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Counterexamples to Hedetniemi’s

conjecture and infinite Boolean lattices

Claude Tardif

Abstract. We prove that for any c ≥ 5, there exists an infinite family (Gn)n∈N

of graphs such that χ(Gn) > c for all n ∈ N and χ(Gm ×Gn) ≤ c for all m 6= n.
These counterexamples to Hedetniemi’s conjecture show that the Boolean lattice
of exponential graphs with Kc as a base is infinite for c ≥ 5.

Keywords: categorical product; graph colouring; Hedetniemi’s conjecture

Classification: 05C15

1. Introduction

The categorical product of two graphs G and H is the graph G×H with vertex-

set V (G×H) = V (G)×V (H), whose edges are the pairs {(g1, h1), (g2, h2)} such

that {g1, g2} is an edge of G and {h1, h2} is an edge of H . Hedetniemi’s conjec-

ture of 1966 in [11] states that the chromatic number of a categorical product of

graphs is equal to the minimum of the chromatic numbers of the factors. In 2019,

Y. Shitov in [12] refuted the conjecture by constructing counterexamples for very

large chromatic numbers.

Shitov’s construction was subsequently adapted and modified by many authors.

The asymptotic bounds on the difference min{χ(G), χ(H)} − χ(G ×H) and on

the ratio χ(G×H)/min{χ(G), χ(H)} were investigated in [18], [10], [23]; in [23]

it is shown that the ratio χ(G × H)/min{χ(G), χ(H)} can get arbitrarily close

to 1/2. In another direction, the sizes and chromatic numbers of counterexamples

were gradually decreased in [24], [16], [20]. By now it is known that for any n ≥ 5,

there exists pairs of (n+ 1)-chromatic graphs whose product is n-chromatic.

Following the work [4] of M. El-Zahar and N. Sauer, it is known that the

product of n-chromatic graphs is n-chromatic for any n ≤ 4. So, one outstanding

unsolved question is whether the chromatic number of a product of 5-chromatic

graphs can be 4. Also, the asymptotic behaviour of the so-called Poljak–Rödl
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function f is not yet understood. This function is defined by

f(n) = min{χ(G×H) : χ(G) = χ(H) = n}.

It is now known that lim supn→∞(f(n)/n) ≤ 1/2, but it is not yet known whether

f is bounded or unbounded. In this paper, we expand on the known counterex-

amples to Hedetniemi’s conjecture, but not towards either of these two problems.

Our main result is the following.

Theorem 1. For any c ≥ 5, there exists an infinite family (Gn)n∈N of graphs

such that χ(Gn) > c for all n ∈ N and χ(Gm ×Gn) ≤ c for all m 6= n.

The reason to concoct this new style of disproof of Hedetniemi’s conjecture is

connected to the reason why Hedetniemi’s conjecture was appealing in 1966. The

identity χ(G×H) = min{χ(G), χ(H)} remains valid in many cases. In particular,

it is not hard to show that a categorical product of nonbipartite graphs remains

nonbipartite, by identifying an odd cycle in a categorical product of odd cycles.

The structure of the critical graphs for higher chromatic numbers is not as well

understood. However in 1966, Hajós’ construction looked promising, and NP-

completeness had not yet been formulated. It was reasonable to hope that the

structure of the critical graphs might become sufficiently clear, and that the odd

cycle argument could be adapted to higher chromatic numbers.

But things did not turn out that way. Instead of a general understanding of

critical graphs, various lower bounds on the chromatic number have been devised

over time. Among these, we find topological bounds, fractional chromatic numbers

and much more. Each bound can be tight or not, depending on the class of graphs

considered. Now, adaptations of Hedetniemi’s conjecture can be formulated for

each lower bound on the chromatic number. Indeed many of these have been

proved over the years, see [14], [22], [5], [1]. However, the list of useful lower

bounds on the chromatic number is not exhausted; where will others be found?

The natural context of Theorem 1 is that of the Boolean exponential lattices

KG
c that will be presented in the next section. Theorem 1 is a reformulation of

the fact that KG
c is infinite for any c ≥ 5. Any lower bound β on the chromatic

number that satisfies the identity β(G ×H) = min{β(G), β(H)} corresponds to

a filter in KG
c . Therefore, understanding the structure of KG

c may be relevant.

2. Exponential graphs

A homomorphism from a graph G to a graph H is a map ϕ from the vertex-set

of G to that of H such that if {u, v} is an edge of G, then {ϕ(u), ϕ(v)} is an edge

of H . For graphs G and H , we write G → H if there exists a homomorphism

from G to H , and G ↔ H if G → H and H → G. Let G be the class of finite
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graphs. The relation “→” is transitive on G and its quotient by the equivalence

“↔” gives rise to a distributive lattice order on G/↔, with “×” as meet and the

disjoint union “+” as join. The chromatic number of G is the least integer c

such that G → Kc, where Kc is the complete graph on the vertex-set {1, . . . , c}.

Hedetniemi’s conjecture states that every complete graph is meet-irreducible in

G/↔. Indeed if G×H → Kc, then Kc ↔ (G+Kc)×(H+Kc); meet-irreducibility

then implies G+Kc → Kc or H +Kc → Kc.

For graphs K, G, the exponential graph KG is the graph whose vertices are

the functions from the vertex-set of G to that of K; and whose edges are the

pairs {f1, f2} of functions such that for every edge {g1, g2} of G, {f1(g1), f2(g2)}

is an edge of K. The properties of exponentiation are well-known, and exposed

in [3], [7]. We list some of the most relevant properties here:

(i) G×H → K if and only if H → KG. In particular, KG contains a loop

if and only if G → K.

(ii) If G → H , then KH → KG.

(iii) KKKG

↔ KG.

(iv) KG+H ↔ KG ×KH .

(v) The constant maps induce a copy of K in KG.

In particular, the identity G × KG
c → Kc always holds. Hence Hedetniemi’s

conjecture is equivalent to the statement that if χ(G) > c, then χ(KG
c ) ≤ c,

see [4].

We denote KG the class of exponential graphs KG, G ∈ G, ordered by “→”

and quotiented by “↔”. Its minimal element is K, and its maximal element

is the single vertex with a loop, denoted 1̊. (Note that we commit an abuse of

notation and talk of graphs as elements of KG even though formally, the elements

of KG are equivalence classes of graphs.) As a subposet of G ordered by “→”,

KG inherits the meet “×” from G, since KG×KH is homomorphically equivalent

to the exponential graph KG+H . However, KG is not a sublattice of G because

it is not closed under “+”. However it turns out that KG has its own join:

KG ∨ KH = KKG+H

. It is well known, see [3], that KG is a Boolean lattice

for any K. Hedetniemi’s conjecture states that for any c, KG
c is the two-element

lattice {Kc, 1̊}. Theorem 1 is equivalent to the statement that for c ≥ 5, KG
c is

an infinite Boolean lattice, see [17].

Theorem 1 will be proved by constructing an antichain from a chain in KG
c .

We start with H0 such that χ(H0) > c and χ(KH0
c ) > c. It is easy to find an

infinite sequence (Hn)n∈N such that Hn+1 → Hn and χ(Hn) > c for all n ∈ N.

We then have KHn
c → K

Hn+1
c , so that χ(KHn

c ) > c for all n ∈ N. Consider the

sequence (Gn)n∈N defined by Gn = Hn × K
Hn+1
c . It is not hard to show that
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(Gn)n∈N satisfies the conclusion of Theorem 1. Indeed for m > n we have

Gm ×Gn → Hm ×KHn+1
c → Hn+1 ×KHn+1

c → Kc .

The difficulty is in proving χ(Gn) > c, that is, K
Hn+1
c 6→ KHn

c . Even though

it is easy to devise (Hn)n∈N such that Hn 6→ Hn+1, the difficulty lies in having

also K
Hn+1
c 6→ KHn

c , or equivalently K
KHn

c
c 6→ KK

Hn+1
c

c . Our sequence (Hn)n∈N

will consist of some “universal graphs for wide colourings” presented in the next

section.

3. Wide colourings

For a graph G and an odd integer w = 2v + 1, the graph Γw(G) has the same

vertices as G, and two vertices are connected by an edge in Γw(G) if they are

endpoints of a walk of length w in G. Thus Γw(G) contains loops only if the odd

girth of G is at most w. Otherwise, Γw(G) admits a proper vertex-colouring with

sufficiently many colours. A proper colouring of Γw(G) is called a (v + 1)-wide

colouring of G. (Here and below, we will use v for ⌊w/2⌋.)

The functor Γw has a right adjoint Ωw which we describe next. For a graph H ,

Ωw(H) is the graph whose vertices are the sequences (X0, X1, . . . , Xv) of nonempty

sets of vertices of H satisfying the following properties:

(i) X0 is a singleton {x};

(ii) for i ∈ {1, . . . , v}, every vertex of Xi−1 is connected by an edge to every

vertex of Xi;

(iii) for i ∈ {1, . . . , v − 1}, Xi−1 ⊆ Xi+1.

The edges of Ωw(H) join the pairs (X0, . . . , Xv), (Y0, . . . , Yv) satisfying the fol-

lowing properties:

(iv) For i ∈ {1, . . . , v}, Xi−1 ⊆ Yi and Yi−1 ⊆ Xi;

(v) every vertex of Xv is connected by an edge to every vertex of Yv.

Lemma 2 ([8], Theorem 3). For two graphs G, H , we have Γw(G) → H if and

only if G → Ωw(H).

Thus a graph G admits a (v + 1)-wide colouring with c colours if and only

if Γw(G) → Kc, that is, G → Ωw(Kc). The graphs Ωw(Kc) are the “universal

graphs for wide colourings”. Note that their construction resembles that of Kneser

graphs: adjacency in properties (ii) and (v) above is disjointness. As explained

in [6], the existence of graphs that admit optimal colourings that are wide was

conjectural at some point. This question is now settled:

Lemma 3 ([8], [19]). For c, v ≥ 0 and w = 2v + 1, χ(Ωw(Kc)) = c.
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In particular, Ωw(Kc) is a c-chromatic graph which admits a (v + 1)-wide

colouring with c colours. (Note that the result is also implicit in [6], [2], [13],

with alternative presentations of Ωw(Kc).)

We will use the fact that Ωw(Kc) is connected, which is not hard to prove

from its explicit description. In [9], Corollary 1 it is shown that the odd girth of

Ωw(Kc) is w + 2⌈w/(c− 2)⌉. Thus, while we have Ωw+2(Kc) → Ωw(Kc) for any

odd w, we also have Ωw(Kc) 6→ Ωw+2(Kc). We use a few other properties of Γw

and Ωw:

Lemma 4 ([9], Lemma 4). For any graph G, Γw(Ωw(G)) ↔ G.

Two further properties are folklore. We include a proof for convenience.

Lemma 5. Let a, b be odd integers. Then

(i) Ωa(G×H) ↔ Ωa(G) × Ωa(H);

(ii) Ωa(Ωb(H)) ↔ Ωab(H).

Proof: Property (i) holds for any right adjoint. We have

K → Ωa(G×H) ⇔ Γa(K) → G×H → G (H , respectively)

⇔ K → Ωa(G) (Ωa(H), respectively)

⇔ K → Ωa(G)× Ωa(H).

Property (ii) follows from the identity Γb(Γa(G)) = Γab(G), which is obvious from

the definition. We have

G → Ωab(H) ⇔ Γb(Γa(G)) = Γab(G) → H

⇔ Γa(G) → Ωb(H)

⇔ G → Ωa(Ωb(H)).

�

4. Main results

The graphs Ωw(Kc) are used in the construction of counterexamples to Hedet-

niemi’s conjecture in [16], [20]. In particular, the proof of Theorem 4.1 of [20]

contains an implicit proof of the following statement.

Lemma 6. For c ≥ 5 and w ≥ 13, the connected component of the constant

maps in K
Ωw(K2c−2)
c has chromatic number larger than c.

In the next section, we adapt the argument to prove our main auxiliary result:
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Lemma 7. For c ≥ 5 and w ≥ 7,

KK
Ω2w−1(K2c−2)
c

c → Kc +Ωw(K2c−2) → KK
Ωw(K2c−2)
c

c .

Thus for w ≥ 13, Kc + Ωw(K2c−2) is sandwiched between two nontrivial ele-

ments of KG
c . Perhaps the stronger statement KK

Ωw(K2c−2)
c

c ↔ Kc + Ωw(K2c−2)

always holds. Proposition 8 presents consequences of this hypothesis. We first

show how Lemma 7 is used to prove Theorem 1.

Proof of Theorem 1: Let ω(0) = 5 and ω(k) = 2ω(k − 1) + 3 for k ≥ 1. By

Lemma 7, we have

KK
Ωω(k)(K2c−2)

c
c → Kc +Ωω(k−1)+2(K2c−2).

Therefore Ωω(k−1)(K2c−2) 6→ KK
Ωω(k)(K2c−2)

c
c , since Ωω(k−1)(K2c−2) is connected,

it has chromatic number larger than that of Kc and odd girth smaller than that

of Ωω(k−1)+2(K2c−2). This implies

χ
(

Ωω(k−1)(K2c−2)×K
Ωω(k)(K2c−2)
c

)

> c

for all k ≥ 1. Hence the sequence (Gk)k≥1 of graphs defined by

Gk = Ωω(k−1)(K2c−2)×K
Ωω(k)(K2c−2)
c

satisfies χ(Gk) > c for all k, and for m > n,

Gm ×Gn → Ωω(m)(K2c−2)×K
Ωω(n+1)(K2c−2)
c

→ Ωω(n+1)(K2c−2)×K
Ωω(n+1)(K2c−2)
c → Kc .

�

The weak Hedetniemi conjecture states that the Poljak–Rödl function defined in

the introduction is unbounded. That is, for every chromatic number c, there exists

a bound b(c) such that if G,H satisfy χ(G) ≥ χ(H) ≥ b(c), then χ(G ×H) > c.

It is known, see [21], that the weak Hedetniemi conjecture is equivalent to the

statement that b(9) is well-defined.

If KG
c were finite, then a fortiori b(c) would be well-defined. Theorem 1 rules

out this possibility for c ≥ 5. Indeed, for the sequence (Gk)k≥1 of graphs ap-

pearing in the proof of Theorem 1,
(

KK
Gk
c

c

)

k≥1
is an infinite antichain in KG

c .

However, even though KG
c is infinite, it is not known whether it contains graphs

with arbitrarily large chromatic numbers. Again, if the chromatic numbers of

elements of KG
c were bounded, then b(c) would be well-defined. Here we show
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that a strengthening of the conclusion of Lemma 7 would rule out this possibility

as well.

Proposition 8. Suppose that for c ≥ 5 and w ≥ 13, we have

KK
Ωw(K2c−2)
c

c ↔ Kc +Ωw(K2c−2).

Then for all c ≥ 5, KG
c contains graphs with arbitrarily large chromatic numbers.

Proof: By Lemma 6, for all c ≥ 5 and w ≥ 13, we have

(1) Ωw(K2c−2)×KΩw(K2c−2)
c → Kc ,

with both factors having chromatic number larger than c. Let d ≥ 2(2c− 2)− 2

and l ≥ 13 be integers such that

(2) Ωl(Kd)×K
Ωl(Kd)
2c−2 → K2c−2,

with both factors having chromatic number larger than 2c − 2. By Lemma 5,

applying Ωw on both sides of (2) yields

Ωw

(

Ωl(Kd)×K
Ωl(Kd)
2c−2

)

↔ Ωw(Ωl(Kd))× Ωw

(

K
Ωl(Kd)
2c−2

)

→ Ωw(K2c−2).

We then multiply both sides by K
Ωw(K2c−2)
c and use (1) to get

Ωw(Ωl(Kd))× Ωw

(

K
Ωl(Kd)
2c−2

)

×KΩw(K2c−2)
c → Ωw(K2c−2)×KΩw(K2c−2)

c → Kc ,

where the leftmost factor is equivalent to Ωw·l(Kd) and the other two can be

combined to give

(3) Ωw·l(Kd)×
(

Ωw

(

K
Ωl(Kd)
2c−2

)

×KΩw(K2c−2)
c

)

→ Kc .

At first, this seems to show that Ωw·l(Kd) is a factor in counterexample to Hedet-

niemi’s conjecture. However we have not yet shown that the second factor has

chromatic number larger than c. We need to show that

(4) Ωw

(

K
Ωl(Kd)
2c−2

)

×KΩw(K2c−2)
c 6→ Kc ,

that is,

(5) Ωw

(

K
Ωl(Kd)
2c−2

)

6→ KK
Ωw(K2c−2)
c

c .

This is where the hypothesis is needed.

If KK
Ωw(K2c−2)
c

c ↔ Kc + Ωw(K2c−2), then any connected graph that admits

a homomorphism to KK
Ωw(K2c−2)
c

c is either c colourable or admits a homomor-

phism to Ωw(K2c−2). Consider the graph Ωw(H), where H is the connected
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component of K
Ωl(Kd)
2c−2 containing the constant maps. These constant maps in-

duce a copy of K2c−2 in H , and by Lemma 6, χ(H) > 2c − 2. The chro-

matic number of Ωw(H) could be smaller than that of H , but we must have

χ(Ωw(H)) ≥ χ(Ωw(K2c−2)) = 2c − 2. Therefore Ωw(H) is not c colourable.

Suppose that Ωw(H) → Ωw(K2c−2). By Lemma 4, we then have

H ↔ Γw(Ωw(H)) → Γw(Ωw(K2c−2)) ↔ K2c−2

which contradicts χ(H) > 2c − 2. Therefore, Ωw(H), which is a subgraph of

Ωw

(

K
Ωl(Kd)
2c−2

)

, does not admit a homomorphism to Kc + Ωw(K2c−2) which is

equivalent by hypothesis to KK
Ωw(K2c−2)
c

c . This proves the statements (5) and (4)

hence the second factor in (3) is not c-colourable. From this we conclude that

χ
(

K
Ωw·l(Kd)
c

)

> c.

For c fixed, we use this result iteratively, putting c(0) = c, w(0) = 13 and for

k ≥ 1, c(k) = 2c(k − 1)− 2 and w(k) = 13w(k − 1). Then for a fixed j, from

χ
(

K
Ωw(j)(Kc(i+j+2))

c(i+1)

)

> c(i+ 1) for all i,

we get

χ
(

K
Ωw(j+1)(Kc(i+j+2))

c(i)

)

> c(i) for all i.

Therefore, for all k, KG
c contains the graph KK

Ωw(k)(Kc(k+1))

c
c which has chromatic

number at least c(k + 1). �

It would be interesting to determine the triples c, w, n of parameters such that

the identity K
KΩw(Kn)

c
c ↔ Kc +Ωw(Kn) holds. In [15], a similar characterization

of some double exponential directed graphs helps to characterize the exponential

lattices with a complete graph as a base and finite directed graphs as exponents.

5. Proof of Lemma 7

To prove KK
Ω2w−1(K2c−2)
c

c → Kc+Ωw(K2c−2), we will show that the connected

components of KK
Ω2w−1(K2c−2)
c

c that are not c-colourable admit a (v + 1)-wide

colouring with 2c− 2 colours. Here, w = 2v + 1, so that 2w − 1 = 4v + 1. Hence

the vertices of Ω2w−1(K2c−2) are (2v+1)-tuples (X0, . . . , X2v) of sets of vertices

in K2c−2. For a technical reason, it is best to represent the vertices of K2c−2

as pairs (x, q), with x ∈ {1, . . . , c − 1} and q ∈ {1, 2}. The vertices of Kc are

just the integers 1, . . . , c. The elements of K
Ω2w−1(K2c−2)
c will be represented by

lower-case Greek letters, and those of KK
Ω2w−1(K2c−2)
c

c by lower-case Latin letters.

The functions on subsets of KK
Ω2w−1(K2c−2)
c

c will be represented by upper-case
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Greek letters; these include c-colourings of some components, automorphisms,

and a (v + 1)-wide colouring of some component with 2c− 2 colours.

5.1 Constant maps. We will denote ιx : Ω2w−1(K2c−2) → Kc the constant map

with constant value x. The set C = {ι1, . . . , ιc} is a complete subgraph of size c

in K
Ω2w−1(K2c−2)
c . The elements f of KK

Ω2w−1(K2c−2)
c

c fall into two categories:

(i) Those whose restriction to C is bijective.

(ii) Those whose restriction to C contains a repeated colour.

If the restriction of f to C is bijective and g is adjacent to f , then the restric-

tion of g to C coincides with that of f . Thus, any connected component H of

KK
Ω2w−1(K2c−2)
c

c either has all its elements bijective and identical on C, or all its

elements nonbijective on C.

Let H be a component of KK
Ω2w−1(K2c−2)
c

c whose elements are nonbijective

on C. Let Ξ: H → Kc be defined by letting Ξ(f) be a colour x such that

there are distinct values xf , yf ∈ {1, . . . , c} of C with f(ιxf
) = f(ιyf

) = x.

If f and g are adjacent in H , without loss of generality we have xf 6= yg, so

Ξ(f) = f(ιxf
) 6= g(ιyg

) = Ξ(g). This shows that Ξ is a proper colouring, hence

H → Kc.

Let H be a component whose elements are bijective on C. Let π be the

permutation of V (Kc) such that f(ιx) = π(x) for every f in H and ιx ∈ C.

Consider the automorphism Π ofKK
Ω2w−1(K2c−2)
c

c defined by Π(f) = π−1◦f . Then

H is isomorphic to Π(H), and for every f ∈ V (H), Π(f) maps every element of C

to its constant value.

Thus we can restrict our attention to the subgraph of KK
Ω2w−1(K2c−2)
c

c induced

by the functions that map every element of C to its constant value. For any two

such adjacent functions f, g for every λ ∈ K
Ω2w−1(K2c−2)
c and for every x that

is not in the image of λ, we have f(λ) adjacent to g(ιx) = x. Let Hid be the

subgraph of KK
Ω2w−1(K2c−2)
c

c consisting of the functions that map every element

of C to its constant value, and moreover are not isolated. Then for every f

in Hid and λ ∈ K
Ω2w−1(K2c−2)
c , f(λ) is in the image of λ. We will construct

a (2v + 1)-wide colouring Φ: Hid → K2c−2.

5.2 Elements of K
Ω2w−1(K2c−2)
c . Recall that the elements of K2c−2 are denoted

as pairs (x, q), with x ∈ {1, . . . , c − 1} and q ∈ {1, 2}. Let γ be the element of

K
Ω2w−1(K2c−2)
c defined by

γ({(x, q)}, X1, . . . , X2v) = x.
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For every f in Hid, f(γ) ∈ {1, . . . , c− 1}. We define Φ0(f) = f(γ). The (v + 1)-

wide colouring Φ: Hid → K2c−2 will be of the form Φ(f) = (Φ0(f),Φ1(f)) for

a suitably defined Φ1.

For x ∈ {1, . . . , c − 1}, l ∈ {1, . . . , 2v − 1} and i, j ∈ {1, . . . , c}, the two-

colouring τx,li,j is the element of K
Ω2w−1(K2c−2)
c defined by

τx,li,j (X0, . . . , X2v) =

{

i if {(x, 1), (x, 2)} ∩Xl 6= ∅,

j otherwise.

For x ∈ {1, . . . , c− 1}, we then have γ adjacent to τx,1c,x in K
Ω2w−1(K2c−2)
c . Indeed,

let (X0, . . . , X2v) and (Y0, . . . , Y2v) be neighbours in Ω2w−1(K2c−2). We need to

show that γ(X0, . . . , X2v) 6= τx,1c,x (Y0, . . . , Y2v), but the only way γ(X0, . . . , X2v)

can even be in the image of τx,1c,x is if X0 ⊆ {(x, 1), (x, 2)} as γ(X0, . . . , X2v) = x.

By definition of adjacency in Ω2w−1(K2c−2) we then have {(x, 1), (x, 2)}∩Y1 6= ∅,

so that τx,1c,x (Y0, . . . , Y2v) = c. Thus, γ is adjacent to τx,1c,x .

Moreover, τx,li,j is adjacent to τx,l+1
k,i for any three distinct values i, j, k ∈

{1, . . . , c}. Indeed i is the only common value in the image of these two func-

tions. If (Y0, . . . , Y2v) is adjacent to (X0, . . . , X2v) with τx,li,j (X0, . . . , X2v) = i,

then
{(x, 1), (x, 2)} ∩Xl ⊆ {(x, 1), (x, 2)} ∩ Yl+1 6= ∅,

therefore τx,l+1
k,i (Y0, . . . , Y2v) = k.

For x ∈ {1, . . . , c− 1} and i ∈ {3, . . . , c}, the clique-member κx
i is the element

of K
Ω2w−1(K2c−2)
c defined by

κx
i (X0, . . . , X2v) =







1 if (x, 1) ∈ X2v,

2 if (x, 1) 6∈ X2v and (x, 2) ∈ X2v,

i otherwise.

Then {κx
3 , . . . , κ

x
c} induces a complete subgraph of K

Ω2w−1(K2c−2)
c . Indeed for

i 6= j, the intersection of the images of κx
i and κx

j is {1, 2}. If (X0, . . . , X2v) and

(Y0, . . . , Y2v) are neighbours in Ω2w−1(K2c−2), then X2v and Y2v are disjoint,

hence they cannot contain the same element (x, q). Therefore κx
i (X0, . . . , X2v) 6=

κx
j (Y0, . . . , Y2v). Moreover, for any j 6∈ {1, 2, i}, τx,2v−1

i,j is adjacent to κx
i for the

same reason that τx,li,j is adjacent to τx,l+1
k,i .

In summary, the various γ, τx,li,j and κx
i defined here are connected in the

following ways:

◦ γ is adjacent to τx,1c,x for x ∈ {1, . . . , c− 1};

◦ τx,li,j is adjacent to τx,l+1
k,i for x ∈ {1, . . . , c−1}, i, j, k distinct in {1, . . . , c},

and l ∈ {1, . . . , 2v − 1};
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◦ τx,2v−1
i,j is adjacent to κx

i for x ∈ {1, . . . , c − 1}, i ∈ {3, . . . , c} and j ∈

{1, . . . , c} \ {i};

◦ κx
i is adjacent to κx

j for x ∈ {1, . . . , c− 1} and i, j distinct in {3, . . . , c}.

5.3 Subsets of Hid. For x ∈ {1, . . . , c − 1}, we now consider the subsets Nx
0 ,

Nx
1 ,. . . ,N

x
2v of elements of Hid defined recursively as follows. Let Nx

0 be the set of

functions f such that f(γ) = x, that is, the set Φ−1
0 (x) according to the notation

introduced in Section 5.2. Then for l ∈ {1, . . . , 2v}, Nx
l is defined as the set

containing all f in V (Hid) that have a neighbour g in Nx
l−1. The properties

of the various elements γ, τx,li,j , κx
i of K

Ω2w−1(K2c−2)
c discussed above have the

following consequences:

(i) If f ∈ Nx
0 , then f(γ) = x by definition.

(ii) If f ∈ Nx
1 is adjacent to g ∈ Nx

0 , then f(τx,1c,x ) 6= g(γ) = x. Therefore

f(τx,1c,x ) = c.

(iii) For l ≥ 2, if f ∈ Nx
l is adjacent to g ∈ Nx

l−1, then f(τx,lk,i ) 6= g(τx,l−1
i,j )

when i, j, k are distinct. Thus if g(τx,l−1
i,j ) = i, then f(τx,lk,i ) = k. As

l increases, the consequences are as follows:

l = 2: f(τx,2k,c ) = k for k 6∈ {x, c}, since g(τx,1c,x ) = c;

l = 3: f(τx,3j,k ) = j for j 6= c and k 6∈ {j, x, c}, since g(τx,2k,c ) = k;

l = 4: f(τx,4i,j ) = i for i 6= j 6= c, since for k 6∈ {i, j, x, c}, g(τx,3j,k ) = j;

l ≥ 5: f(τx,lk,i ) = k for k 6= i, since for j 6∈ {i, k, c}, g(τx,l−1
i,j ) = i.

(iv) Finally if f ∈ Nx
2v is adjacent to g ∈ Nx

2v−1, then for k ∈ {3, . . . , c} we

have f(κx
k) 6= g(τx,2v−1

k,i ) = k for i 6= k, thus f(κx
k) ∈ {1, 2}.

Note thatNx
l containsNx

l−2 for l ∈ {2, 3, . . . , 2v}. We define Ψx : N
x
2v → {1, 2}

by letting Ψx(f) be a colour used at least twice as f(κx
k), k ∈ {3, . . . , c}. The

map Φ1 : Hid → {1, 2} is
⋃

x∈{1,...,c−1}Ψx|Nx
0
, that is, Φ1(f) = Ψx(f) when

x = Φ0(f).

It remains to show that Φ = (Φ0,Φ1) is a (v + 1)-wide colouring of Hid. Let

f0, . . . , f2v+1 be a walk in Hid. If Φ0(f0) 6= Φ0(f2v+1), then Φ(f0) 6= Φ(f2v+1).

Suppose that Φ0(f0) = Φ0(f2v+1) = x. Then each fn is in Nx
2v, since it is

joined to either f0 or f2v+1 by a 2v-walk. Thus Ψx is defined on the whole

walk f0, . . . , f2v+1, and it must take values that alternate between 1 and 2 as n

goes from 0 to 2v + 1. Indeed for n ∈ {0, . . . , 2v} there exist distinct values

i, j ∈ {3, . . . , c} such that Ψx(fn) = fn(κ
x
i ) 6= fn+1(κ

x
j ) = Ψx(fn+1). Therefore

Φ1(f0) = Ψx(f0) 6= Ψx(f2v+1) = Φ1(f2v+1). This shows that Φ = (Φ0,Φ1) is

a wide colouring of Hid.

Recall that the (v + 1)-wide colouring Φ: Hid → K2c−2 can be viewed as

a colouring Φ: Γw(Hid) → K2c−2. By Lemma 2, there exists a homomorphism

Φ′ : Hid → Ωw(K2c−2).
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5.4 Conclusion. We have outlined the construction of a homomorphism

Υ: KK
Ω2w−1(K2c−2)
c

c → Kc +Ωw(K2c−2)

as follows:

◦ If f is nonbijective on C, then Υ(f) = Ξ(f) in Kc;

◦ otherwise if f is isolated, then Υ(f) can be any vertex of Kc+Ωw(K2c−2);

◦ otherwise, Υ(f) = Φ′(Π(f)) in Ωw(K2c−2).

Therefore, KK
Ω2w−1(K2c−2)
c

c → Kc + Ωw(K2c−2). The second statement Kc +

Ωw(K2c−2) → KK
Ωw(K2c−2)
c

c is just a restatement of the basic property (Kc +

Ωw(K2c−2))×K
Ωw(K2c−2)
c → Kc . This completes the proof of Lemma 7. �
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