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Abstract. F-manifold algebras are focused on the algebraic properties of the tangent
sheaf of F-manifolds. The local classification of 3-dimensional F-manifolds has been given
in A.Basalaev, C. Hertling (2021). We study the classification of 3-dimensional F-manifold
algebras over the complex field C.
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1. INTRODUCTION

The concept of Frobenius manifolds was introduced by Dubrovin (see [8]) in order
to give a geometrical expression of the Witten-Dijkgraaf-Verlinde-Verlinde equa-
tions. In 1999, Hertling and Manin in [11] invented the notion of F-manifolds as
a relaxation of the conditions of Frobenius manifolds, i.e., F-manifolds without flat
metric (see [10], [11] for more details). In [10], Hertling gave the complete classifi-
cation of the germs of all 2-dimensional F-manifolds with or without Euler fields,
also the partial classification of 3-dimensional cases but not pursued systematically.
Basalaev and Hertling in [2] tried to obtain a systematic classification of germs of
3-dimensional F-manifolds, and succeeded in most of the cases.

Inspired by the investigation of algebraic structures of F-manifolds, the notion of
an F-manifold algebra is given by Dotsenko in 2019 (see [7]) to relate the operad
F-manifold algebras to the operad pre-Lie algebras. F-manifold algebra is defined
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as a triple (4, -, [,]) satisfying the Hertling-Manin relation

chy(zaw):mPy(zaw)+ypx(zaw) an%szeA)’

where (A,-) is a commutative associative algebra, (A,[,]) is a Lie algebra and
P.(y,z) = [x,y - 2] — [x,y] - 2 —y - [z,z]. Note that the commutative Poisson
algebras are a special class of F-manifold algebras with P,(y,z) = 0. Poisson
algebras have been studied by many people and played an important role in var-
ious areas in mathematics and mathematical physics, such as Poisson geometry,
integrable systems and noncommutative geometry (see for example [5], [12], [14],
[17]). As a generalization, F-manifold algebras have played a central role in the
theory of Frobenius manifolds and the theory of F-manifolds. Therefore, it is
necessary to understand the structures and properties of F-manifold algebras in
detail. In [4], the authors defined the notions of F-algebra-Rinehart pairs and su-
per F-algebroids, and studied the connection between them. Recently, Liu, Sheng
and Bai in [13] introduced pre-F-manifold algebras which give rise to F-manifold
algebras through the subjacent associative algebras and the subjacent Lie alge-
bras. Later, these results have been generalized to the case of F-manifold color
algebras in [6]. The notion of Hom-F-manifold algebras and their proprieties were
given in [3].

In this paper, we study the classification of F-manifold algebras with a multipli-
cation with or without unit over the complex field in dimension three. Note that
F-manifolds pursued in [2] are complex manifolds with a multiplication with unit.
To the best of our knowledge, the corresponding F-manifold algebras should contain
the unit from an algebraic viewpoint. We hope the classification given in this pa-
per can be related to the local classification of 3-dimensional F-manifolds in [2] and
regarded as a guide for further study.

The paper is organized as follows. In Section 2, we recall the classifications of
3-dimensional commutative associative algebras and Lie algebras over the complex
field. In Section 3, we discuss the classification of 3-dimensional F-manifold algebras
over the complex field.

2. PRELIMINARIES

In this section, we briefly summarize the classifications of 3-dimensional commu-
tative associative algebras and 3-dimensional Lie algebras over the complex field C,
respectively.
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Let ey, ez, ez be a basis of the commutative associative algebra (A, -). Set e;-e; =

3
> afjek, then the characteristic matrix is defined as
k=1

Mes
S

3 3
k k
1€k D G12€k Y, G736k
k=1 k=1

k=1

A A A
D aziek ), G5sek Y, G5k
k=1 k=1 k=1

3 3. 3.
D aziek ), G3a€k Y G33€k
k=1 k=1 k=1

In [1], Bai and Meng classified the Novikov algebras of dimension three over the
complex field. Note that commutative associative algebras are a special class of
Novikov algebras. Thus, the classification of 3-dimensional commutative associative
algebras can be naturally deduced. We list this classification in Table 1:

Type  Characteristic Matrix Type Characteristic Matrix
0 0 0 0 0 O
Ay 0 0 O Ag 0 0 O
0 00 0 0 e
0 0 O 0 0 O
As ( 0 e1 O Ay ( 0 0 e )
0 0 el 0 €1 €9
0 0 O 0 0 e
31 (0 €9 0 BQ ( 0 €9 0 )
0 0 €3 €1 0 €3
0 0 O 0 0 e
Ch (0 0 0 Co ( 0 0 O )
0 0 e3 er 0 e3
0 0 €1 €2 0 0
Cll 0 0 ez D, ( 0 0 O )
er e2 €3 0 0 e3
€9 0 €1 €1 0 0
Do 0 0 eo E 0 e O
e1 ey es 0 0 e3

Table 1. The classification of 3-dimensional commutative associative algebras

Let eq, ea, e3 be a basis of the Lie algebra (A4, [,]). Listed below is the classification
of 3-dimensional nonabelian Lie algebras, see [9], [15], [16] for more details.
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Type Lie bracket multiplication

n31 le1,e2] =0, [e2,e3] = eq,[e1,e3] =0
S2.1 DNy le1,e2] =e1,[e2,e3] =0,[e1,e3] =0
53,1 le1,e2] = 0, [e2, e3] = aea, [e1,e3] = €1

0 < |a|] <1,if |a] =1 then arg(a) < =
53,2 [e1,e2] =0, ez, e3] = e1 + ez, [e1,e3] = e1

5[(25 C) [617 62] = 2617 [627 63] = 2637 [617 63] = —€2

Table 2. The classification of 3-dimensional nonabelian Lie algebras.

In the following, we use Table 2 to refer the Lie algebras up to isomorphism.

3. ON THE CLASSIFICATION OF 3-DIMENSIONAL F-MANIFOLD ALGEBRAS
OVER THE COMPLEX FIELD

Let (A,-,[,]) be an F-manifold algebra, where the commutative associative al-
gebra (A,-) with a basis e1, eq, es belonging to one of the types in Table 1. For
each case, we need to determine the Lie bracket. According to the definition of
an F-manifold algebra, it is easy to see that (A,-,[,]) is an F-manifold algebra if
and only if (A,-) is a commutative associative algebra and (A, [,]) is a Lie algebra,
satisfying the Hertling-Manin relation

Pei-ej (ek,el) =¢;- P, (ek,el) -+ e; Pei (ek,el), 1< i,j,k,l < 3,

J

where P, (y,z) =[x,y z] — [z,y] -z —y - [z, 2] for any z,y, z € A.

In what follows, we will give an explicit computation of the F-manifold algebra
(As, -, [,]). For other cases, as the discussion is similar, we only list the results without
proofs.

3.1. The commutative associative algebra of type As. Note that there is
a basis {e1, e2,e3} of Az such that es - e2 = e, e3 - e3 = e; and others are zero.

Lemma 3.1. A triple (4s,-,[,]) is an F-manifold algebra if and only if for all
1<i,5<3
{ P, (eire;) = 2e2 - Pey(ei,€5) = 25 Py (eis €5),
es - Pey(ei,ej) +e3- Pey(ei,ej) =0,

where (As, ) is a commutative associative algebra and (As, [,]) is a Lie algebra.
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Proof. By the characteristic matrix of (As,-) given in Table 1, we obtain that
(As,+,[,]) is an F-manifold algebra if and only if

k<3, 1<,

(31) Pel (ei7 ej) = zek : Pek (ei? ej)’ 2 3
1<1e,5<3,

€m - ]Den (ei7ej) +én - Pem (6i,€j) =0,

= A
N

<3,
<

J
m<n<3,

NN

where (As, ) is a commutative associative algebra and (43, [,]) is a Lie algebra.
Since €1 - e, =0 (1 <m < 3) and €2, = €1 (2 < m < 3), we have that (3.1) hold

P.,(ei,ej) =2es - Pey(ei,e) = 2e3 - Pey(es,¢5), 1<14,5<3,
& em - Pe(eiye) =0, 1<4,7<3,2<m <3,
es - Poy(ej,e;) +es3- Pey(eiej) =0, 1<14,5<3,
P. (ei,ej) =2eq - Pe,(e4,e5) = 2es - Pey(es,e5), 1<, <3,
{eg-Pe3(ei,ej)+63-PeQ(ei,ej)=O, 1<4,5<3.
Hence, the proof is finished. O

Lemma 3.2. (4s,-,[,]) is an F-manifold algebra if and only if

{ [61762] c€2 = [61763] €3,

[61,63] - eg + [61,62] -e3 = 0,

where (As, ) is a commutative associative algebra and (As, |[,]) is a Lie algebra.

Proof. Through direct computations, we have

Pe,(ej,er) = [ei,ej - ex] — [ei, ex] - €5 — [eis e5] - ex

0, J=k=1,

—les, e1] - ex, j=1,2<k<3,

—[exs 1] - e, 2<j<3, k=1,
) e en] = 2[eires] - e, j=k=23,

—les,e2] - e3 —[ei e3]-e2, §=2, k=3,

—lei €] -e3 —[ei,es]-e2, =3, k=2
Thus, the proof can be deduced from Lemma 3.1. O

Let [e1,e2] = hie1 + hgea + haes, [ea,e3] = kier + kaea + kges, [e1,e3] = lie1 +
loes + lze3. According to Lemma 3.2, we obtain the following result.
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Proposition 3.1. (As,-,[,]) is an F-manifold algebra if and only if the structure
constants satisfy

hy =13, hs= —ls,

hiko + l1ks — 23k = 0,

lils + laks — lahy — l3ka = 0,
loky + lila + I3hy + I3k3 = 0.

(3.2)

From (3.2) we discuss the solutions (h;, k;,[;) in four cases.
Case I: (lI2,13) = (0,0). Then (3.2) becomes

(33) ho =0, h3=0, hike+Il1k3=0.
(1) When (k2,ks) = (0,0), then (3.3) holds, thus

le1,e2] = hier, [e2,e3] = kier, [e1,e3] = lier.

Furthermore, the Lie algebra (As, [,]) is
(a) 521 DNy if hq 75 0orly 7é 0,
(b) ns1 if h1 = ll = 0, k)l 75 0.
(2) When (ko, k3) # (0,0), we have two cases. Firstly, if ks = 0, k3 # 0, then [; =0,
thus

le1,ea] = hier, ez, e3] = kier + kzes, [e1,e3] = 0.

Furthermore, the Lie algebra (As, [,]) is

(a) s91®ny 1 if by =0,

(b) 53,1 if ha #0,k1 =0,

(C) 53’2 if hlkl # 0, hl = —kg,

(d) s31 if hiky # 0, hy # —ks.
Secondly, if ko #£ 0, then

le1,e2] = hier, e, e3] = kie1 + kaoea + kses, [e1, e3] = lye.

Thus, we have

(a) so1@®mny 1 if k3 +k3=0,0, =0,

(b) sa.1 if K2+ k2 =0, 11 £ 0, Iy # ko,

(C) 53,1 if ]f% +/€§ =0, 1 75 0,11 = ko, k1 =0,
(d) 53,2 if ]f% +/€§ =0, 1 75 0,11 = ko, k1 75 0,
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(e) if k3 + k3 # 0, let e} = e1, ¢y = (1/\/k3 +k3)(ksea — kaes), e =
(1//k3 + k3) (koe2 + kses), then the characteristic matrix of Az with the
basis {e], €5, €5 } is the same as that with the basis {ej, €2, e3}. Furthermore,

€5, e5] = kiey +\/ k3 +k3es,  [ef, €] = hiey + haey + hyes,

i / !/ ! ! !/
[e1, es] = lie] + lges + [zes,

where
k‘ghl k‘gll . k2h1 k&h
I = - =0 fori=2,3, [lj= + ,
VB VR VIR VR
and U Fahi Rl =0 fori=2,3.

VKK kSR
That is the first case of (2).
Case II: 13 = 0, I3 # 0. Then (3.2) becomes

ho =13, h3=k =0, ka=1l1, kz=—h1
Thus, we have
le1,e2] = hiey +13ez, [ez,e3] = liea — hies, [e1,e3] = liey + Izes.

Furthermore, the Lie algebra (As, [,]) is
(1) 53,1 if ll = 0,
(2) s3,1if 11 #0, 13 +h3 =0,
(3) if I1(1? + h3) # 0, we can proceed as in the second case of (2) in Case I, and
then change the case to the first case, i.e., [; = 0.
Case III: Iy # 0, I3 = 0. Then (3.2) becomes

ho =0, hg=—ls, ky=-l1, ks=hs.
Thus, we have
[e1,e2] = hier —loes, [ez,e3] = kier —liea + hies, [e1,e3] = lier + laea.

Let e} = e1, e}, = e, €5 = (I1/l2)e1 + e3, then the characteristic matrix of Az with
the basis {e/, e), e4} is the same as that with the basis {e1, €2, e3}. Furthermore,
15 €2, €3

[6/17 6{3] = 126;,,
which is changed into Case II.

1197



Case IV: Iy # 0, I3 # 0. We have
(1) s91@®nyq if 13+12=0,
(2) if 13 +12 #0, let

1

1
I
ﬁ(heg — 1363), €3 = ﬁageg + 1263),

! !
€1 =€1, €5 =

then the characteristic matrix of A3 with the basis {e], e}, e5} is the same as
that with the basis {ej, e2, e3}. Furthermore,

hils + 111
ehres] = —m=grel + /13 + lieh,
2 3

which is changed into Case III.

In summary, we have the following theorem.

Theorem 3.1. Let {ey, ea,e3} be a basis of Az such that es-e3 = €1, e3-e3 = €1
and others are zero. Then (As,-,[,]) is an F-manifold algebra if and only if the
bracket [,] on As is one of the following cases:

(1) [e1,e2] = hies, [e2,e3] = kie1, [e1,es3] = lie1. For this case, the nonabelian Lie
algebra is 551 ® 1y 1 if (h1,01) # (0,0); ng.1 if (h1,0) = (0,0), k1 # 0.

(2) [e1,e2] = hies, [e2,e3] = kier + kses, [e1,e3] = 0 for ks # 0. For this case,
the Lie algebra is s31 ®ny 1 if hy = 0; 531 if hy # 0, k1 = 0 or if hiky # 0,
hi # —ks; 539 if hik1 # 0, hy = —ks.

(3) [e1,e2] = hier, [e2,es] = kier + koea + kses, [e1,e3] = liey for ko # 0. For
this case, the Lie algebra is s @ nyq if k% + k;g =0,1; =0orif k% + k;g #0,
kshi —kohy = 0; 831 if k3+k2 =0,11 #£ 0,11 # ko or if k3+k% =0, 11 = ko # 0,
kk =0 or1fk§—|—k§ 7é 0, kshy — kahs 75 0, k1 = 0 or if k3hy — kohy # 0,
kshyi — kohq # —kl\/kg + k‘g, k1 75 0, 53,2 Ifk% -l-]fg =0,11 = ko # 0, kp # 0 or
if k3 + k2 #0, kshy — kah1 = —k1\/k3 + k2, k1 # 0.

(4) [e1,e2] = hier +lsea, [e2, e3] = l1ea — hies, [e1,e3] = lie1 + lzes for I3 # 0. For
this case, the Lie algebra is s3 1.

(5) [e1,e2] = hie1r—lases, [ea,e3] = kier —liea+hies, [e1,e3] = lier +1aeq for 1y # 0.
For this case, the Lie algebra is s3 1.

(6) [61, 62] = h161+l362—1263, [62, 63] = k161+k262+k363, [61, 63] = l1e1+lsea+l3e3
for lpl3 # 0. For this case, the Lie algebra is sp1 @ ny1 if l% + l% = 0; 53,1 if
3+13+#0.
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3.2. The other types of commutative associative algebras. In the following,

we set
le1, e2] = hie1+hoea+hses, [ea,e3] = kiei+koea+kzes, [e2,es] = liei+laea+lses,

where h;, k;,l; € C (Z = 1,2,3).

Now we list the sufficient and necessary conditions for other cases of (4, -, [,]) to be
an F-manifold algebra, where (4, ) (other than (Ag,-)) is a commutative associative
algebra listed in Table 1 and [,] is the Lie bracket on A.

Type Aq: (Ai1,-,[,]) is an F-manifold algebra if and only if (Ay,[,]) is any
3-dimensional Lie algebra.

Type As: (Aa,-,],]) is an F-manifold algebra if and only if

{Pel(eiaej) = 2es3 Pes(eiaej)v 1<4,j
1

€3 - P62 (ei;ej) = 07

where (Ao, -) is a commutative associative algebra and (As, [,]) is a Lie algebra. This
is equivalent to the following equations:

hs =0, kohi + ksly —kils — kihe =0,
holy + k3lo — kols — hils =0, hilz + ksho = 0.

Similarly to the discussion in Subsection 3.1, we have the following result.

Theorem 3.2. Let {e1,e2,e3} be a basis of Ay such that e3 - e3 = e; and others
are zero. Then (Aas,-,|,]) is an F-manifold algebra if and only if the bracket [,] on Ay
is one of the following cases:

(1) [e1,e2] = 0, [ea,e3] = kier + koea, [e1,e3] = liex + laea. For this case, the
nonabelian Lie algebra is o1 @ ny 1 if k1lo — kali = 0; 831 if (k1lo — kali)A # 0
or jfkllg — Ifgll 75 0, A= 0, l2 = k_l,‘ 53,2 jfkllg — Ifgll 75 0, A= 0, l2 75 k_l
Here A = (I1 + k2)? — 4(l1 ko — k1l2).

(2) [e1,e2] =0, [e2, e3] = ke +koea + kses, [e1, e3] = lie1 +1aea+13e3 for (ks,l3) #
(0,0). For this case, the Lie algebra is 21 @& ny 1.

(3) [61, 62] = hgea, [62, 63] = koeo, [61, 63] = tkoe1 +laes +13e3 for ho 75 0,t= 13/h2
For this case, the Lie algebra is s 1 @ ny 1 if I3 = 0; 531 if I3 # 0, ho # I3 or if
I3 #0,1lo =0, hog =l3; 832 if Isl3 # 0, he = I3.

(4) [e1, e2] = haea, [ea, e3] = k1e1+kaea, [e1, e3] = —koey +1aea — hoeg for hoky # 0.
For this case, the Lie algebra is sl(2,C).

(5) [61,62] = h161, [62,63] = k161 - llkg/hleg + k3€3, [61,63] = l1€1 for hl # 0.
For this case, the Lie algebra is 551 @ nq 1 if (k1,ks) = (0,0); s3.1 if (k1,01) =
(0,0),ks # 0 or if (k1,ks) = (0,0), I1 # 0; 832 if kiks # 0, Iy = 0 or if
kaly # 0, ks = 0.
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(6) [e1,e2] = hieq, [ea,e3] = kier — liea + hies, [e1,e3] = lier + laes for hqla # 0.
For this case, the Lie algebra is sl(2,C).

Type Ay: (A4, -,[,]) is an F-manifold algebra if and only if

P, (ei,e;) =3ex- Pey(eiyej), 1<14,57<3,
{PEQ(ei,ej) =2e3- P (e;,e5), 1 <3

where (Ay4, -) is a commutative associative algebra and (Ay, [,]) is a Lie algebra. This
is equivalent to the following equations:

hi =20y — 3k, ho=2l3, hs=0,

ko (2l — 3ks) + Iiks — 3l3ki = 0,

20413 — lzkg + 4loks — 213 = 0,

lsks — 2l3l3 = 0.

Similarly to the discussion in Subsection 3.1, we have the following result.

Theorem 3.3. Let {e1, es,e3} be a basis of Ay such that ez -e3 = e, e3-e3 = e
and others are zero. Then (Ay4,-,[,]) is an F-manifold algebra if and only if the
bracket [,] on Ay is one of the following cases:

(1) [e1,e2] = 0, [ea,e3] = kier + koea, [e1,e3] = lie1. For this case, the non-
abelian Lie algebra is so1 @ ny 1 if ko = 0,11 #0 orifky # 0, l; = 0; ng; if
(k2,11) = (0,0), k1 # 0; 831 if koly #£ 0, ko # 1y or if kg =11 # 0, k1 = 0; 532 if
ko =11 #£0, ky #0.

(2) [e1,e2] = —3kseq, [ea, e3] = kier + kaea + kses, [e1,es] = 3kaeq for ks # 0. For
this case, the Lie algebra is s3 ;.

(3) [e1, ea] = kseq, [ea,e3] = k1er — liea + kses, [e1,e3] = lier + 2kseq for ks # 0.
For this case, the Lie algebra is sl(2,C).

(4) [e1,e2] = —4lzer + 2ea, [e2, e3] = —8l3e1 + 6l3es + 2lses, [e1, €3] = lzea +e3. For
this case, the Lie algebra is s3 ;.

Type By: (Bi,-,[,]) is an F-manifold algebra if and only if

GQ-Pel(ei,ej)263'Pel(6i,6j):0, 1<Z',j<3,
Pe,(€i,€5) = Pey(ei, €5) =0, 1<4,7<3,
where (By, -) is a commutative associative algebra and (Bj, [,]) is a Lie algebra. This

is equivalent to the following equations:
ho=hs =k =kes=ks=1ly=13=0.

Thus, we have [e1,es] = hieq, [e2,e3] = 0, [e1,e3] = lie;. Furthermore, the non-
abelian Lie algebra (B, [,]) is 821 @ ny,1.
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Type By: (Ba,-,[,]) is an F-manifold algebra if and only if

e1- Pe, (i, €5) = Pe,(ei, €5) = Pey(€5,€5) =0, 1 3
Pe,(€i,e5) = e3 - Pe,(ei, €5), 1 3

where (Ba, -) is a commutative associative algebra and (Ba, [,]) is a Lie algebra. This
is equivalent to the following equations:

ho=hs=ki =ky=k3s=1l=13=0.

Thus, we have [e1,es] = hier, [e2,e3] = 0, [e1,e3] = lie;. Furthermore, the non-
abelian Lie algebra (Bs, [,]) is s2,1 ® n11.
Type Cy: (Ch,-,[,]) is an F-manifold algebra if and only if

63'Pel(ei)ej)263'P62(e’i)ej)207 1\Z;j<3;
Pey(ei,e5) =0, 1<i,j<3,
where (C1, -) is a commutative associative algebra and (C1, [,]) is a Lie algebra. This

is equivalent to the following equations:
hs =ks=13=0, hiko —hoks =0, hily —hsly =0.
Similarly to the discussion in Subsection 3.1, we have the following result.

Theorem 3.4. Let {e1,e2,e3} be a basis of Cy such that e3 - es = e3 and others
are zero. Then (C4,-,[,]) is an F-manifold algebra if and only if the bracket [,] on C4
is one of the following cases:

(1) [e1,e2] = 0, [e2,e3] = kier + koea, [e1,e3] = lier + laea. For this case, the
nonabelian Lie algebra is o1 @ ny 1 if k1lo — kali = 0; 831 if (k1le — kali)A # 0
Orl'fkllg—kgll#O,A:O, lgzk‘_l,‘ﬁgyg jfkllg—kgll #O,AIO, l27£k_1
Here A = (I1 + k2)? — 4(l1 ko — k1l2).

(2) [e1,e2] = hier + hoea, [ea,es] = kier + koea, [e1,e3] = lier + laegy for
(h1,h2) # (0,0). For this case, the Lie algebra is so.1 ® 1 1.

Type Cy: (Ca,-,[,]) is an F-manifold algebra if and only if

Pel(eivej):e?"PSl(eivej)v 1<Za,7<3a
e1- P (ei,e5) =er- Pey(ei ej) =e3- Pey(es,e5) =0, 1<14,7<3,
Peg (6i,€j) = O7 1 < ’i,j < 3,

where (Cs, -) is a commutative associative algebra and (Cs, [,]) is a Lie algebra. This
is equivalent to the following equations:

hs =k1 =ks=1ly=13=hiks = haly =0.
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Similarly to the discussion in Subsection 3.1, we have the following result.

Theorem 3.5. Let {e1,es,e3} be a basis of Cy such that e -e3 = e1, e3-e3 = e3
and others are zero. Then (Cs,-,[,]) is an F-manifold algebra if and only if the
bracket [,] on Cs is one of the following cases:

(1) [e1,e2] = 0, [ea,e3] = koea, [e1,e3] = l1e1. For this case, the nonabelian Lie
algebra is so1 ®ny 1 if ko 0,11 =0 or if ko =0, I; # 0; 53,1 if kaly # 0.

(2) [e1,e2] = hie1+ haea, [ea, e3] = kaea,[e1, e3] = liey for (h1, ha) # (0,0). For this
case, the Lie algebra is so1 @ ny 1.

Type Ci1: (Ch1,+,[,]) is an F-manifold algebra if and only if

Pe,(ei,e5) =0, 1<i<j<3,
el.PSl(ei?ej):62'P€2(eiﬂej)zoa 1<4,5<3,
€1 .Pe2(ei7ej)+62 'Pel(e%ej) = Oa 1 g Za.] < 37

where (C11,-) is a commutative associative algebra and (Ci1,[,]) is a Lie algebra.
This is equivalent to the following equations:

ks =13=0, hiks = hoki, haoli =hila, (k2 +11)h3 =0.
Similarly to the discussion in Subsection 3.1, we have the following result.

Theorem 3.6. Let {e1,e2,e3} be a basis of C11 such that e1-e3 = e1, ea-e3 = ea,
es - es = e and others are zero. Then (Ci1,-,[,]) is an F-manifold algebra if and
only if the bracket [,] on C1; is one of the following cases:

(1) [e1,e2] = 0, [ea,e3] = kier + kaea, [e1,e3] = lie1 + laes. For this case, the
nonabelian Lie algebra is o1 @ ny 1 if k1lo — kali = 0; 831 if (k1lo — kali)A # 0
or if kil —kaly #0 , A =0, ly = ky; 832 if kilo — koly #0, A =0, Iy # k.
Here A = (I1 + k2)? — 4(l1 ko — k1l2).

(2) [e1,e2] = hier + haea, [ea,e3] = kier + kaea, [e1,e3] = lier + loes for
(h1,h2) # (0,0). For this case, the Lie algebra is so.1 ® 1 1.

(3) [e1,e2] = hses, [e2,e3] = kieq, [e1, e3] = laea for hg # 0. For this case, the Lie al-
gebra is 53,1 if (kl, lg) = (0, 0) or if (kl, lg) # (0, 0), Ifllg = 0,‘ 5[(2, C) jfkllg # 0.

(4) [e1,e2] = hses, [ea,e3] = kie1 — l1ea, [e1,e3] = lie1 + laes for hsly # 0. For this
case, the Lie algebra is 531 if kilo + 12 = 0; 51(2,C) if k1ls + 13 # 0.

(5) [e1,e2] = hier + hges, [ea,e3] = kie, [e1,e3] = 0 for hihs # 0. For this case,
the Lie algebra is so1 ®nyq if k1 = 0; 537 if kiA #0orifky #0, A =0,
hg = —If_l,' 53,2 1f]€1 75 0 s A= 0, h3 75 —If_l. Here A = h% — 4]€1h3.

(6) [e1,e2] = hier + haea + hges, [e2,e3] = kier — lies, [e1,e3] = lier + laes for
ho # 0. For this case, the Lie algebra is s 1 @011 if lo = 0; 53,1 if oA # 0 or if
la #0, A =0, hg = la; 532 iflp # 0, A =0, h3 # ly. Here A = h2 + 4lshs.
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Type Dy: (D1,-,],]) is an F-manifold algebra if and only if
PeQ (6i, ej) = 261 . Pe1 (6i, 6]'), 1 < ]
Pes(eivej):()v 1<)
63'P61(6i76j):07 1<,

where (Dq, -) is a commutative associative algebra and (D1, [,]) is a Lie algebra. This
is equivalent to the following equations:

hs=ky =ks=13=0, ko=2l, l1h1 =0, Il1hy—hilo=0.
Similarly to the discussion in Subsection 3.1, we have the following result.

Theorem 3.7. Let {e1,ea,e3} be a basis of Dy such that e; -e; = eg, e3-e3 = e3
and others are zero. Then (Di,-,[,]) is an F-manifold algebra if and only if the
bracket [,] on D1 is one of the following cases:

(1) [e1,e2] =0, [ea, e3] = 2l1ea, [e1,e3] = l1e1 + laes. For this case, the nonabelian
Lie algebra isng; if Iy =0, lo # 0; 531 if Iy # 0.

(2) [e1,e2] = hie1 + haea, [e2,e3] = 2l1eq, [e1,e3] = lie1 + laes for (hy, ha) # (0,0).
For this case, the Lie algebra is s 1 @ ny 1.

Type Dy: (Da,-,[,]) is an F-manifold algebra if and only if

€2 - Pel (ei;ej) = Pe3 (eiaej) = 07
P.,(ei,ej) = 2e1 - P, (e, €5),

i, J
i, J

1 3,
1 3

NN
NN

)

where (D3, -) is a commutative associative algebra and (D3, [,]) is a Lie algebra. This
is equivalent to the following equations:

hs=ky =ks=13=0, ko=2l1, [1h1 =0, Il1hy—hilo=0.
Similarly to the discussion in Subsection 3.1, we have the following result.

Theorem 3.8. Let {e1,e2,e3} be a basis of Dy such that e1-e1 = eg, e1-e3 = ey,
€9-€3 = eg, €3-€3 = e3 and others are zero. Then (Da,-,[,]) is an F-manifold algebra
if and only if the bracket [,] on D is one of the following cases:

(1) [e1,e2] =0, [ea, e3] = 2lqea, [e1,e3] = l1e1 + laes. For this case, the nonabelian
Lie algebra isng; if Iy =0, lo # 0; 531 if I} # 0.

(2) [e1,e2] = hie1 + haea, [e2,e3] = 2l1eq, [e1,e3] = lie1 + laes for (hy, ha) # (0,0).
For this case, the Lie algebra is 591 @ ny 1.

Type E: (E,-,[,]) is an F-manifold algebra if and only if the bracket [,] on E is
leiej] =0,1<14,5<3.
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