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Abstract. Let Pr denote an almost-prime with at most r prime factors, counted according
to multiplicity. Suppose that a and q are positive integers satisfying (a, q) = 1. Denote by
P2(a, q) the least almost-prime P2 which satisfies P2 ≡ a (mod q). It is proved that for
sufficiently large q, there holds

P2(a, q)≪ q
1.8345

.

This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same
conclusion, but for the range 1.845 in place of 1.8345.
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1. Introduction and main result

Let Pr denote an almost-prime with at most r prime factors, counted according

to multiplicity. In this paper, we shall investigate the occurrence of almost-primes

in arithmetic progressions. This problem corresponds to a well-known conjecture

concerning prime numbers. The conjecture states that if (a, q) = 1, there exists

a prime p satisfying

(1.1) p ≡ a (mod q), p 6 q2 (q > 2).
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Indeed, the bound for p may presumably be reduced to p ≪ q(log q)2. Unfortunately,

we cannot prove (1.1) even on the assumption of the generalized Riemann hypothe-

sis. The nearest approach seems to be the conditional estimate p ≪ (ϕ(q))2(log q)4,

which follows from Theorem 6 of [9]. However, as an approach to approximate this

conjecture, we can consider almost-primes in arithmetic progression. Many authors

investigated this approximation in the past time. Denote by P2(a, q) the least

almost-prime P2 which satisfies P2 ≡ a (mod q). In 1965, Levin [5] showed that

P2(a, q) ≪ q2.3696. Later, Richert pointed out that by using the method in [4], the

exponent can be replaced by 25
11 + ε. Afterwards, Halberstam and Richert gave the

result that the exponent can be replaced by 11
5 in their monograph, see [1], Chapter 9.

Motohashi in [7] in 1976 gave the exponent 2+ε subject to a certain unproved hypoth-

esis. In 1978, Heath-Brown first gave an unconditional bound, stronger than (1.1),

for almost-primes P2. He showed that P2(a, q) ≪ q1.965. After that, in 1982, Iwaniec

in [3] improved Heath-Brown’s result and derived that P2(a, q) ≪ q1.845.

In this paper, we shall continue to improve the result of Iwaniec [3] and establish

the following theorem.

Theorem 1.1. Suppose that a and q are positive integers satisfying (a, q) = 1.

Let P2(a, q) be the least almost-prime P2 which satisfies P2 ≡ a (mod q). Then for

sufficiently large q, there holds

P2(a, q) ≪ q1.8345.

Remark 1.1. Our improvement comes from using distinct methods to deal with

the different parts of the sifting sum with more delicate techniques, combined with

linear sieve results of Iwaniec (see [2]) with bilinear forms for the remainder term

and the two-dimensional sieve of Selberg.

2. Notation and preliminaries

Throughout this paper, we always denote primes by p. The symbol ε always

denotes an arbitrarily small positive constant, which may not be the same at different

occurrences. As usual, we use ϕ(n), µ(n), τ(n) to denote Euler’s function, Möbius’

function, and Dirichlet divisor function, respectively. Moreover, Ω(n) denotes the

number of prime factors of n, counted according to multiplicity. Let (m1,m2, . . . ,mk)

and [m1,m2, . . . ,mk] be the greatest common divisor and the least common multiple

of m1,m2, . . . ,mk, respectively. Also, f(x) ≪ g(x) means that f(x) = O(g(x)). The

symbol Pr always denotes an almost-prime with at most r prime factors, counted

according to multiplicity.
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Let A be a finite sequence of integers, andP a set of primes. For given z > 2 we

denote

P (z) =
∏

p<z
p∈P

p.

Define the sifting function as

S(A ,P, z) = |{a ∈ A : (a, P (z)) = 1}|.

For d | P (z), define Ad = {a ∈ A : a ≡ 0 (mod d)}. Moreover, we assume that |Ad|

may be written in the form

|Ad| =
ω(d)

d
X + r(A , d),

where ω(d) is a multiplicative function satisfying 0 < ω(p) < p for p ∈ P, X is

an approximation to |A | independent of d. In addition, ω(d)d−1X is regarded as

a main term of |Ad|, r(A , d) is regarded as an error term of |Ad|, which is expected

to be small on average over d. Also, we assume that the function ω(p) is constant

on average over p in P, which means that

∏

z16p<z2
p∈P

(

1−
ω(p)

p

)−1

6
log z2
log z1

(

1 +
K

log z1

)

for all z2 > z1 > 2, where K is a constant satisfying K > 1.

Lemma 2.1. Let F (u) and f(u) be continuous functions which satisfy the fol-

lowing differential-difference equations:

{

F (u) =
2eγ

u
, f(u) = 0 for 1 6 u 6 2,

(uF (u))′ = f(u− 1), (uf(u))′ = F (u− 1) for u > 2.

Then we have

F (u) =
2eγ

u
for 0 < u 6 3,

F (u) =
2eγ

u

(

1 +

∫ u−1

2

log(t− 1)

t
dt

)

for 3 6 u 6 5,

f(u) =
2eγ

u

(

log(u− 1) +

∫ u−1

3

dt1
t1

∫ t1−1

2

log(t2 − 1)

t2
dt2

)

for 4 6 u 6 6.

P r o o f. See [1], Chapter 8, (2.8) and [8], pages 126–127. �
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3. Proof of Theorem 1.1

Let A = {n : n 6 x, n ≡ a (mod q)}, where (a, q) = 1, x1/2 < q 6 x3/5. Set

P = {p : p ∤ q}, M = x1−3εq−1, N = x1/2−4εq−3/4, D = MN.

Moreover, we put

δ = 0.86, θ = 1.8345, x = qθ, y = qδ.

We write S(A , z) as abbreviation of S(A ,P, z) for convenience. For the notations

defined as above, we haveM < y < D and consider the weighted sum with Richert’s

weights of logarithmic type

W (A ; z, y) =
∑

n∈A

(n,P (z))=1

(

1−
1

λ

∑

z6p<y
p|n

(

1−
log p

log y

)

)

,

where z = D5/23, λ = 3− log x/ log y − ε. For convenience, we write

W(n) = 1−
1

λ

∑

z6p<y
p|n

(

1−
log p

log y

)

.

Then we have

(3.1) W (A ; z, y) =
∑

n∈A

(n,P (z))=1
Ω(n)62

W(n) +
∑

n∈A

(n,P (z))=1
Ω(n)>3
µ(n) 6=0

W(n) +
∑

n∈A

(n,P (z))=1
Ω(n)>3
µ(n)=0

W(n).

Obviously, we have

(3.2)
∑

n∈A

(n,P (z))=1
Ω(n)>3
µ(n)=0

W(n) ≪
∑

n∈A

(n,P (z))=1
µ(n)=0

τ(n) ≪ xε
∑

z6p6x1/2

p∤q

∑

k6(x−a1)/q

k≡−a1q (mod p2)

1

≪ xε
∑

z6p6x1/2

( x

p2q
+ 1

)

≪ xε
( x

qz
+ x1/2

)

= o
(x1−ε

ϕ(q)

)

,

where the integer a1 satisfies 1 6 a1 6 q and a1 ≡ a (mod q), while the integer q sat-

isfies qq ≡ 1 (mod p2) with respect to the prime p satisfying z 6 p 6 x1/2 and p ∤ q.
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For a given integer n with n 6 x, n ≡ a (mod q), (a, q) = 1, (n, P (z)) = 1 and

µ(n) 6= 0, the weight W(n) in the sum W (A ; z, y) satisfies

(3.3) 1−
1

λ

∑

z6p<y
p|n

(

1−
log p

log y

)

6
1

λ

(

λ−
∑

p|n

(

1−
log p

log y

)

)

=
1

λ

(

3−
log x

log y
− ε− Ω(n) +

logn

log y

)

<
1

λ
(3− Ω(n)),

and thus W(n) < 0 for Ω(n) > 3. From (3.1)–(3.3) we know that

(3.4)
∑

n∈A

(n,P (z))=1
Ω(n)62

W(n) = W (A ; z, y)−
∑

n∈A

(n,P (z))=1
Ω(n)>3
µ(n) 6=0

W(n) + o
(x1−ε

ϕ(q)

)

> W (A ; z, y) + o
(x1−ε

ϕ(q)

)

.

For W (A ; z, y) we have

(3.5) W (A ; z, y) =
∑

n∈A

(n,P (z))=1

1−
1

λ

∑

z6p<y
p∤q

(

1−
log p

log y

)

∑

n∈A

n≡0 (mod p)
(n,P (z))=1

1

= S(A , z)−
1

λ

∑

z6p<y
p∤q

(

1−
log p

log y

)

S(Ap, z).

We appeal to Theorem 1 of [2] for linear sieve results with bilinear forms for the

remainder term, which simply gives

(3.6) S(A , z) >
x

ϕ(q)
V (z)

(

f
(23

5

)

+O((logD)−1/3)
)

−R−,

where f is the function given in Lemma 2.1,

R− =
∑

l<exp(8ε−3)

∑

m<M

∑

n<N
(mn,q)=1

a−m(l)b−n (l)r(A ,mn),

and

(3.7) V (z) =
∏

p<z

(

1−
1

p

)

=
e−γ

log z

(

1 +O
( 1

log z

))
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by the Mertens’ prime number theorem (see [6]). By Theorem 5 of Iwaniec [3],

one has

(3.8) R− ≪
x1−ε

ϕ(q)
.

From Lemma 2.1, (3.6), (3.7) and (3.8), we obtain

(3.9)

S(A , z) >
x

ϕ(q) logD

{

2

(

log
18

5
+

∫ 18/5

3

dt1
t1

∫ t1−1

2

log(t2 − 1)

t2
dt2

)}

(1 +O(ε)).

For the second term in (3.5) we write it in three parts:

(3.10)
∑

z6p<y
p∤q

(

1−
log p

log y

)

S(Ap, z)

=
∑

z6p<D8/23

p∤q

(

1−
log p

log y

)

S(Ap, z) +
∑

D8/236p<M
p∤q

(

1−
log p

log y

)

S(Ap, z)

+
∑

M6p<y
p∤q

(

1−
log p

log y

)

S(Ap, z).

Henceforth, we shall use two distinct methods to deal with the sums in (3.10). For

the first and the second sum in (3.10), we shall appeal to linear sieve results of

Iwaniec with bilinear forms for the remainder term. On the other hand, we will treat

the third sum by the two-dimensional sieve of Selberg, which is the key point that

leads to more exponent saving than that obtained by Iwaniec.

Now, we deal with the first sum in (3.10). For each S(Ap, z), by Theorem 1 of [2],

we derive that

S(Ap, z) 6
x

pϕ(q)
V (z)

(

F
( log(D/p)

log z

)

+O(log−1/3 D)
)

+
∑

l<exp(8ε−3)

∑

m<M/p

∑

n<N

(mn,q)=1

a+m(l)b+n (l)r(A , pmn)

=
x(2 +O(ε))

pϕ(q) log(D/p)

(

1 +

∫ log(D/p)/ log z−1

2

log(t− 1)

t
dt

)

+
∑

l<exp(8ε−3)

∑

m<M/p

∑

n<N

(mn,q)=1

a+m(l)b+n (l)r(A , pmn),
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where |a+m(l)| 6 1, |b+n (l)| 6 1. Summing over p ∈ [z,D8/23), p ∤ q interpretating

that pm as one variable of the summation while n as the other, then, according to

Theorem 5 of [3], the final remainder term arising is ≪ x1−ε/ϕ(q). Therefore, we

deduce that

(3.11)
∑

z6p<D8/23

p∤q

(

1−
log p

log y

)

S(Ap, z)

6
∑

z6p<D8/23

log(y/p)

log y

x(2 +O(ε))

pϕ(q) log(D/p)

×

(

1 +

∫ log(D/p)/ log z−1

2

log(t− 1)

t
dt

)

+O
(x1−ε

ϕ(q)

)

=
x(2 +O(ε))

ϕ(q) logD

logD

log y

∑

z6p<D8/23

log(y/p)

p log(D/p)

×

(

1 +

∫ log(D/p)/ log z−1

2

log(t− 1)

t
dt

)

+O
(x1−ε

ϕ(q)

)

.

By partial summation and by prime number theorem, it is easy to derive that

(3.12)
logD

log y

∑

z6p<D8/23

log(y/p)

p log(D/p)

(

1 +

∫ log(D/p)/ log z−1

2

log(t− 1)

t
dt

)

=
6θ − 7

4δ

∫ (12θ−14)/23

(30θ−35)/92

δ − β

β(3θ/2− 7/4− β)

×

(

1 +

∫ (108θ−126−92β)/(30θ−35)

2

log(t− 1)

t
dt

)

dβ +O(ε).

Next, we shall deal with the second sum in (3.10), which is similar to the first sum.

For each S(Ap, z), by Theorem 1 of [2], we get

S(Ap, z) 6
x

pϕ(q)
V (z)

(

F
( log(D/p)

log z

)

+O(log−1/3 D)
)

+
∑

l<exp(8ε−3)

∑

m<M/p

∑

n<N

(mn,q)=1

a+m(l)b+n (l)r(A , pmn)

=
x(2 +O(ε))

pϕ(q) log(D/p)
+

∑

l<exp(8ε−3)

∑

m<M/p

∑

n<N

(mn,q)=1

a+m(l)b+n (l)r(A , pmn),

where |a+m(l)| 6 1, |b+n (l)| 6 1. Summing over p ∈ [D8/23,M), p ∤ q an interpretation

that pm as one variable of the summation while n as the other, then, according to
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Theorem 5 of [3], the final remainder term arising is ≪ x1−ε/ϕ(q). Hence, once gets

(3.13)
∑

D8/236p<M
p∤q

(

1−
log p

log y

)

S(Ap, z)

6
∑

D8/236p<M

log(y/p)

log y

x(2 +O(ε))

pϕ(q) log(D/p)
+O

(x1−ε

ϕ(q)

)

=
x(2 +O(ε))

ϕ(q) logD

logD

log y

∑

D8/236p<M

log(y/p)

p log(D/p)
+O

(x1−ε

ϕ(q)

)

.

By partial summation and by prime number theorem, one gets

(3.14)
logD

log y

∑

D8/236p<M

log(y/p)

p log(D/p)

=
6θ − 7

4δ

∫ θ−1

(12θ−14)/23

δ − β

β(3θ/2− 7/4− β)
dβ +O(ε).

Finally, we shall deal with the third sum, which appears in (3.10), in a different

manner without appealing to Theorem 1 of Iwaniec [2]. We begin with ignoring the

fact that p is a prime and obtaining

(3.15)
∑

M6p<y
p∤q

(

1−
log p

log y

)

S(Ap, z) =
∑

M6p<y
(p,q)=1

(

1−
log p

log y

)

∑

m∈A

m≡0 (mod p)
(m,P (z))=1

1

6
∑

M6n<y

(

1−
logn

log y

)

∑

m∈A

m≡0 (mod n)
(m,P (z))=1

1,

where n runs over all integers in the interval [M, y). Let {λ+(d)} be an upper bound

sieve of level D1, i.e., a sequence of real numbers satisfying

|λ+(d)| 6 1, λ+(d) = 0 for d > D1 or µ(d) = 0,

and
∑

d|n

µ(d) 6
∑

d|n

λ+(d).
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Then we get

(3.16)
∑

M6n<y

(

1−
logn

log y

)

∑

m∈A

m≡0 (mod n)
(m,P (z))=1

1

=
∑

M6n<y

(

1−
logn

log y

)

∑

m∈A

m≡0 (mod n)

∑

d|(m,P (z))

µ(d)

6
∑

M6n<y

(

1−
logn

log y

)

∑

m∈A

m≡0 (mod n)

∑

d|(m,P (z))

λ+(d)

=
∑

d<D1

d|P (z)

λ+(d)
∑

M6n<y

(

1−
log n

log y

)

∑

m∈A

m≡0 (mod [d,n])

1

=
∑

d<D1

d|P (z)

λ+(d)
∑

M6n<y

(

1−
log n

log y

)x(1 +O(ε))

[d, n]ϕ(q)

=
x(1 +O(ε))

ϕ(q)

∑

d<D1

d|P (z)

λ+(d)

d

∑

M6n<y

(

1−
logn

log y

) (d, n)

n
.

For the inner sum in (3.16), by partial summation, we have

(3.17)
∑

M6n<y

(

1−
logn

log y

)(d, n)

n

=
∑

v|d

∑

M/v6n1<y/v
(n1,d/v)=1

(

1−
log(n1v)

log y

) 1

n1

=
∑

v|d

∑

M/v6n1<y/v

(

1−
log(n1v)

log y

) 1

n1

∑

α|(n1,d/v)

µ(α)

=
∑

v|d

∑

α|d/v

µ(α)

α

∑

M/(vα)6n2<y/(vα)

(

1−
log(n2vα)

log y

) 1

n2

=
∑

v|d

∑

α|d/v

µ(α)

α

∫ y/(vα)

M/(vα)

(

1−
log(tvα)

log y

) dt

t
+O

(

1

M

∑

v|d

v
∑

α|d/v

1

)

=
∑

v|d

∑

α|d/v

µ(α)

α

∫ y

M

(

1−
log t

log y

) dt

t
+O

(

1

M

∑

v|d

vτ
(d

v

)

)

.

For the integral in (3.17), it is easy to see that

(3.18)

∫ y

M

(

1−
log t

log y

) dt

t
=

1

2 log y

(

log
y

M

)2

.
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In addition, we have

(3.19) ω1(d) :=
∑

v|d

∑

α|d/v

µ(α)

α
=

∑

α|d

µ(α)

α

∑

v|d/α

1

=
∑

α|d

µ(α)

α
τ
( d

α

)

=
∏

p|d

(

2−
1

p

)

.

Combining (3.15)–(3.19), we derive that

(3.20)
∑

M6p<y
p∤q

(

1−
log p

log y

)

S(Ap, z)

6
x(1 +O(ε))

ϕ(q)

∑

d<D1

d|P (z)

λ+(d)

d

(

ω1(d)

2 log y

(

log
y

M

)2

+O

(

1

M

∑

v|d

vτ
(d

v

)

))

=
x(1 +O(ε))

2ϕ(q) log y

(

log
y

M

)2 ∑

d<D1

d|P (z)

ω1(d)

d
λ+(d)

+O

(

x

ϕ(q)M

∑

d<D1

d|P (z)

|λ+(d)|
∑

v|d

τ(d/v)

d/v

)

=
x(1 +O(ε))

2ϕ(q) log y

(

log
y

M

)2 ∑

d<D1

d|P (z)

ω1(d)

d
λ+(d) +O

(

x

ϕ(q)M

∑

d<D1

d|P (z)

∑

v|d

τ(v)

v

)

.

By noting that the function ω1(d) is multiplicative and satisfies the 2-dimensional

sieve assumptions, we specify λ+(d)’s to be that from Selberg’s Λ2-sieve and deduce

that (for instance, one can see [1], page 197)

(3.21)
∑

d<D1

d|P (z)

ω1(d)

d
λ+(d) =

1

G(D1, z)
=

V (z)

σ(s)

(

1 +O
( 1

log z

))

holds for z 6 D1, where

s =
logD1

log z
, V (z) =

∏

p<z

(

1−
ω1(p)

p

)

,(3.22)

σ(s) =
s2

8e2γ
for 0 < s 6 2.
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By (3.19) and Mertens’ prime number theorem (see [6]), we obtain

(3.23) V (z) =
∏

p<z

(

1−
1

p

)2

=
e−2γ

log2 z

(

1 + O
( 1

log z

))

.

Taking D1 = N2, then z 6 D1, and thus (3.21) holds. Moreover, the remainder term

in (3.20) is

(3.24) ≪
x

ϕ(q)M

∑

d<D1

∏

p|d

(

1 +
2

p

)

≪
x

ϕ(q)M

∑

d<D1

(log log d)2

≪
x

ϕ(q)M
D1(log logD1)

2 = o
( x

ϕ(q) log y

)

.

From (3.20)–(3.24) we deduce that

(3.25)
∑

M6p<y
p∤q

(

1−
log p

log y

)

S(Ap, z) 6
x(1 +O(ε))

ϕ(q) log y

( log(y/M)

logN

)2

=
x(1 +O(ε))

ϕ(q) logD

logD

log y

( log(y/M)

logN

)2

=
x(1 +O(ε))

ϕ(q) logD

6θ − 7

δ

(2(δ − θ + 1)

2θ − 3

)2

.

Finally, combining (3.4), (3.5), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14) and (3.25),

we conclude that

∑

n∈A

(n,P (z))=1
Ω(n)62

W(n) > W (A ; z, y) + o
(x1−ε

ϕ(q)

)

>
x(1 +O(ε))

ϕ(q) logD

{

2

(

log
18

5
+

∫ 18/5

3

dt1
t1

∫ t1−1

2

log(t2 − 1)

t2
dt2

)

−
6θ − 7

2(3δ − θ)

∫ (12θ−14)/23

(30θ−35)/92

δ − β

β(3θ/2− 7/4− β)

×

(

1 +

∫ (108θ−126−92β)/(30θ−35)

2

log(t− 1)

t
dt

)

dβ

−
6θ − 7

2(3δ − θ)

∫ θ−1

(12θ−14)/23

δ − β

β(3θ/2− 7/4− β)
dβ

−
6θ − 7

3δ − θ

(2(δ − θ + 1)

2θ − 3

)2
}

.

By recalling the parameter δ = 0.86 and θ = 1.8345, then by a simple numerical

calculation, we know that the number in the above brackets { } is > 0.0004282583.

This completes the proof of Theorem 1.1. �
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