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Abstract. We study the regularity properties of bilinear maximal operator. Some new
bounds and continuity for the above operators are established on the Sobolev spaces,
Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approxi-
mate differentiability of the bilinear maximal function are also obtained.
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1. Introduction

In recent years there has been considerable interest in investigating the regular-

ity properties of various maximal operators. The first work was due to Kinnunen

(see [9]) who proved that the usual centered Hardy–Littlewood maximal operator M

is bounded in the first order Sobolev space W 1,p(Rn) for 1 < p 6 ∞, where n > 1

and W 1,p(Rn) is defined as

W 1,p(Rn) := {f : R
n → R : ‖f‖W 1,p(Rn) = ‖f‖Lp(Rn) + ‖∇f‖Lp(Rn) < ∞},

where ∇f = (D1f, . . . , Dnf) is the weak gradient of f . Kinnunen’s result was later

extended to various variants. For example, see [10] for the local case, [11] for the

fractional case, [1] for the bilinear case, [16] for the multisublinear case. Since the

maximal operator lacks the sublinearity at the derivative level, the continuity of

M : W 1,p(Rn) → W 1,p(Rn) for 1 < p < ∞ was posed by Haj lasz and Onninen (see

[7]) and addressed by Luiro, see [18]. On the other hand, the regularity properties
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of maximal operators on other smooth function spaces have been studied by many

authors. Korry in [12], [13] established the boundedness of M on the fractional

Sobolev spaces W s,p(Rn), the inhomogeneous Triebel-Lizorkin spaces F p,q
s (Rn) and

inhomogeneous Besov spaces Bp,q
s (Rn) for 0 < s < 1 and 1 < p, q < ∞. The

continuity of the Hardy-Littlewood maximal operator on the inhomogeneous Triebel-

Lizorkin (or Besov) spaces was proved by Luiro (see [19]) or Liu and Wu, see [17]. It

should be pointed out that in the bilinear setting, the regularity properties for the

maximal operators are more complex and refined. Particularly, Carneiro and Moreira

in [1] firstly considered the Sobolev regularity of the bilinear maximal operator

M(f, g)(x) = sup
r>0

1

|B(O, r)|

∫

B(O,r)

|f(x+ y)g(x− y)| dy,

where x ∈ R
n and O = (0, 0, . . . , 0) ∈ R

n. This type of maximal operator M was

originally introduced by Calderón and was studied by Lacey, see [14]. The main

result of [1] can be listed as follows.

Theorem A ([1]). Let 1 < p1, p2 < ∞, 1 6 p < ∞ and 1/p = 1/p1 + 1/p2.

The map M : W 1,p1(Rn) × W 1,p2(Rn) → W 1,p(Rn) is bounded and continuous.

In particular, if f ∈ W 1,p1(Rn) and g ∈ W 1,p2(Rn), then the following pointwise

estimate holds:

|∇M(f, g)(x)| 6 M(|∇f |, g)(x) +M(f, |∇g|)(x)

for almost every x ∈ R
n.

Recently, Liu, Liu and Zhang in [15] established the following results.

Theorem B ([15]). Let 0 < s < 1, 1 < p1, p2, p, q < ∞ and 1/p = 1/p1 + 1/p2.

Then both the maps M : F p1,q
s (Rn) × F p2,q

s (Rn) → F p,q
s (Rn) and M : Bp1,q

s (Rn) ×

Bp2,q
s (Rn) → Bp,q

s (Rn) are bounded and continuous.

From Theorems A and B we see that M(f, g) enjoys better regularity properties

if both f and g belong to the same kind of smooth function spaces. It is natural

and interesting to ask whether the bilinear maximal operator enjoys better regular-

ity properties when the above operator acts on two distinct functions from smooth

function spaces. This is our main motivation for this work.

In order to formulate our main results, let us introduce Lipschitz space.

278



Definition 1.1. Let 0 < γ 6 1. The homogeneous Lipschitz space Lipγ(R
n) is

defined as

Lipγ(R
n) := {f : R

n → C continuous ‖f‖Lipγ(R
n) < ∞},

where

‖f‖Lipγ(R
n) := sup

x∈Rn

sup
h∈Rn\{0}

|f(x+ h)− f(x)|

|h|γ
.

The inhomogeneous Lipschitz space Lipγ(R
n) is given by

Lipγ(R
n) := {f : R

n → C continuous : ‖f‖Lipγ(R
n) := ‖f‖L∞(Rn)+‖f‖Lipγ(R

n) <∞}.

Remark 1.2. By Rademacher’s theorem, if f ∈ Lip1(R
n), then the weak partial

derivatives Dib, i = 1, . . . , n, exist almost everywhere. Moreover, we have

Dib(x) = lim
h→0

b(x+ hei)− b(x)

h
and |Dib(x)| 6 ‖b‖Lip1(R

n)

for almost every x ∈ R
n. Here ei = (0, . . . , 0, i, 0, . . . , 0) is the canonical ith base

vector in R
n for i = 1, . . . , n.

We now list the main results as follows.

Theorem 1.3. Let 0 < γ 6 1, 0 < s < γ and 1 < p, q < ∞. Then M is

bounded and continuous from Lipγ(R
n) × F p,q

s (Rn) to F p,q
s (Rn). Moreover, there

exists a constant C > 0 such that

(1.1) ‖M(f, g)‖Fp,q
s (Rn) 6 C‖f‖Lipγ(R

n)‖g‖Fp,q
s (Rn)

for all f ∈ Lipγ(R
n) and g ∈ F p,q

s (Rn).

Theorem 1.4. Let 0 < γ 6 1, 0 < s < γ and 1 < p, q < ∞. Then M is bounded

and continuous from M : Lipγ(R
n) × Bp,q

s (Rn) to Bp,q
s (Rn). Moreover, there exists

a constant C > 0 such that

(1.2) ‖M(f, g)‖Bp,q
s (Rn) 6 C‖f‖Lipγ(R

n)‖g‖Bp,q
s (Rn)

for all f ∈ Lipγ(R
n) and g ∈ Bp,q

s (Rn).

It was pointed out in [5] that F p,2
s (Rn) = W s,p(Rn) for any s > 0 and 1 < p < ∞.

Applying Theorem 1.3, we can get the following result.
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Corollary 1.5. Let 0 < γ 6 1, 0 < s < γ and 1 < p < ∞. Then M is bounded

and continuous from Lipγ(R
n) × W s,p(Rn) to W s,p(Rn). Moreover, there exists

a constant C > 0 such that

‖M(f, g)‖W s,p(Rn) 6 C‖f‖Lipγ(R
n)‖g‖W s,p(Rn)

for all f ∈ Lipγ(R
n) and g ∈ W s,p(Rn).

The third result focuses on the quasicontinuity of bilinear maximal function, which

is based on the Sobolev regularity of the bilinear maximal function. Let us recall

some definitions.

Definition 1.6 ([8], Sobolev p-capacity). Let 1 < p < ∞ and set

A(E) = {f ∈ W 1,p(Rn) : f > 1 on a neighbourhood of E}.

The Sobolev p-capacity of the set E ⊂ R
n is defined by

Cp(E) := inf
f∈A(E)

∫

Rn

(|f(y)|p + |∇f(y)|p) dy.

We set Cp(E) = ∞ if A(E) = ∅.

Definition 1.7 ([8], p-quasicontinuous and p-quasieverywhere). A function f is

said to be p-quasicontinuous in R
n if for every ε > 0 there exists a set F ⊂ R

n

such that Cp(F ) < ε, the set R
n \ F is closed and the restriction of f to R

n \ F

is continuous. A property holds p-quasieverywhere if it holds outside a set of the

Sobolev p-capacity zero.

It was shown in [2] that the Sobolev p-capacity is a monotone and a countably sub-

additive set function. Also, it is an outer measure over Rn. It is well known that each

Sobolev function has a quasicontinuous representative, that is, for each u ∈ W 1,p(Rn)

there is a p-quasicontinuous function v ∈ W 1,p(Rn) such that u = v a.e. in R
n. This

representative is unique in the sense that if v and w are p-quasicontinuous and v = w

a.e. in R
n, then w = v p-quasieverywhere in R

n, see [2] for more details.

In 1997, Kinnunen in [9] proved that Mf is p-quasicontinuous if f ∈ W 1,p(Rn) for

any 1 < p < ∞. Motivated by Kinnunen’s work (see [9]), Liu et al. (see [15]) estab-

lished the p-quasicontinuity of M(f, g), provided that f ∈ W 1,p1(Rn), g ∈ W 1,p2(Rn),

1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2.

In this paper we shall establish the following result.

Theorem 1.8. Let 1 < p < ∞. If f ∈ Lip1(R
n) and g ∈ W 1,p(Rn), then we have

(1.3) ‖M(f, g)‖W 1,p(Rn) 6 C‖f‖Lip1(R
n)‖g‖W 1,p(Rn).

Moreover, the function M(f, g) is p-quasicontinuous.
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Finally, we study the approximate differentiability for the bilinear maximal func-

tion.

Definition 1.9 ([6], Approximate differentiability). Let f be a real-valued func-

tion defined on a set E ⊂ R
n. We say that f is approximately differentiable at

x0 ∈ E if there is a vector L = (L1, L2, . . . , Ln) ∈ R
n such that for any ε > 0 the set

Aε =
{

x ∈ R
n :

|f(x) − f(x0)− L(x− x0)|

|x− x0|
< ε

}

has x0 as a density point. If this is the case, then x0 is a density point of E and L is

uniquely determined. The vector L is called the approximate differential of f at x0

and is denoted by ∇f(x0).

In 2010, Haj lasz and Malý in [6] proved that Mf is approximately differentiable

a.e. if f ∈ L1(Rn) is approximately differentiable a.e. Motivated by Haj lasz and

Malý’s work, we shall establish the following result.

Theorem 1.10. Let f ∈ Lip1(R
n) and g ∈ L1(Rn) be approximately differen-

tiable a.e. Then M(f, g) is approximately differentiable a.e.

Remark 1.11. Note that u is approximately differentiable a.e. if u ∈ W 1,1(Rn).

Moreover, Theorem 1.8 yields that M(f, g) is approximately differentiable a.e. if

f ∈ Lip1(R
n) and g ∈ W 1,1(Rn).

Remark 1.12. Let 1 < p < ∞. From Theorem 1.8 we see that M is bounded

from Lip1(R
n) × W 1,p(Rn) to W 1,p(Rn). It is unknown whether M is continuous

from Lip1(R
n)×W 1,p(Rn) to W 1,p(Rn). Another interesting question is whether the

map M : Lipγ(R
n)×W 1,p(Rn) → W 1,p(Rn) is bounded or continuous when γ 6= 1.

This paper will be organized as follows. Section 2 is devoted to presenting the

proofs of Theorems 1.3 and 1.4. In Section 3 we prove Theorem 1.8. The proof of

Theorem 1.10 will be given in Section 4.

We would like to remark that the proofs of Theorems 1.3 and 1.4 are based on [15].

The proof of Theorem 1.8 (or Theorem 1.10) is motivated by the idea in [9] (or [6]).

However, some new techniques are needed. Throughout this paper, the letter C will

stand for positive constants not necessarily the same one at each occurrence but is

independent of the essential variables. In what follows, let Rn = {ζ ∈ R
n : 1

2 <

|ζ| 6 1}. For any p ∈ (1,∞), we let p′ denote the dual exponent to p defined as

1/p+ 1/p′ = 1. For any h ∈ R
n and arbitrary function u : R

n → R, we define the

first order difference of u by ∆hu(x) := uh(x) − u(x), where uh(x) = u(x+ h).
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2. Proofs of Theorems 1.3 and 1.4

In this section we will present the proofs of Theorems 1.3 and 1.4.

2.1. Proof of Theorem 1.3. In order to prove Theorem 1.3, let us introduce

some notation. For a measurable function g : R
n × Z×Rn → R we set

‖g‖p,q,r,s :=

∥

∥

∥

∥

(

∑

k∈Z

2ksq
(
∫

Rn

|g(x, k, ζ)|r dζ

)q/r)1/q∥
∥

∥

∥

Lp(Rn)

.

Denote by Ḟ p,q
s (Rn) the homogeneous Triebel-Lizorkin spaces. In [22] Yabuta showed

that

(2.1) ‖f‖Ḟp,q
s (Rn) ∼ ‖∆2−kζf‖p,q,r,s

for 0 < s < 1, 1 < p < ∞, 1 < q 6 ∞, 1 6 r < min{p, q}.

The following properties for the Triebel-Lizorkin spaces are known, see [3], [5], [20]:

‖f‖Fp,q
s (Rn) ∼ ‖f‖Ḟp,q

s (Rn) + ‖f‖Lp(Rn) for s > 0, 1 < p, q < ∞,(2.2)

‖f‖Fp,q
s1

(Rn) 6 ‖f‖Fp,q
s2

(Rn) for s1 6 s2, 0 < p, q < ∞,(2.3)

‖f‖Fp,q2
s (Rn) 6 ‖f‖Fp,q1

s (Rn) for s ∈ R, 0 < p < ∞, 0 < q1 6 q2 < ∞.(2.4)

In order to prove Theorem 1.3, we need the following lemmas.

Lemma 2.1 ([22]). For any 1 < p, q, r < ∞ we have

∥

∥

∥

∥

(

∑

k∈Z

‖Mfk,ζ‖
q
Lr(Rn)

)1/q∥
∥

∥

∥

Lp(Rn)

6 Cp,q,r

∥

∥

∥

∥

(

∑

k∈Z

‖fk,ζ‖
q
Lr(Rn)

)1/q∥
∥

∥

∥

Lp(Rn)

.

Lemma 2.2. Let 0 < q < ∞, 0 < r 6 ∞, 0 < γ < ∞ and 0 < s < γ. If

f ∈ Lipγ(R
n), then

(

∑

k∈Z

2ksq‖‖∆2−kζf‖L∞(Rn)‖
q
Lr(Rn)

)1/q

6 C‖f‖Lipγ(R
n).

P r o o f. Note that for any k ∈ Z and ζ ∈ Rn,

‖∆2−kζf‖L∞(Rn) 6 min{2‖f‖L∞(Rn), 2
−kγ‖f‖Lipγ(R

n)}.

It follows that

‖‖∆2−kζf‖L∞(Rn)‖Lr(Rn) 6 |Rn|
1/r

min{2‖f‖L∞(Rn), 2
−kγ‖f‖Lipγ(R

n)}.
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Therefore, we have

(

∑

k∈Z

2ksq‖‖∆2−kζf‖L∞(Rn)‖
q
Lr(Rn)

)1/q

6 2‖f‖L∞(Rn)

( 0
∑

k=−∞

2ksq
)1/q

+ ‖f‖Lipγ(R
n)

( ∞
∑

k=1

2k(s−γ)q

)1/q

6 C‖f‖Lipγ(R
n).

�

We now turn to prove Theorem 1.3.

P r o o f of Theorem 1.3. We divide the proof of Theorem 1.3 into two parts:

Step 1 : Proof of the boundedness part. Fix x, h ∈ R
n, we have

(2.5) |∆hM(f, g)(x)| = |(M(f, g))h(x) −M(f, g)(x)|

= |M(fh, gh)(x) −M(f, g)(x)|

6 M(∆hf,∆hg)(x) +M(f,∆hg)(x) +M(∆hf, g)(x).

In view of (2.5), for any k ∈ Z, ζ ∈ Rn and x ∈ R
n, we have

(2.6) |∆2−kζM(f, g)(x)| 6 M(∆2−kζf,∆2−kζg)(x) +M(∆2−kζf, g)(x)

+M(f,∆2−kζg)(x).

By (2.1), (2.6) and Minkowski’s inequality, we write

(2.7) ‖M(f, g)‖Ḟp,q
s (Rn) 6 C

∥

∥

∥

∥

(

∑

k∈Z

2ksq
(
∫

Rn

|∆2−kζ(M(f, g))| dζ

)q)1/q∥
∥

∥

∥

Lp(Rn)

6 C

∥

∥

∥

∥

(

∑

k∈Z

2ksq
(
∫

Rn

M(∆2−kζf,∆2−kζg) dζ

)q)1/q∥
∥

∥

∥

Lp(Rn)

+ C

∥

∥

∥

∥

(

∑

k∈Z

2ksq
(
∫

Rn

M(∆2−kζf, g) dζ

)q)1/q∥
∥

∥

∥

Lp(Rn)

+ C

∥

∥

∥

∥

(

∑

k∈Z

2ksq
(
∫

Rn

M(f,∆2−kζg) dζ

)q)1/q∥
∥

∥

∥

Lp(Rn)

=:

3
∑

i=1

Ii.

It is clear that for any arbitrary functions u, v defined on R
n,

(2.8) M(u, v)(x) 6 ‖u‖L∞(Rn)Mv(x).

Next we estimate I1, I2, I3, respectively.
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Estimate for I1. Let q1, q2 ∈ (1,∞) be such that 1/q = 1/q1 + 1/q2 and r ∈

(1,min{q1, p}). By (2.1), (2.2), (2.4) and (2.8), Lemmas 2.1 and 2.2 and Hölder’s

inequality, we get

(2.9) I1 6 C

∥

∥

∥

∥

(

∑

k∈Z

2ksq
(
∫

Rn

‖∆2−kζf‖L∞(Rn)M(∆2−kζg) dζ

)q)1/q∥
∥

∥

∥

Lp(Rn)

6 C

∥

∥

∥

∥

(

∑

k∈Z

2ksq‖‖∆2−kζf‖L∞(Rn)‖
q

Lr′(Rn)
‖M(∆2−kζg)‖

q
Lr(Rn)

)1/q∥
∥

∥

∥

Lp(Rn)

6 C

∥

∥

∥

∥

(

∑

k∈Z

2ksq2‖‖∆2−kζf‖L∞(Rn)‖
q2
Lr′(Rn)

)1/q2

×

(

∑

k∈Z

2ksq1‖M(∆2−kζg)‖
q1
Lr(Rn)

)1/q1∥
∥

∥

∥

Lp(Rn)

6 C‖f‖Lipγ(R
n)

∥

∥

∥

∥

(

∑

k∈Z

2ksq1‖∆2−kζg‖
q1
Lr(Rn)

)1/q1∥
∥

∥

∥

Lp(Rn)

6 C‖f‖Lipγ(R
n)‖g‖Ḟp,q1

s (Rn) 6 C‖f‖Lipγ(R
n)‖g‖Fp,q1

s (Rn)

6 C‖f‖Lipγ(R
n)‖g‖Fp,q

s (Rn).

Estimate for I2. In view of (2.1), (2.2), Lemma 2.2 and Hölder’s inequality, we have

(2.10) I2 6 C

∥

∥

∥

∥

(

∑

k∈Z

2ksq
(
∫

Rn

‖∆2−kζf‖L∞(Rn)Mg dζ

)q)1/q∥
∥

∥

∥

Lp(Rn)

6 C

∥

∥

∥

∥

Mg

(

∑

k∈Z

2ksq‖‖∆2−kζf‖L∞(Rn)‖
q
L1(Rn)

)1/q∥
∥

∥

∥

Lp(Rn)

6 C‖f‖Lipγ(R
n)‖Mg‖Lp(Rn) 6 C‖f‖Lipγ(R

n)‖g‖Lp(Rn)

6 C‖f‖Lipγ(R
n)‖g‖Fp,q

s (Rn).

Estimate for I3. Fix α ∈ (1,min{q, p}). Applying (2.1), (2.2), Lemma 2.1 and

Hölder’s inequality, one obtains

I3 6 C

∥

∥

∥

∥

(

∑

k∈Z

2ksq
(
∫

Rn

‖f‖L∞(Rn)M(∆2−kζg) dζ

)q)1/q∥
∥

∥

∥

Lp(Rn)

(2.11)

6 C‖f‖L∞(Rn)

∥

∥

∥

∥

(

∑

k∈Z

2ksp‖M(∆2−kζg)‖
q
L1(Rn)

)1/q∥
∥

∥

∥

Lp(Rn)

6 C‖f‖L∞(Rn)

∥

∥

∥

∥

(

∑

k∈Z

2ksp‖M(∆2−kζg)‖
q
Lα(Rn)

)1/q∥
∥

∥

∥

Lp(Rn)
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6 C‖f‖Lipγ(R
n)

∥

∥

∥

∥

(

∑

k∈Z

2ksp‖∆2−kζg‖
q
Lα(Rn)

)1/q∥
∥

∥

∥

Lp(Rn)

6 C‖f‖Lipγ(R
n)‖g‖Ḟp,q

s (Rn) 6 C‖f‖Lipγ(R
n)‖g‖Fp,q

s (Rn).

It follows from (2.7) and (2.9)–(2.11) that

(2.12) ‖M(f, g)‖Ḟp,q
s (Rn) 6 C‖f‖Lipγ (R

n)‖g‖Fp,q
s (Rn).

On the other hand, it is easy to see that

(2.13) ‖M(f, g)‖Lp(Rn) 6 C‖f‖L∞(Rn)‖g‖Lp(Rn).

Then (1.1) follows from (2.2), (2.12) and (2.13).

Step 2 : Proof of the continuity part. Let fj → f in Lipγ(R
n) and gj → g in

F p,q
s (Rn) as j → ∞. It suffices to show that

(2.14) ‖M(fj , gj)−M(f, g)‖Fp,q
s (Rn) → 0 as j → ∞.

From (2.2) we see that gj → g in Ḟ p,q
s (Rn) and in Lp(Rn) as j → ∞. By the

sublinearity of M, (2.13) and Minkowski’s inequality,

(2.15) ‖M(fj , gj)−M(f, g)‖Lp(Rn)

6 ‖M(fj − f, gj − g)‖Lp(Rn) + ‖M(fj − f, g)‖Lp(Rn)

+ ‖M(f, gj − g)‖Lp(Rn)

6 C(‖fj − f‖L∞(Rn)‖gj − g‖Lp(Rn) + ‖fj − f‖L∞(Rn)‖g‖Lp(Rn)

+ ‖f‖L∞(Rn)‖gj − g‖Lp(Rn)) → 0 as j → ∞.

In view of (2.2) and (2.15), for (2.14) it is enough to prove that

(2.16) ‖M(fj , gj)−M(f, g)‖Ḟp,q
s (Rn) → 0 as j → ∞.

We shall prove (2.16) by contradiction. If (2.16) is false, then we may assume

without loss of generality that there exists a constant c > 0 such that

(2.17) ‖M(fj , gj)−M(f, g)‖Ḟp,q
s (Rn) > c ∀ j > 1.

Since M(fj , gj) → M(f, g) in Lp(Rn) as j → ∞, by extracting a subsequence we may

assume without loss of generality that |M(fj , gj)(x)−M(f, g)(x)| → 0 as j → ∞ for

almost every x ∈ R
n. It follows that

(2.18) ∆2−kζ(M(fj , gj)−M(f, g))(x) → 0 as j → ∞
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for every (k, ζ) ∈ Z×Rn and almost every x ∈ R
n. For convenience, we set

Ψj(x, k, ζ) := M(∆2−kζ(fj − f),∆2−kζ(gj − g))(x) +M(∆2−kζ(fj − f),∆2−kζg)(x)

+M(∆2−kζf,∆2−kζ(gj − g))(x) +M(∆2−kζ(fj − f), gj − g)(x)

+M(∆2−kζ(fj − f), g)(x) +M(∆2−kζf, gj − g)(x)

+M(fj − f,∆2−kζ(gj − g))(x) +M(fj − f,∆2−kζg)(x)

+M(f,∆2−kζ(gj − g))(x),

Ψ(x, k, ζ) := 2M(∆2−kζf,∆2−kζg)(x) + 2M(∆2−kζf, g)(x) + 2M(f,∆2−kζg)(x).

By (2.6), it is not difficult to check that

(2.19) |∆2−kζ(M(fj , gj)−M(f, g))(x)| 6 Ψj(x, k, ζ) + Ψ(x, k, ζ)

for all (x, k, ζ) ∈ R
n×Z×Rn. Some computations similar to (2.9)–(2.11) imply that

‖Ψj‖p,q,1,s 6 C(‖fj − f‖Lipγ(R
n)‖gj − g‖Fp,q

s (Rn)(2.20)

+ ‖fj − f‖Lipγ(R
n)‖g‖Fp,q

s (Rn) + ‖f‖Lipγ(R
n)‖gj − g‖Fp,q

s (Rn)),

‖Ψ‖p,q,1,s 6 C‖f‖Lipγ(R
n)‖g‖Fp,q

s (Rn).(2.21)

By (2.18)–(2.21) and the arguments similar to those used to derive the proof of

Theorem 1.1 in [15], one can get a contradiction for (2.16). The details are omitted.

�

2.2. Proof of Theorem 1.4. Let Ḃp,q
s (Rn) denote the homogeneous Besov

spaces. The following properties are known, see [3], [5], [20], [22]:

‖f‖Bp,q
s (Rn) ∼ ‖f‖Ḃp,q

s (Rn) + ‖f‖Lp(Rn) for s > 0, 1 < p, q < ∞,(2.22)

‖f‖Bp,q1
s (Rn) 6 ‖f‖Bp,q2

s (Rn) for s ∈ R, 0 < p < ∞, 0 < q2 < q1,(2.23)

‖f‖Ḃp,q
s (Rn) ∼

(

∑

k∈Z

2ksq
∥

∥

∥

∥

(
∫

Rn

|∆2−kζf |
r dζ

)1/r∥
∥

∥

∥

q

Lp(Rn)

)1/q

(2.24)

if 0 < s < 1, 1 6 p < ∞, 1 6 q 6 ∞ and 1 6 r 6 p.

For a measurable function g : R
n × Z×Rn → R we set

‖g‖p,q,s :=

(

∑

k∈Z

2ksq
(

∫

Rn

∫

Rn

|g(x, k, ζ)|p dxdζ

)q/p)1/q

.

By (2.24) and Fubini’s theorem, the following is valid:

(2.25) ‖f‖Ḃp,q
s (Rn) ∼ ‖∆2−kζf‖p,q,s for 0 < s < 1, 1 6 p < ∞, 1 6 q 6 ∞.

We now present the proof of Theorem 1.4.
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P r o o f of Theorem 1.4. We divide the proof into two parts.

Step 1 : Proof of the boundedness part. Let 0 < s < 1 and 1 < p, q < ∞. In view

of (2.6) and (2.25), one has

(2.26)

‖M(f, g)‖Ḃp,q
s (Rn) 6 C

(

∑

k∈Z

2ksq
(
∫

Rn

∫

Rn

|∆2−kζM(f, g)(x)|p dxdζ

)q/p)1/q

6 C

(

∑

k∈Z

2ksq
(
∫

Rn

∫

Rn

(M(∆2−kζf,∆2−kζg)(x))
p dxdζ

)q/p)1/q

+ C

(

∑

k∈Z

2ksq
(
∫

Rn

∫

Rn

(M(∆2−kζf, g)(x))
p dxdζ

)q/p)1/q

+ C

(

∑

k∈Z

2ksq
(
∫

Rn

∫

Rn

(M(f,∆2−kζg)(x))
p dxdζ

)q/p)1/q

=:

3
∑

i=1

Ji.

Estimate for J1. Let q1, q2 ∈ (1,∞) be such that 1/q = 1/q1 + 1/q2. By (2.13),

Hölder’s inequality, Lemma 2.2, (2.22), (2.23) and (2.25) one has

(2.27)

J1 6 C

(

∑

k∈Z

2ksq
(
∫

Rn

‖∆2−kζf‖
p
L∞(Rn)‖∆2−kζg‖

p
Lp(Rn) dζ

)q/p)1/q

6 C

(

∑

k∈Z

2ksq‖∆2−kζf‖
q
L∞(Rn×Rn)

‖∆2−kζg‖
q
Lp(Rn×Rn)

)1/q

6 C

(

∑

k∈Z

2ksq2‖∆2−kζf‖
q2
L∞(Rn×Rn)

)1/q2(
∑

k∈Z

2ksq1‖∆2−kζg‖
q1
Lp(Rn×Rn)

)1/q1

6 C‖f‖Lipγ(R
n)

(

∑

k∈Z

2ksq1‖∆2−kζg‖
q1
Lp(Rn×Rn)

)1/q1

6 C‖f‖Lipγ(R
n)‖g‖Ḃp,q1

s (Rn) 6 C‖f‖Lipγ(R
n)‖g‖Bp,q1

s (Rn)

6 C‖f‖Lipγ(R
n)‖g‖Bp,q

s (Rn).

Estimate for J2. By (2.13), (2.22), (2.23) and Lemma 2.2, we have

(2.28) J2 6 C

(

∑

k∈Z

2ksq
(
∫

Rn

‖∆2−kζf‖
p
L∞(Rn)‖g‖

p
Lp(Rn) dζ

)q/p)1/q

6 C‖g‖Lp(Rn)

(

∑

k∈Z

2ksq‖‖∆2−kζf‖L∞(Rn)‖
q
Lp(Rn)

)1/q

6 C‖f‖Lipγ(R
n)‖g‖Bp,q

s (Rn).
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Estimate for J3. By (2.13), (2.22) and (2.25), we have

(2.29) J3 6 C

(

∑

k∈Z

2ksq
(
∫

Rn

‖f‖L∞(Rn)‖∆2−kζg‖
p
Lp(Rn) dζ

)q/p)1/q

6 C‖f‖L∞(Rn)

(

∑

k∈Z

2ksq
(
∫

Rn

‖∆2−kζg‖
p
Lp(Rn) dζ

)q/p)1/q

6 C‖f‖Lipγ(R
n)‖g‖Ḃp,q

s (Rn) 6 C‖f‖Lipγ(R
n)‖g‖Bp,q

s (Rn).

Finally, it follows from (2.26)–(2.29) that

‖M(f, g)‖Ḃp,q
s (Rn) 6 C‖f‖Lipγ (R

n)‖g‖Bp,q
s (Rn).

This together with (2.13) and (2.22) implies (1.2).

Step 2 : Proof of the continuity part. Assume that fj → f in Lipγ(R
n) and gj → g

in Bp,q
s (Rn) as j → ∞. By (2.22) we see that gj → g in Ḃp,q

s (Rn) and in Lp(Rn) as

j → ∞. From (2.15) we have that M(fj , gj) → M(f, g) in Lp(Rn) as j → ∞. Hence,

it is enough to show that

(2.30) ‖M(fj , gj) → M(f, g)‖Ḃp,q
s (Rn) → 0 as j → ∞.

We now prove (2.30) by contradiction. Assume that (2.30) is not true. Without

loss of generality we may assume that there exists a constant c > 0 such that

(2.31) ‖M(fj , gj)−M(f, g)‖Ḃp,q
s (Rn) > c ∀ j > 1.

Since M(fj , gj) → M(f, g) in Lp(Rn) as j → ∞, then by extracting a subsequence

we may assume without loss of generality that |M(fj , gj)(x) − M(f, g)(x)| → 0 as

j → ∞ for almost every x ∈ R
n. Hence, we have

∆2−kζ(M(fj , gj)−M(f, g))(x) → 0 as j → ∞

for every (k, ζ) ∈ Z × Rn and almost every x ∈ R
n. Let Ψj and Ψ be given as

in (2.19). Some arguments similar to (2.27)–(2.29) show that

‖Ψ‖p,q,s 6 C‖f‖Lipγ(R
n)‖g‖Bp,q

s (Rn),

‖Ψj‖p,q,s 6 C(‖fj − f‖Lipγ(R
n)‖gj − g‖Bp,q

s (Rn) + ‖fj − f‖Lipγ(R
n)‖g‖Bp,q

s (Rn)

+ ‖f‖Lipγ(R
n)‖gj − g‖Bp,q

s (Rn)).

The rest of the proof follows from the arguments similar to the proof of Theorem 1.3.

We omit the details. �
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3. Proof of Theorem 1.8

In this section we shall present the proof of Theorem 1.8. Before presenting the

proof, let us introduce some notation. Let u ∈ Lp(Rn) with p > 1. For all h ∈ R,

|h| > 0, y ∈ R
n and i = 1, . . . , n, we define the function uh,i by setting

uh,i(x) =
u(x+ hei)− u(x)

h
, x ∈ R

n.

Here ei = (0, . . . , 0, 1, 0, . . . , 0) is the canonical ith base vector in R
n. Set

G(u; p) := lim sup
h→0

‖∆hu‖Lp(Rn)

|h|
.

According to [4], Section 7.11, we have

(3.1) u ∈ W 1,q(Rn), 1 < q < ∞ ⇔ u ∈ Lq(Rn) and G(u; q) < ∞.

It is well known that for p > 1, uh,i → Diu in Lp(Rn) when h → 0 if u ∈ W 1,p(Rn).

Moreover, if u ∈ Lp(Rn) for p > 1, then uh → u in Lp(Rn) when |h| → 0.

We now prove Theorem 1.8.

P r o o f of Theorem 1.8. We divide the proof of Theorem 1.8 into three steps:

Step 1 : Proof of M(f, g) ∈ W 1,p(Rn). Applying Minkowski’s inequality and (2.5),

one has that when |h| < 1,

(3.2) ‖∆hM(f, g)‖Lp(Rn)

6 ‖M(∆hf,∆hg)‖Lp(Rn) + ‖M(f,∆hg)‖Lp(Rn) + ‖M(∆hf, g)‖Lp(Rn)

6 C(‖∆hf‖L∞(Rn)‖∆hg‖Lp(Rn) + ‖f‖L∞(Rn)‖∆hg‖Lp(Rn)

+ ‖∆hf‖L∞(Rn)‖g‖Lp(Rn))

6 C(‖f‖Lip1(R
n)‖∆hg‖Lp(Rn)|h|+ ‖f‖L∞(Rn)‖∆hg‖Lp(Rn)

+ ‖f‖Lip1(R
n)‖g‖Lp(Rn)|h|)

6 C(‖f‖Lip1(R
n)‖∆hg‖Lp(Rn) + ‖f‖Lip1(R

n)‖g‖Lp(Rn)|h|).

This together with the fact that G(g; p) < ∞ leads to

G(M(f, g); p) = lim sup
h→0

‖∆h(M(f, g))‖Lp(Rn)

|h|

6 C lim sup
h→0

1

|h|
(‖f‖Lip1(R

n)‖∆hg‖Lp(Rn) + ‖f‖Lip1(R
n)‖g‖Lp(Rn)|h|)

6 C(‖f‖Lip1(R
n)G(g; p) + ‖f‖Lip1(R

n)‖g‖Lp(Rn)) < ∞.

Combining this with (2.13) and (3.1) implies that M(f, g) ∈ W 1,p(Rn).
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Step 2 : Proof of (1.3). Let us fix l ∈ {1, 2, . . . , n}. By Step 1 we see that

M(f, g) ∈ W 1,p(Rn). It follows that (M(f, g))h,l → DlM(f, g) in Lp(Rn) as h → 0.

Moreover, gh,l → Dlg in Lp(Rn) as h → 0. By Riesz theorem, there exists a sequence

of numbers {hk} with lim
k→∞

hk = 0 and a measurable set E satisfying |Rn \ E| = 0

such that (M(f, g))hk,l(x) → DlM(f, g)(x) and ghk,l(x) → Dlg(x) as k → ∞ for

all x ∈ E. Applying Fatou’s Lemma and (3.2), we obtain

‖DlM(f, g)‖Lp(Rn) =
∥

∥

∥
lim inf
k→∞

(M(f, g))hk,l

∥

∥

∥

Lp(Rn)
6 lim inf

k→∞
‖(M(f, g))hk,l‖Lp(Rn)

6 C lim inf
k→∞

(‖f‖Lip1(R
n)‖ghk,l‖Lp(Rn) + ‖f‖Lip1(R

n)‖g‖Lp(Rn))

6 C‖f‖Lip1(R
n)‖g‖Lp(Rn) + C lim sup

k→∞
‖f‖Lip1(R

n)‖ghk,l‖Lp(Rn)

6 C‖f‖Lip1(R
n)‖g‖Lp(Rn) + C‖f‖Lip1(R

n)

∥

∥

∥
lim sup
k→∞

ghk,l

∥

∥

∥

Lp(Rn)

6 C‖f‖Lip1(R
n)‖g‖W 1,p(Rn).

This together with (2.13) leads to (1.3).

Step 3 : Proof of the p-quasicontinuity. We first prove that M(f, g) is continuous

on R
n if f ∈ Lip1(R

n) and g ∈ C∞
0 (Rn). Fix x, h ∈ R

n, by the mean value theorem

for differentials one has that |∆hg(x)| 6 C|h| for a constant C > 0. Then we get

from (2.5) that

|∆hM(f, g)(x)| 6 ‖∆hf‖L∞(Rn)‖∆hg‖L∞(Rn) + ‖f‖L∞(Rn)‖∆hg‖L∞(Rn)

+ ‖∆hf‖L∞(Rn)‖g‖L∞(Rn)

6 (3‖f‖Lip1(R
n)‖g‖L∞(Rn) + C‖f‖L∞(Rn))|h|,

which leads to the continuity of M(f, g) at x. Thus, M(f, g) is continuous on R
n.

Next we assume that f ∈ Lip1(R
n) and g ∈ W 1,p(Rn) for 1 < p < ∞. Without

loss of generality we may assume that g > 0. There exists a sequence of functions

{gk}k>1 ⊂ C∞
0 (Rn) such that 0 6 gk(x) 6 g(x) for any k > 1 and x ∈ R

n. Moreover,

gk → g in W 1,p(Rn) as k → ∞. We also assume that

(3.3) ‖gk − g‖W 1,p(Rn) 6 2−2k for k > 1.

For λ > 0, we set Oλ = {x ∈ R
n : M(f, g)(x) > λ}. In view of (1.3), we can get the

following weak type inequality for the Sobolev capacity:

(3.4) (Cp(Oλ))
1/p

6
1

λ

(
∫

Rn

((M(f, g)(x))p + |∇M(f, g)(x)|p) dx

)1/p

6
1

λ
‖M(f, g)‖W 1,p(Rn) 6 C

1

λ
‖f‖Lip1(R

n)‖g‖W 1,p(Rn).
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For any k > 1, let Ak := {x ∈ R
n : M(f, g)(x) −M(f, gk)(x) > 2−k}. Since M(f, g)

is lower-semicontinuous and M(f, gk) is continuous, then M(f, g)−M(f, gk) is lower-

semicontinuous. Thus, for any k > 1, the set Ak is open. By the sublinearity of M,

we have

M(f, g)(x) −M(f, gk)(x) 6 M(f, g − gk)(x).

This together with (3.4) yield that

(3.5) (Cp(Ak))
1/p 6 C2k‖f‖Lip1(R

n)‖g − gk‖W 1,p(Rn) 6 C‖f‖Lip1(R
n)2

−k.

Let Bk =
∞
⋃

i=k

Ai with k > 1. By the subadditivity and (3.5),

Cp(Bk) 6

∞
∑

i=k

Cp(Ai) 6 C‖f‖pLip1(R
n)

∞
∑

i=k

2−ip 6 C2−(k−1)p ∀ k > 1.

This gives that lim
k→∞

Cp(Bk) = 0. It follows that for a fixed ε > 0, there exists

a positive integer K0 such that Cp(BK0
) < ε. On the other hand, we see that for

x ∈ R
n \BK0

,

M(f, g)(x)−M(f, gk)(x) 6 2−k ∀ k > K0.

Thus, {M(f, gk)}k>1 converges to M(f, g) uniformly in R
n \ BK0

. Note that

M(f, gk) ∈ C(Rn). Therefore, M(f, g) is continuous in R
n \ BK0

. It is easy to see

that Rn\BK0
is closed. The above facts imply that M(f, g) is p-quasicontinuous. �

4. Proof of Theorem 1.10

This section is devoted to presenting the proof of Theorem 1.10. Let us introduce

a characterization of a.e. approximate differentiable function.

Lemma 4.1 ([21], Theorem 1). Let f : E → R be measurable, E ⊂ R
n. Then

the following conditions are equivalent:

(i) f is approximately differentiable a.e.

(ii) For any ε > 0, there is a closed set F ⊂ E and a locally Lipschitz function

g : Rn → R such that f = g on x ∈ F and |E \ F | < ε.

In order to prove Theorem 1.10, we need the following result.

Lemma 4.2. Let f ∈ Lip1(R
n) and g ∈ L1(Rn). For any ε > 0, we define the

truncated bilinear maximal operator Mε by

Mε(f, g)(x) = sup
r>ε

1

|B(O, r)|

∫

Rn

|f(x+ y)g(x− y)| dy, x ∈ R
n.

Then for every ε > 0, the function Mε(f, g) is Lipschitz continuous.
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P r o o f. Let x, y ∈ R and ε > 0. It is enough to show that

(4.1) |Mε(f, g)(x) −Mε(f, g)(y)| 6 C|x − y|,

where C > 0 is independent of x, y. Without loss of generality we may assume that

Mε(f, g)(x) > Mε(f, g)(y). When |x − y| > ε/n, inequality (4.1) follows from the

following trivial estimate:

(4.2) |Mε(f, g)(x)| 6 Cnε
−n‖f‖L∞(Rn)‖g‖L1(Rn).

Next we consider the case |x− y| < ε/n. For convenience, we can redefine Mε by

Mε(f, g)(z) = sup
r>ε

1

|B(O, r)|

∫

B(z,r)

|f(u)g(2z − u)| du, z ∈ R
n.

Let r > ε. Note that B(x, r) ⊂ B(y, r + |x− y|). Then we have

1

|B(y, r + |x− y|)|

∫

B(y,r+|x−y|)

|g(u)f(2y − u)| du

>
1

|B(y, r + |x− y|)|

∫

B(x,r)

|g(u)f(2y − u)| du

>
1

|B(y, r + |x− y|)|

∫

B(x,r)

|g(u)f(2x− u)| du

+
1

|B(y, r + |x− y|)|

∫

B(x,r)

|g(u)|(|f(2y − u)| − |f(2x− u)|) du.

Noting that for any r > a > 0, b > 0 and δ > 0,

( r

r + b

)δ

− 1 =
( 1

1 + b/r

)δ

− 1δ =

∫ b/r

0

−δ

(1 + x)δ+1
dx > −

b

r
δ > −

b

a
δ.

It follows that

1

|B(y, r + |x− y|)|

∫

B(x,r)

|g(u)f(2x− u)| du

=
|B(x, r)|

|B(y, r + |x− y|)|

1

|B(x, r)|

∫

B(x,r)

|g(u)f(2x− u)| du

> (1− nε−1|x− y|)
1

|B(x, r)|

∫

B(x,r)

|g(u)f(2x− u)| du.

On the other hand, one gets
∣

∣

∣

∣

1

|B(y, r + |x− y|)|

∫

B(x,r)

|g(u)|(|f(2y − u)| − |f(2x− u)|) du

∣

∣

∣

∣

6
1

|B(y, r + |x− y|)|

∫

B(x,r)

|g(u)||f(2y − u)− f(2x− u)| du

6 Cn‖f‖Lip1(R
n)ε

−n‖g‖L1(Rn)|x− y|.
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Thus, we have

1

|B(y, r + |x− y|)|

∫

B(y,r+|x−y|)

|g(u)f(2y − u)| du

> (1− nε−1|x− y|)
1

|B(x, r)|

∫

B(x,r)

|f(u)g(2x− u)| du

− Cn‖f‖Lip1(R
n)ε

−n‖g‖L1(Rn)|x− y|.

Since (1− nε−1|x− y|) > 0, we have

Mε(f, g)(y) > (1− nε−1|x− y|)Mε(f, g)(x)− Cn‖f‖Lip1(R
n)ε

−n‖g‖L1(Rn)|x− y|.

This together with (4.2) implies that

Mε(f, g)(x)−Mε(f, g)(y)

6 nε−1|x− y|Mε(f, g)(x) + Cn‖f‖Lip1(R
n)ε

−n‖g‖L1(Rn)|x− y|

6 Cnε
−n‖f‖L∞(Rn)‖g‖L1(Rn)nε

−1|x− y|+ Cn‖f‖Lip1(R
n)ε

−n‖g‖L1(Rn)|x− y|

6 C|x− y|.

This proves (4.1) and completes the proof of Lemma 4.1. �

We now prove Theorem 1.10.

P r o o f of Theorem 1.10. We set

E =

{

x ∈ R
n : lim

r→0

1

|B(O, r)|

∫

B(O,r)

|f(x+ y)g(x− y)| dy = |f(x)g(x)|

}

.

By an argument similar to the one that proves that almost every point is a Lebesgue

point, one can conclude that |Rn \ E| = 0. Let x ∈ E be such that M(f, g)(x) >

|f(x)g(x)|. We first prove that there exists r > 0 such that

M(f, g)(x) =
1

|B(O, r)|

∫

B(O,r)

|f(x+ y)g(x− y)| dy.

If not, we have

M(f, g)(x) = sup
r>k

1

|B(O, r)|

∫

B(O,r)

|f(x+ y)g(x− y)| dy ∀k > 1.

It is clear that

M(f, g)(x) 6 Cnk
−n‖f‖L∞(Rn)‖g‖L1(Rn) ∀k > 1.
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This yields that M(f, g)(x) = 0 by letting k → ∞. This is a contradiction. So we

can write

R
n = (Rn \ E) ∪ {x ∈ R

n : M(f, g)(x) = |f(x)g(x)|} ∪ F,

where F =
∞
⋃

k=1

Fk and

Fk = {x ∈ R
n : M(f, g)(x) = M1/k(f, g)(x)}.

Obviously, Fk ⊂ Fk+1. We get by Lemma 4.2 that M1/k(f, g) is Lipschitz continuous

for any k > 1. Hence, for all k > 1 the function M(f, g)χFk+1\Fk
is approximately

differentiable almost everywhere. Write

M(f, g)χF = M(f, g)χF1
+

∞
∑

k=1

M(f, g)χFk+1\Fk
.

Invoking Lemma 4.1, we have that M(f, g)χF is approximately differentiable a.e. On

the other hand, from Lemma 4.1 we see that |fg| is approximately differentiable a.e.

So M(f, g) is approximately differentiable a.e. in the set {x ∈ R
n : M(f, g)(x) =

|f(x)g(x)|}. Note that |Rn \ E| = 0. Therefore, M(f, g) is approximately differen-

tiable a.e. �
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