quadruplet

(x1, x2, x3, x4) and an infinite set of distinct positif integers K3 ⊂ K2, which gives

x1Qk + x2ckQ
′
k + x3Pk + x4P

′
k = 0 ∀ k ∈ K3,

that is

(3.10) x1qk + x2q
′
k + x3pk + x4p

′
k = 0.
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Dividing (3.10) by q′k, we obtain

(3.11) x1
qk
q′k

+ x2 + x3
pk
qk

qk
q′k

+ x4
p′k
q′k

= 0.

By letting k tend to infinity along K3 in (3.11) and through the use of (3.8), we

obtain

x1α+ x2 + (x3α+ x4)ξ = 0.

Since ξ is not a quadratic irrational, then x3α + x4 = 0 and since α is irrational,

then x3 = x4 = 0. Consequently, again by using that α is irrational, we reach that

x1 = x2 = x3 = x4 = 0, which is a contradiction. �

Example 3.1. Let p a prime number, a, b two distinct p-adic numbers in

Z[1/p]∩]0, p[. Let

ξ = [0; bb
50

, a, a
︸︷︷︸

2 times

, bb
51

, a, a, a
︸ ︷︷ ︸

3 times

, bb
52

, . . . , a, a, . . . , a
︸ ︷︷ ︸

(n+1) times

, bb
5n

, . . .]p.

In this case we take ri = 2, λi = 5i for all i > 0 and ni = 2
i−1∑

j=0

5j + 1
2 (i + 1)(i + 2)

for all i > 1 with n0 = 1. Then ξ is either quadratic or transcendental because:

lim sup
i→∞

riλi

ni
= lim sup

i→∞

2.5i

2
∑i−1

j=0 5
j + 1

2 (i+ 1)(i+ 2)

= lim sup
i→∞

2.5i

1
2 (5

i − 1) + 1
2 (i+ 1)(i+ 2)

= 4 > 2.

4. Concluding remarks

Under the assumptions of Theorem 3.1, we get that the p-adic number α is

quadratic or transcendental. It is natural to ask the following question: is it possible

to give some refined conditions to our theorem for obtain a transcendence criterion

in Qp? The problem seems to be difficult because until now we have not had any

characterization of quadratic p-adic numbers.

Bugeaud and Adamczewski gave several transcendence criteria of irrational num-

bers both in the decimal and in an integer base as well as continued fraction,

see [1], [2], [3]. Can we find transcendence criteria of p-adic numbers by using the

p-adic expansion as we get with the Ruban continued fraction?
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