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Abstract. We present new characterizations of the rings for which every element is a sum
of two tripotents and a nilpotent that commute. These extend the results of Z. L.Ying,
M.T.Koşan, Y. Zhou (2016) and Y. Zhou (2018).
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1. Introduction

Throughout, all rings are associative with the identity. A ring R is a Zhou nil-clean

if every element in R is the sum of a nilpotent and two tripotents that commute,

see [10]. Here, an element p ∈ R is a tripotent if p3 = p. Recently, many authors

studied such rings generalized by tripotents and nilpotents, see e.g., [1], [4], [5],

[6], [7], [8], [9], [10]. The purpose of this paper is to completely characterize Zhou

nil-clean rings in terms of element-wise conditions.

Recall that a ring R is strongly nil f -clean if for any a ∈ R there exist a root e

of the polynomial f and a nilpotent w such that a = e + w that commute, see [2].

In Section 2, we prove that a ring R is a Zhou nil-clean ring if and only if it is

strongly nil (x− 2)(x− 1)x(x+1)(x+2)-clean. An element e ∈ R is a 2-idempotent

if e2 is an idempotent, i.e., e2 = e4. Moreover, we establish the connection between

Zhou nil-clean ring and its 2-idempotents. We prove that a ring R is a Zhou nil-

clean if and only if every element a in R is the sum of two 2-idempotents and

a nilpotent in Z[a].
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A ring R is an exchange ring provided that for any a ∈ R, there exists an idem-

potent e ∈ R such that e ∈ aR and 1− e ∈ (1− a)R, see [2]. An element u in a ring

is unipotent if 1−u is nilpotent. Finally, in Section 3 we characterize Zhou nil-clean

rings by their exchange property. We prove that a ring R is a Zhou nil-clean ring if

and only if R is an exchange in which u4 is unipotent for any u ∈ R−1.

We use N(R) to denote the set of all nilpotents in R and J(R) the Jacobson radical

of R. The symbol R−1 stands for the set of all units in R, N is the set of all natural

numbers, and Z[x] = {f(x) : f(t) is a polynomial with integral coefficients}.

2. Clean-like characterization

In this section we present the clean-like characterization for a Zhou nil-clean ring.

Lemma 2.1. Let R be a Zhou nil-clean ring with 5 ∈ N(R). Then R is strongly

nil (x− 2)(x− 1)x(x + 1)(x+ 2)-clean.

P r o o f. Let a ∈ R. Then a−a5 ∈ N(R). Set x = 3a+a2+a4 and y = 3a−a2−a4.

Then x− x3, y − y3 ∈ N(R). Set

b =
x2 + x

2
, c =

x2 − x

2
; p =

y2 + y

2
, q =

y2 − y

2
.

Then b − b2, c − c2; p − p2, q − q2 ∈ N(R). Thus, we can find the idempotents

e, f ; g, h ∈ Z[a] such that

b − e, c− f ; p− g, q − h ∈ N(R).

Since x = b− c and y = p− q, we see that x− (e− f); y− (g−h) ∈ N(R). Therefore,

a = (x+ y)− 5a = (e− f) + (g − h) + w for some w ∈ N(R).

As bc = 1

4
(x4−x2) ∈ N(R), we see that ef ∈ N(R) and so ef = 0. As pq ∈ N(R),

likewise gh = 0.

Since 5 ∈ R is nilpotent, we directly verify that

x2 + x ≡ −a+ 2a2 + a3 − 2a4, y2 + y ≡ 2a− a3 + a4,

x2 − x ≡ −2a+ a3 + a4, y2 − y ≡ a+ 2a2 − a3 − 2a4 (mod N(R)).

Moreover, we have

bp ≡ 2a+ a2 − 2a3 − a4, bq ≡ 0;

cp ≡ 0, cq ≡ −2a+ a2 + 2a3 − a4 (mod N(R)).
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Thus, we see that eh, fg ∈ N(R); hence, eh = fg = 0. Accordingly, we see that

ef = gh = eh = fg = 0, and then we check that

(e− f + g − h)5 = (e + f + g + h+ 2eg + 2fh)2(e− f + g − h)

= (e + f + g + h+ 14eg + 14fh)(e− f + g − h)

= e − f + g − h+ 30(eg − fh).

Moreover, we have

(e − f + g − h)3 = (e+ f + g + h+ 2eg + 2fh)(e− f + g − h)

= e− f + g − h+ 6(eg − fh).

Let α = e − f + g − h, then α5 = α + 5(α3 − α). Hence, α5 = 5α3 − 4α. Let

f(x) = x5 − 5x3 + 4x, then f(x) = (x− 2)(x− 1)x(x + 1)(x+ 2) as required. �

We are ready to present a new characterization of a Zhou nil-clean ring.

Theorem 2.2. Let R be a ring. Then the following are equivalent:

(1) R is Zhou nil-clean.

(2) a5 − 5a3 + 4a ∈ R is nilpotent for all a ∈ R.

(3) R is strongly nil (x− 2)(x− 1)x(x+ 1)(x+ 2)-clean.

P r o o f. (1) ⇒ (3) In view of [10], Theorem 2.11, R is isomorphic to R1, R2, R3

or the product of these rings, where R1 is strongly nil-clean and 2 ∈ N(R1); R2 is

strongly 2-nil-clean and 3 ∈ N(R2); R3 is Zhou nil-clean and 5 ∈ N(R3).

Case 1 : Let a ∈ R1. In view of [10], Lemma 2.4, there exists an idempotent

e ∈ Z[a] such that a− e ∈ N(R1). We easily check that e
5 = 5e3 − 4e.

Case 2 : Let a ∈ R2. By virtue of [10], Lemma 2.6, there exists a tripotent e ∈ Z[a]

such that a− e ∈ N(R1). We easily check that e
5 = 5e3 − 4e.

Case 3 : Let a ∈ R3. According to Lemma 2.1, there exists an idempotent e ∈ Z[a]

such that a− e ∈ N(R1). We easily check that e
5 = 5e3 − 4e.

Let a ∈ R. Combining the preceding steps, we can find e ∈ Z[a] such that

a − e ∈ R is nilpotent and e5 = 5e3 − 4e. Let f(x) = x5 − 5x3 + 4x. Then

f(x) = (x− 2)(x− 1)x(x+ 1)(x+ 2), and so R is strongly nil f -clean, as desired.

(3) ⇒ (2) Let a ∈ R. Then there exists e ∈ Z[a] such that w := a − e ∈ R

is nilpotent and e5 = 5e3 − 4e. Hence, (a − w)5 = 5(a − w)3 − 4(a − w). Thus,

a5 − 5a3 + 4a ∈ N(R), as required.

(2) ⇒ (1) By hypothesis, 23 × 3 × 5 = 35 − 5 × 33 + 4 × 3 ∈ N(R); hence,

2× 3× 5 ∈ N(R). Write 2n × 3n × 5n = 0 (n ∈ N). Thus, R ∼= R1 ×R2 ×R3, where

R1 = R/2nR, R2 = R/3nR and R3 = R/3nR.
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Case 1 : Let x ∈ R1. As 2 ∈ N(R1), we see that x
4(x − 1) = x5 − x4 ∈ N(R1),

and so x− x2 ∈ N(R1). This shows that R1 is strongly nil-clean. Hence, R1 is Zhou

nil-clean, by [10], Proposition 2.5.

Case 2 : Let x ∈ R2. As 3 ∈ N(R2), we see that x(x
2−1)2 = x5−2x3+x ∈ N(R2).

This shows that x − x3 ∈ N(R2). Hence, R2 is strongly 2-nil-clean. In view of [10],

Proposition 2.5, R2 is Zhou nil-clean.

Case 3 : Let x ∈ R3. As 5 ∈ N(R3), we have x − x5 ∈ N(R3). In light of [10],

Proposition 2.10, R3 is Zhou nil-clean.

Therefore, we conclude that R is Zhou nil-clean. �

Corollary 2.3. A ring R is Zhou nil-clean if and only if

(1) J(R) is nil;

(2) R/J(R) has the identity (x− 2)(x− 1)x(x+ 1)(x+ 2) = 0.

P r o o f. This is obvious by Theorem 2.2. �

We now turn to establish the connection between Zhou nil-clean rings and their

2-idempotents. For future use, we now derive the following lemma.

Lemma 2.4. If every element in a ring R is the sum of two 2-idempotents and

a nilpotent that commute, then 30 ∈ N(R).

P r o o f. Write 3 = g + h + w, where g2 = g4, h2 = h4, w ∈ N(R) and e, f , w

commute with each other. Let e = g3 and f = h3. Then 3 = e+ f + b, where e3 = e,

f3 = f , b = w + (e − e3) + (f − f3). As (e − e3)2 = (f − f3)2 = 0, we see that

b ∈ N(R). Hence, 3− e = f + b, and so (3− e)3 = f3+3bf(b+ f). This implies that

(3−e)3−(3−e) ∈ N(R), i.e., 24−9e(3−e) = 24−27e+9e2 ∈ N(R). We infer that 23×

3×(3−2e) = (3+e)(24−27e+9e2) ∈ N(R). Hence, we can find w ∈ N(R) such that

23×32 = 24×3e+w, and so 29×36 = 212×33e3+w′ for w′ ∈ N(R). It follows that 29×

34(22− 32) ∈ N(R), i.e., 29× 34× 5 ∈ N(R). Therefore, 30 ∈ N(R), as asserted. �

Theorem 2.5. The following are equivalent for a ring R:

(1) R is Zhou nil-clean.

(2) For any a ∈ R, there exist 2-idempotents e, f ∈ Z[a] and a nilpotent w ∈ R

such that a = e+ f + w.

(3) Every element in R is the sum of two 2-idempotents and a nilpotent that com-

mute.

P r o o f. (1) ⇒ (2) This is obvious by [3], Theorem 2.11, as every tripotent in R

is a 2-idempotent.

(2) ⇒ (3) This is trivial.

(3) ⇒ (1) In view of Lemma 2.4, 30 ∈ N(R). Write 2n × 3n × 5n = 0 (n ∈ N).
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Then R ∼= R1 × R2 × R3, where R1 = R/2nR, R2 = R/3nR and R3 = R/5nR. Set

S = R2 ×R3. Then R ∼= R1 × S.

Step 1 : Let a2 = a4 in R1. Then a
2(1− a)(1 + a) = 0. As 2 ∈ N(R1), we see that

(a − a2)2 ∈ N(R); hence, a − a2 ∈ N(R1). In light of [10], Proposition 2.5, there

exists an idempotent e ∈ Z[a] such that a − e ∈ N(R1). Thus, every element in R1

is the sum of two idempotents and a nilpotent that commute. This shows that R1

is strongly 2-nil-clean; hence, it is Zhou nil-clean.

Step 2 : Let a2 = a4 ∈ S. Then a(a−a3) = 0, and so (a−a3)2 = a(a−a3)(1−a2) ∈

N(R). Hence, a−a3 ∈ N(S). As 2 ∈ U(S), it follows by [10], Lemma 2.6, that there

exists e3 = e ∈ S such that a− e ∈ N(S).

Let c ∈ S. Then we can find 2-idempotents b, c ∈ S such that a − b − c ∈ N(S)

and a, b, c ∈ S commute. By the preceding discussion, we have tripotents g ∈ Z[b]

and h ∈ Z[c] such that b − g, c − h ∈ N(S). Therefore, a − g − h = (a − b − c) +

(b − g) + (c − h) ∈ N(S), where a, g, h commute. Therefore, every element in S is

the sum of two tripotents and a nilpotent in S. That is, S is Zhou nil-clean.

Therefore, R is Zhou nil-clean, as asserted. �

Corollary 2.6. The following are equivalent for a ring R:

(1) R is strongly 2-nil-clean.

(2) Every element in R is the sum of a 2-idempotent and a nilpotent that commute.

P r o o f. (1) ⇒ (2) This is obvious by [3], Theorem 2.8.

(2) ⇒ (1) In view of Theorem 2.5, R is Zhou nil-clean. Write 2 = e + w, where

e3 = e ∈ R, w ∈ N(R). Then 23 − 2 ∈ N(R), and so 6 ∈ N(R). In light of [9],

Lemma 3.5, R is strongly nil-clean. �

3. Exchange properties

The class of exchange rings is very large, see [2]. We now characterize Zhou nil-

clean rings in terms of their exchange properties. We need an elementary lemma.

Lemma 3.1. Let R be an exchange ring in which u4 is unipotent for any unit

u ∈ R. Then 30 ∈ N(R).

P r o o f. Since R is an exchange ring, there exists an idempotent f ∈ 3R such

that 1− f ∈ (1 − 3)R. Write f = 3a for some a ∈ R. We may assume that a = fa,

then 3a2 = 3a. Then 1 − f = (1 − 3)b for some b ∈ R with b(1 − f) = b, therefore

(−2)b2 = b. Now we have 3 = 3− (1− f) + (1− f). It is obvious that 3− (1− f) is

a unit with the inverse a− b.
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Set e = 1 − f and u = 3 − (1 − f). Then 3 = e + u. By hypothesis, u4 = 1 + w,

so (3− e)4 = 1 + w, then 81− 65e = 1 + w which implies that 80 = 65e+ w. Thus,

80e = 65e+we, hence, 15e = we. Also 80 = 65e+w = 60e+5e+w = 5e+(4e+1)w.

Then 802 = 52e+10e(4e+1)w+(4e+1)2w2 and 5× 80 = 52e+5(4e+1)w; whence

802 − 5× 80 ∈ N(R). This implies 24 × 3× 53 ∈ N(R) and so 2× 3× 5 ∈ N(R). �

Lemma 3.2. Let R be an exchange ring in which u4 is unipotent for any unit

u ∈ R. Then J(R) is nil.

P r o o f. By virtue of Lemma 3.1, 30 ∈ N(R). Write 30n = 0 for some n ∈ N.

Then R ∼= R1 × R2 × R3, where R1 = R/2nR,R2 = R/3nR and R3 = R/5nR. Let

x ∈ J(R1), so 1 − x ∈ U(R1). Let u = 1 − x, as R1 is a Kosan ring, u
4 + 1 is

in N(R1). We have (1 − u)4 = 1 + u4 + 2(3u2 − 2u− 2u3) ∈ N(R1), as 2 ∈ N(R1),

then (1−u)4 ∈ N(R1) which implies that 1−u ∈ N(R1) and so x ∈ N(R1). Now let

x ∈ N(R2), then (1 + x)4 = 1 + w for some w ∈ N(R2), so x
4 + 2(x3 + 3x2 + 2x) =

x(x3+2(2x2+3x+2)) since 3 ∈ N(R2), 2 ∈ U(R2), and we have 2x
2+3x+2 ∈ U(R2).

Therefore, x3 + 2(2x2 + 3x+ 2) ∈ U(R2), which implies that x ∈ N(R2). For R3, as

5 ∈ N(R3), we deduce that 2 ∈ U(R3), so in a similar way, we can prove that J(R3)

is nil. Therefore, J(R) is nil. �

Lemma 3.3. Let R be an exchange ring in which u4 is unipotent for any unit

u ∈ R. If J(R) = 0, then R is reduced.

P r o o f. We claim that N(R) = 0. If not, there exists some a ∈ R such that

a2 = 0. Since R is an exchange ring with J(R) = 0, we have eRe ∼= M2(T ) for some

idempotent e ∈ R and some ring T . By hypothesis, we deduce that u4 is unipotent

for any unit u ∈ eRe. Then we easily check that U4 is unipotent for any invertible

U ∈ M2(T ). Since
(

1 1

−1 0

)

=
(

0 −1

1 1

)

−1

∈ GL2(T ), we have

A :=

(

−2 −1

1 −1

)

=

(

1 1

−1 0

)4

− I4 ∈ N(M2(T )).

Let S = {m·1R : m ∈ Z}. Then S is a commutative subring of T . As A ∈ N(M2(S)),

we see that det(A) = 3 ∈ N(S), and so 3 ∈ N(T ). Since 2 = 3 − 1 ∈ U(T ),
(

1 1

−1 1

)

=
(

2
−1

−2
−1

2
−1

2
−1

)

−1

∈ GL2(T ), and then

(

−5 0

0 −5

)

=

(

1 1

−1 1

)4

− I4 ∈ GL2(T ).

This implies that 5 ∈ N(T ); hence, 1T = (3 · 2 − 5) · 1T ∈ N(T ), a contradiction.

Therefore, N(R) = 0, i.e., R is reduced. �
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We have accumulated all the information necessary to prove the following theorem.

Theorem 3.4. A ring R is Zhou nil-clean if and only if

(1) R is an exchange ring;

(2) u4 is unipotent for any unit u ∈ R.

P r o o f. ⇒ It is clear that every Zhou nil-clean ring is periodic and so it is strongly

clean. Now let u ∈ U(R), then u5 − u ∈ N(R), u(u4 − 1) ∈ N(R), and since u is

a unit then u4 − 1 ∈ N(R). Thus, u4 is unipotent for any unit u ∈ R.

⇐ By virtue of Lemma 3.2, J(R) is nil. Set S = R/J(R). Then S is an exchange

ring in which u4 is unipotent for any unit u ∈ R. Obviously, J(S) = 0. In view

of Lemma 3.3, S is reduced. Thus, S is isomorphic to a subdirect product of some

domains Si. We see that each Si is a homomorphic image of S; hence, Si is an

exchange Koşan ring with trivial idempotents. In light of [2], Lemma 17.2.1 and

Lemma 3.2, Si is local and J(Si) is nil. For any x ∈ Si, x−x5 ∈ J(Si) ⊆ N(Si). Let

ā ∈ S. Then a− a5 ∈ N(S) = 0, and so R/J(R) has the identity x5 = x. Therefore,

R is Zhou nil-clean by [10], Theorem 2.11. �

Corollary 3.5. A ring R is Zhou nil-clean if and only if R is a clean ring in

which u4 is unipotent for any unit u ∈ R.

P r o o f. Since every clean ring is an exchange ring, we complete the proof by

Theorem 3.4. �
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